Biology is governed by macromolecular interactions,perturbation of which often lies at the heart of disease.Most therapeutic drugs,whether they are small molecules or biologics,exert their effects through impeding suc...Biology is governed by macromolecular interactions,perturbation of which often lies at the heart of disease.Most therapeutic drugs,whether they are small molecules or biologics,exert their effects through impeding such interactions,whether they are of an enzyme with its substrate or a ligand with its receptor.Conversely,a handful of approved drugs and a larger number of candidates in development have the opposite effect:They either activate or inhibit a biological output by stabilizing a preexisting complex through reducing the rate at which its components dissociate(koff).展开更多
Precision medicine has become a cornerstone in modern therapeutic strategies, with nucleic acid aptamers emerging aspivotal tools due to their unique properties. These oligonucleotide fragments, selected through the S...Precision medicine has become a cornerstone in modern therapeutic strategies, with nucleic acid aptamers emerging aspivotal tools due to their unique properties. These oligonucleotide fragments, selected through the Systematic Evolution ofLigands by Exponential Enrichment process, exhibit high affinity and specificity toward their targets, such as DNA, RNA,proteins, and other biomolecules. Nucleic acid aptamers offer significant advantages over traditional therapeutic agents,including superior biological stability, minimal immunogenicity, and the capacity for universal chemical modifications thatenhance their in vivo performance and targeting precision. In the realm of osseous tissue repair and regeneration, a complexphysiological process essential for maintaining skeletal integrity, aptamers have shown remarkable potential in influencingmolecular pathways crucial for bone regeneration, promoting osteogenic differentiation and supporting osteoblast survival. Byengineering aptamers to regulate inflammatory responses and facilitate the proliferation and differentiation of fibroblasts,these oligonucleotides can be integrated into advanced drug delivery systems, significantly improving bone repair efficacywhile minimizing adverse effects. Aptamer-mediated strategies, including the use of siRNA and miRNA mimics or inhibitors,have shown efficacy in enhancing bone mass and microstructure. These approaches hold transformative potential for treatinga range of orthopedic conditions like osteoporosis, osteosarcoma, and osteoarthritis. This review synthesizes the molecularmechanisms and biological roles of aptamers in orthopedic diseases, emphasizing their potential to drive innovative andeffective therapeutic interventions.展开更多
In this review research,the full bio-medical potential and application of the severe acute respiratory syndrome(SARS)-CoV-2 viruses are discussed in detail with the aim of discovering innovative treatment strategies i...In this review research,the full bio-medical potential and application of the severe acute respiratory syndrome(SARS)-CoV-2 viruses are discussed in detail with the aim of discovering innovative treatment strategies in virology and medicine.The SARS-CoV-2 which caused an international health crisis also unraveled an opportunity to gain from its pathogenic effects to treat the affected people.The study aims at testing whether the newly discovered SARS-CoV-2 can be used for therapeutic and clinical purposes.With in-depth analytics,this investigation issue endeavors to unearth new ways of fighting infectious diseases and to improve existing medical interventions.Beside scientific and practical significance the role of this work is vital.By learning the biologic and molecular mysteries of SARS-CoV-2,the researchers can create precise medicines and vaccines not only against COVID-19 but also the other infectious diseases as well.Furthermore,this recommendation may open the door to the future development of gene therapy and vaccine technology.In this sense,it combines multiple approaches,such as viral studies,immunology,and molecular biology.Laboratory experiments,computer program modeling and clinical trials are applied to detection of the SARS-COV-2 in therapeutic implementation.The principal conclusion and analysis of this research put forth the fact that SARS-CoV-2 can be utilized in anti-viral treatment,cancer therapy,and vaccine programs.The study results confirm the inherent adaptability of viruses like SARS-CoV-2 and emphasis on the development of specific therapeutic measures.It is valuable because of its potential to add to virology and medication,showing new ways for virus-based treatment.In addition,the impact of these results on treatments would be revolutionary,with potential to invent superior and flexible interventions against infectious disease.In short,the therapeutic use of SARS-CoV-2 can be regarded as a bold innovation with tremendous consequences for general health,and ultimately for medical science.展开更多
Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are ne...Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.展开更多
It has been reported that the PI3K/AKT signaling pathway plays a key role in the pathogenesis of ischemic stroke.As a result,the development of drugs targeting the PI3K/AKT signaling pathway has attracted increasing a...It has been reported that the PI3K/AKT signaling pathway plays a key role in the pathogenesis of ischemic stroke.As a result,the development of drugs targeting the PI3K/AKT signaling pathway has attracted increasing attention from researchers.This article reviews the pathological mechanisms and advancements in research related to the signaling pathways in ischemic stroke,with a focus on the PI3K/AKT signaling pathway.The key findings include the following:(1)The complex pathological mechanisms of ischemic stroke can be categorized into five major types:excitatory amino acid toxicity,Ca^(2+)overload,inflammatory response,oxidative stress,and apoptosis.(2)The PI3K/AKT-mediated signaling pathway is closely associated with the occurrence and progression of ischemic stroke,which primarily involves the NF-κB,NRF2,BCL-2,mTOR,and endothelial NOS signaling pathways.(3)Natural products,including flavonoids,quinones,alkaloids,phenylpropanoids,phenols,terpenoids,and iridoids,show great potential as candidate substances for the development of innovative anti-stroke medications.(4)Recently,novel therapeutic techniques,such as electroacupuncture and mesenchymal stem cell therapy,have demonstrated the potential to improve stroke outcomes by activating the PI3K/AKT signaling pathway,providing new possibilities for the treatment and rehabilitation of patients with ischemic stroke.Future investigations should focus on the direct regulatory mechanisms of drugs targeting the PI3K/AKT signaling pathway and their clinical translation to develop innovative treatment strategies for ischemic stroke.展开更多
Stroke causes neuronal loss,which ultimately results in persistent neurological dysfunction.Globally,stroke was the third-leading cause of death and disability combined in all ages in 2019,after neonatal disorders and...Stroke causes neuronal loss,which ultimately results in persistent neurological dysfunction.Globally,stroke was the third-leading cause of death and disability combined in all ages in 2019,after neonatal disorders and ischemic heart disease.In that year,there were 12.2 million incident strokes,101 million prevalent strokes,and 143 million disability-adjusted life-years due to stroke.展开更多
Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand...Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis exhibits significant differences before and after injury.Recent studies have revealed that the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis is closely associated with secondary inflammatory responses and the recruitment of immune cells following spinal cord injury,suggesting that this axis is a novel target and regulatory control point for treatment.This review comprehensively examines the therapeutic strategies targeting the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis,along with the regenerative and repair mechanisms linking the axis to spinal cord injury.Additionally,we summarize the upstream and downstream inflammatory signaling pathways associated with spinal cord injury and the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review primarily elaborates on therapeutic strategies that target the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the latest progress of research on antagonistic drugs,along with the approaches used to exploit new therapeutic targets within the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the development of targeted drugs.Nevertheless,there are presently no clinical studies relating to spinal cord injury that are focusing on the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review aims to provide new ideas and therapeutic strategies for the future treatment of spinal cord injury.展开更多
The muscular system plays a critical role in the human body by governing skeletal movement,cardiovascular function,and the activities of digestive organs.Additionally,muscle tissues serve an endocrine function by secr...The muscular system plays a critical role in the human body by governing skeletal movement,cardiovascular function,and the activities of digestive organs.Additionally,muscle tissues serve an endocrine function by secreting myogenic cytokines,thereby regulating metabolism throughout the entire body.Maintaining muscle function requires iron homeostasis.Recent studies suggest that disruptions in iron metabolism and ferroptosis,a form of iron-dependent cell death,are essential contributors to the progression of a wide range of muscle diseases and disorders,including sarcopenia,cardiomyopathy,and amyotrophic lateral sclerosis.Thus,a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention.This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury,as well as associated muscle diseases and disorders.Moreover,we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders.Finally,we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.展开更多
The recent commercialization of gene products has sparked significant interest in gene therapy,necessitating efficient and precise gene delivery via various vectors.Currently,viral vectors and lipid-based nanocarriers...The recent commercialization of gene products has sparked significant interest in gene therapy,necessitating efficient and precise gene delivery via various vectors.Currently,viral vectors and lipid-based nanocarriers are the predominant choices and have been extensively investigated and reviewed.Beyond these vectors,polymeric nanocarriers also hold the promise in therapeutic gene delivery owing to their versatile functionalities,such as improving the stability,cellar uptake and endosomal escape of nucleic acid drugs,along with precise delivery to targeted tissues.This review presents a brief overview of the status quo of the emerging polymeric nanocarriers for therapeutic gene delivery,focusing on key cationic polymers,nanocarrier types,and preparation methods.It also highlights targeted diseases,strategies to improve delivery efficiency,and potential future directions in this research area.The review is hoped to inspire the development,optimization,and clinical translation of highly efficient polymeric nanocarriers for therapeutic gene delivery.展开更多
Atrial fibrillation(AF)is a prevalent cardiac arrhythmia with a multifactorial pathophysiology involving electrical,structural,and autonomic remodeling of the atria.AF is closely associated with elevated interleukin-6...Atrial fibrillation(AF)is a prevalent cardiac arrhythmia with a multifactorial pathophysiology involving electrical,structural,and autonomic remodeling of the atria.AF is closely associated with elevated interleukin-6(IL-6)levels,which contribute to atrial remodeling and the progression of AF.This review summarizes the mechanisms by which IL-6 promotes AF through inflammatory pathways,atrial fibrosis,electrical remodeling,and calcium mishandling.Experimental models have demonstrated that IL-6 neutralization reduces the incidence of AF,highlighting its potential as a therapeutic target.Future studies should focus on IL-6 blockade strategies to manage AF,aiming to improve patient outcomes.展开更多
Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration.It causes local damage to photoreceptors,retinal pigment epithelium,and choroidal vessels,which leads to permanent central ...Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration.It causes local damage to photoreceptors,retinal pigment epithelium,and choroidal vessels,which leads to permanent central vision loss of patients with neovascular age-related macular degeneration.The pathogenesis of subretinal fibrosis is complex,and the underlying mechanisms are largely unknown.Therefore,there are no effective treatment options.A thorough understanding of the pathogenesis of subretinal fibrosis and its related mechanisms is important to elucidate its complications and explore potential treatments.The current article reviews several aspects of subretinal fibrosis,including the current understanding on the relationship between neovascular age-related macular degeneration and subretinal fibrosis;multimodal imaging techniques for subretinal fibrosis;animal models for studying subretinal fibrosis;cellular and non-cellular constituents of subretinal fibrosis;pathophysiological mechanisms involved in subretinal fibrosis,such as aging,infiltration of macrophages,different sources of mesenchymal transition to myofibroblast,and activation of complement system and immune cells;and several key molecules and signaling pathways participating in the pathogenesis of subretinal fibrosis,such as vascular endothelial growth factor,connective tissue growth factor,fibroblast growth factor 2,platelet-derived growth factor and platelet-derived growth factor receptor-β,transforming growth factor-βsignaling pathway,Wnt signaling pathway,and the axis of heat shock protein 70-Toll-like receptors 2/4-interleukin-10.This review will improve the understanding of the pathogenesis of subretinal fibrosis,allow the discovery of molecular targets,and explore potential treatments for the management of subretinal fibrosis.展开更多
Compelling evidence demonstrates that the levels of peripheral amyloid-β(Aβ)fluctuate in Alzheimer’s disease(AD)patients.Moreover,Aβdeposits have been identified in peripheral tissues.However,the relevance of peri...Compelling evidence demonstrates that the levels of peripheral amyloid-β(Aβ)fluctuate in Alzheimer’s disease(AD)patients.Moreover,Aβdeposits have been identified in peripheral tissues.However,the relevance of peripheral Aβ(misfolded or not)in pathological situations,and the temporal appearance of these pathological fluctuations,are not well understood.The presence of misfolded Aβin peripheral compartments raises concerns on potential inter-individual transmissions considering the well-reported prion-like properties of this disease-associated protein.The latter is supported by multiple reports demonstrating that Aβmisfolding can be transmitted between humans and experimental animals through multiple routes of exposure.In this mini-review,we discuss the potential implications of peripheral,disease-associated Aβin disease mechanisms,as well as in diagnostic and therapeutic approaches.展开更多
Chronic pain,characterized by pain lasting for more than three months,is a debilitating condition frequently caused by conditions such as fibromyalgia,arthritis,neuropathy,and migraine[1-3].
Autoimmune diseases frequently present with ophthalmological manifestations,posing significant diagnostic and therapeutic challenges.This review delved into the complex interplay between autoimmunity and ocular health...Autoimmune diseases frequently present with ophthalmological manifestations,posing significant diagnostic and therapeutic challenges.This review delved into the complex interplay between autoimmunity and ocular health,highlighting common manifestations such as uveitis,keratitis,and optic neuritis.We explored advanced diagnostic tools and techniques to improve early detection and accurate diagnosis.Additionally,the review addressed current therapeutic strategies,emphasizing the need for tailored treatments to manage ocular symptoms effectively while minimizing systemic side effects.By overcoming these challenges we aimed to enhance patient outcomes and quality of life for those affected by autoimmune-related eye diseases.展开更多
This article summarizes recent advances in the understanding of RNA-binding proteins(RBPs),with a focus on their roles in exercise-induced mRNA regulation and their implications for schizophrenia(SZ).RBPs are critical...This article summarizes recent advances in the understanding of RNA-binding proteins(RBPs),with a focus on their roles in exercise-induced mRNA regulation and their implications for schizophrenia(SZ).RBPs are critical regulators of mRNA stability,splicing,transport,translation,and degradation,directly influencing gene expression through sequence-and structure-specific binding.In the nervous system,RBPs sustain synaptic plasticity,neural development,and neuronal homeostasis.Emerging evidence shows that exercise modulates the expression and activity of RBPs,thereby influencing mRNA translation and neurotransmitter signaling,which may underlie its beneficial effects on brain function.Dysregulation of specific RBPs has been identified in SZ,implicating them in disrupted synaptic transmission,impaired plasticity,and neuroinflammation.RBPs involved in memory and emotional regulation show marked dysfunction in SZ patients.Some RBPs have been proposed as potential biomarkers for early diagnosis and treatment monitoring.Moreover,therapeutic modulation of RBPs,through pharmacological or behavioral interventions such as exercise,may restore neuronal function by targeting post-transcriptional gene regulation.Exercise,as a non-invasive modulator of RBP expression,holds promise as an adjunctive strategy in SZ treatment,particularly in early stages.Further research into RBP-mediated pathways may offer novel insights into SZ pathophysiology and inform the development of targeted interventions.展开更多
Acupuncture,a therapeutic practice rooted in traditional Chinese medicine and integrated with modern neuroscience,achieves its effects by stimulating sensory nerves at specific anatomical points known as acupoints.Thi...Acupuncture,a therapeutic practice rooted in traditional Chinese medicine and integrated with modern neuroscience,achieves its effects by stimulating sensory nerves at specific anatomical points known as acupoints.This review systematically explores the therapeutic components of acupuncture,emphasizing the interplay between sensory nerve characteristics and neural signaling pathways.Key factors such as acupoint location,needling depth,stimulation intensity,retention time,and the induction of sensations(e.g.,Deqi)are analyzed for their roles in neural activation and clinical outcomes.The review highlights how variations in spinal segment targeting,tissue-specific receptor activation,and stimulation modalities(e.g.,manual acupuncture,electroacupuncture,moxibustion)influence therapeutic effects.Emerging evidence underscores the significance of ion channels,dermatomes,myotomes,and genespecific pathways in mediating systemic effects.Additionally,the differential roles of mechanical,thermal and nociceptive stimuli and the temporal dynamics of sensory and immune responses are addressed.While insights from animal models have advanced our understanding,their translation to clinical practice requires further investigation.This comprehensive review identifies critical parameters for optimizing acupuncture therapy,advocating for individualized treatment strategies informed by neuroanatomical and neurophysiological principles,ultimately enhancing its precision and efficacy in modern medicine.展开更多
Current treatments for glioblastoma face challenges such as the blood-brain barrier and lack of targeted therapy,compounded by the aggressive nature,high invasiveness,and heterogeneity of the disease.Exosomes,a subtyp...Current treatments for glioblastoma face challenges such as the blood-brain barrier and lack of targeted therapy,compounded by the aggressive nature,high invasiveness,and heterogeneity of the disease.Exosomes,a subtype of extracellular vesicles are emerging as promising nanocarrier drug delivery systems to address these limitations.Exosomes released by all cell types can be easily obtained and modified as delivery vehicles or therapeutic agents.A systematic review was conducted to evaluate various methods for exosome isolation,characterization,engineering or modification,drug loading and delivery efficiency,including exosome biodistribution and treatment efficacy.A search of four databases for in vitro and in vivo studies(2000–,2023)identified 6165 records,of which 23 articles were found eligible and included for analyses.Most studies applied ultracentrifugation(UC)for exosomes isolation.Cancer cell lines being the most frequently used source of exosomes,followed by stem cells.The incubation approach was predominantly utilized to modify exosomes for drug loading.In vivo analysis showed that exosome biodistribution was primarily concentrated in the brain region,peaking in the first 6 h and remained moderately high.Compared to native exosomes and untreated control groups,utilizing modified native exosomes(cargo loaded)for treating glioblastoma disease models led to more pronounced suppression of tumor growth and proliferation,enhanced stimulation of immune response and apoptosis,effective restoration of drug chemosensitivity,increased anti-tumor effect and prolonged survival rates.Modified exosomes whether through incubation,sonication,transfection,freeze-thawing or their combination,improve targeted delivery and therapeutic efficacy against glioblastoma.展开更多
Microglia(MG)are immune effector cells in the central nervous system(CNS)and play a pivotal role in the pathogenesis of various CNS diseases.Alzheimer's disease(AD)is defined as a severe chronic degenerative neuro...Microglia(MG)are immune effector cells in the central nervous system(CNS)and play a pivotal role in the pathogenesis of various CNS diseases.Alzheimer's disease(AD)is defined as a severe chronic degenerative neurological disease in humans.The amyloid cascade hypothesis is a hypothesis on the pathogenesis of AD that suggests that abnormal extracellular aggregation ofβ-amyloid(Aβ)peptides is the main cause of the disease.Although this hypothesis has been found to be convincing,a growing body of evidence suggests that it does not fully explain the pathogenesis of AD.Neuroinflammation is a crucial element in the pathogenesis of AD,as evidenced by elevated levels of inflammatory markers and the identification of AD risk genes associated with innate immune function.This paper will first summarize the impact of microglia-mediated neuroinflammation on AD,exploring the phenotypic changes that follow microglia activation.Secondly,the interactions between microglia,Aβ,microtubule-associated protein,apolipoprotein E and neurons are thoroughly investigated,with particular focus on the interactive mechanisms.Furthermore,the recent progress and prospects of microglia as a diagnostic and therapeutic target for AD are analysed.A review of the literature on the mechanisms regulating MG for AD at home and abroad revealed that acupuncture modulation of microglia could help to delay the progression of AD.This was followed by an extensive discussion of the clinical possibilities and scientific validity of acupuncture treatment for AD,with the aim of providing new insights for acupuncture modulation of MG targeting for the treatment of AD.展开更多
Obesity,a global health concern,is associated with severe health issues like type 2 diabetes,heart disease,and respiratory complications.It also increases the risk of various cancers,including melanoma,endometrial,pro...Obesity,a global health concern,is associated with severe health issues like type 2 diabetes,heart disease,and respiratory complications.It also increases the risk of various cancers,including melanoma,endometrial,prostate,pancreatic,esophageal adenocarcinoma,colorectal carcinoma,renal adenocarcinoma,and pre-and post-menopausal breast cancer.Obesity-induced cellular changes,such as impaired CD8^(+)T cell function,dyslipi-demia,hypercholesterolemia,insulin resistance,mild hyperglycemia,and fluctuating levels of leptin,resistin,adiponectin,and IL-6,contribute to cancer development by promoting inflammation and creating a tumor-promoting microenvironment rich in adipocytes.Adipocytes release leptin,a pro-inflammatory substance that stimulates cancer cell proliferation,inflammation,and invasion,altering the tumor cell metabolic pathway.Adiponectin,an insulin-sensitizing adipokine,is typically downregulated in obese individuals.It has antipro-liferative,proapoptotic,and antiangiogenic properties,making it a potential cancer treatment.This narrative review offers a comprehensive examination of the molecular interconnections between obesity and cancer,draw-ing on an extensive,though non-systematic,survey of the recent literature.This approach allows us to integrate and synthesize findings from various studies,offering a cohesive perspective on emerging themes and potential therapeutic targets.The review explores the metabolic disturbances,cellular alterations,inflammatory responses,and shifts in the tumor microenvironment that contribute to the obesity-cancer link.Finally,it discusses poten-tial therapeutic strategies aimed at disrupting these connections,offering valuable insights into future research directions and the development of targeted interventions.展开更多
Microglia are the resident macrophages of the central nervous system.They act as the first line of defense against pathogens and play essential roles in neuroinflammation and tissue repair after brain insult or in neu...Microglia are the resident macrophages of the central nervous system.They act as the first line of defense against pathogens and play essential roles in neuroinflammation and tissue repair after brain insult or in neurodegenerative and demyelinating diseases(Borst et al.,2021).Together with infiltrating monocyte-derived macrophages,microglia also play a critical role for brain tumor development,since immunosuppressive interactions between tumor cells and tumor-associated microglia and macrophages(TAM)are linked to malignant progression.This mechanism is of particular relevance in glioblastoma(GB),the deadliest form of brain cancer with a median overall survival of less than 15 months(Khan et al.,2023).Therefore,targeting microglia and macrophage activation is a promising strategy for therapeutic interference in brain disease.展开更多
文摘Biology is governed by macromolecular interactions,perturbation of which often lies at the heart of disease.Most therapeutic drugs,whether they are small molecules or biologics,exert their effects through impeding such interactions,whether they are of an enzyme with its substrate or a ligand with its receptor.Conversely,a handful of approved drugs and a larger number of candidates in development have the opposite effect:They either activate or inhibit a biological output by stabilizing a preexisting complex through reducing the rate at which its components dissociate(koff).
基金Key research and development projects of Sichuan Science and Technology Plan Project(2024YFFK0135)Fujian Provincial Natural Science Foundation of China(2024J011450).
文摘Precision medicine has become a cornerstone in modern therapeutic strategies, with nucleic acid aptamers emerging aspivotal tools due to their unique properties. These oligonucleotide fragments, selected through the Systematic Evolution ofLigands by Exponential Enrichment process, exhibit high affinity and specificity toward their targets, such as DNA, RNA,proteins, and other biomolecules. Nucleic acid aptamers offer significant advantages over traditional therapeutic agents,including superior biological stability, minimal immunogenicity, and the capacity for universal chemical modifications thatenhance their in vivo performance and targeting precision. In the realm of osseous tissue repair and regeneration, a complexphysiological process essential for maintaining skeletal integrity, aptamers have shown remarkable potential in influencingmolecular pathways crucial for bone regeneration, promoting osteogenic differentiation and supporting osteoblast survival. Byengineering aptamers to regulate inflammatory responses and facilitate the proliferation and differentiation of fibroblasts,these oligonucleotides can be integrated into advanced drug delivery systems, significantly improving bone repair efficacywhile minimizing adverse effects. Aptamer-mediated strategies, including the use of siRNA and miRNA mimics or inhibitors,have shown efficacy in enhancing bone mass and microstructure. These approaches hold transformative potential for treatinga range of orthopedic conditions like osteoporosis, osteosarcoma, and osteoarthritis. This review synthesizes the molecularmechanisms and biological roles of aptamers in orthopedic diseases, emphasizing their potential to drive innovative andeffective therapeutic interventions.
文摘In this review research,the full bio-medical potential and application of the severe acute respiratory syndrome(SARS)-CoV-2 viruses are discussed in detail with the aim of discovering innovative treatment strategies in virology and medicine.The SARS-CoV-2 which caused an international health crisis also unraveled an opportunity to gain from its pathogenic effects to treat the affected people.The study aims at testing whether the newly discovered SARS-CoV-2 can be used for therapeutic and clinical purposes.With in-depth analytics,this investigation issue endeavors to unearth new ways of fighting infectious diseases and to improve existing medical interventions.Beside scientific and practical significance the role of this work is vital.By learning the biologic and molecular mysteries of SARS-CoV-2,the researchers can create precise medicines and vaccines not only against COVID-19 but also the other infectious diseases as well.Furthermore,this recommendation may open the door to the future development of gene therapy and vaccine technology.In this sense,it combines multiple approaches,such as viral studies,immunology,and molecular biology.Laboratory experiments,computer program modeling and clinical trials are applied to detection of the SARS-COV-2 in therapeutic implementation.The principal conclusion and analysis of this research put forth the fact that SARS-CoV-2 can be utilized in anti-viral treatment,cancer therapy,and vaccine programs.The study results confirm the inherent adaptability of viruses like SARS-CoV-2 and emphasis on the development of specific therapeutic measures.It is valuable because of its potential to add to virology and medication,showing new ways for virus-based treatment.In addition,the impact of these results on treatments would be revolutionary,with potential to invent superior and flexible interventions against infectious disease.In short,the therapeutic use of SARS-CoV-2 can be regarded as a bold innovation with tremendous consequences for general health,and ultimately for medical science.
基金supported by the Natural Science Foundation of Fujian Province,No.2021J02035(to WX).
文摘Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.
基金supported by the National Natural Science Foundation of China,Nos.82274313(to YD),82204746(to ML),82003982(to TL).
文摘It has been reported that the PI3K/AKT signaling pathway plays a key role in the pathogenesis of ischemic stroke.As a result,the development of drugs targeting the PI3K/AKT signaling pathway has attracted increasing attention from researchers.This article reviews the pathological mechanisms and advancements in research related to the signaling pathways in ischemic stroke,with a focus on the PI3K/AKT signaling pathway.The key findings include the following:(1)The complex pathological mechanisms of ischemic stroke can be categorized into five major types:excitatory amino acid toxicity,Ca^(2+)overload,inflammatory response,oxidative stress,and apoptosis.(2)The PI3K/AKT-mediated signaling pathway is closely associated with the occurrence and progression of ischemic stroke,which primarily involves the NF-κB,NRF2,BCL-2,mTOR,and endothelial NOS signaling pathways.(3)Natural products,including flavonoids,quinones,alkaloids,phenylpropanoids,phenols,terpenoids,and iridoids,show great potential as candidate substances for the development of innovative anti-stroke medications.(4)Recently,novel therapeutic techniques,such as electroacupuncture and mesenchymal stem cell therapy,have demonstrated the potential to improve stroke outcomes by activating the PI3K/AKT signaling pathway,providing new possibilities for the treatment and rehabilitation of patients with ischemic stroke.Future investigations should focus on the direct regulatory mechanisms of drugs targeting the PI3K/AKT signaling pathway and their clinical translation to develop innovative treatment strategies for ischemic stroke.
基金supported by JSPS KAKENHI Grant Number JP24K18622(to TI)JSPS KAKENHI Grant Number JP23K18451(to TM)。
文摘Stroke causes neuronal loss,which ultimately results in persistent neurological dysfunction.Globally,stroke was the third-leading cause of death and disability combined in all ages in 2019,after neonatal disorders and ischemic heart disease.In that year,there were 12.2 million incident strokes,101 million prevalent strokes,and 143 million disability-adjusted life-years due to stroke.
基金supported by the National Natural Science Foundation of China(Key Program),No.11932013the National Natural Science Foundation of China(General Program),No.82272255+2 种基金Armed Police Force High-Level Science and Technology Personnel ProjectThe Armed Police Force Focuses on Supporting Scientific and Technological Innovation TeamsKey Project of Tianjin Science and Technology Plan,No.20JCZDJC00570(all to XC)。
文摘Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis exhibits significant differences before and after injury.Recent studies have revealed that the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis is closely associated with secondary inflammatory responses and the recruitment of immune cells following spinal cord injury,suggesting that this axis is a novel target and regulatory control point for treatment.This review comprehensively examines the therapeutic strategies targeting the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis,along with the regenerative and repair mechanisms linking the axis to spinal cord injury.Additionally,we summarize the upstream and downstream inflammatory signaling pathways associated with spinal cord injury and the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review primarily elaborates on therapeutic strategies that target the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the latest progress of research on antagonistic drugs,along with the approaches used to exploit new therapeutic targets within the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the development of targeted drugs.Nevertheless,there are presently no clinical studies relating to spinal cord injury that are focusing on the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review aims to provide new ideas and therapeutic strategies for the future treatment of spinal cord injury.
基金the National Natural Science Foundation of China(82471593 to J.M.32330047 and 31930057 to F.W.+2 种基金and 82071970 to Y.W.and 82072506 to Y.L.)the Science Fund for Distinguished Young Scholars of Hubei Province(2023AFA109 to Y.W.)Hubei Provincial Natural Science Foundation of China(2024AFB963 to Q.R.).
文摘The muscular system plays a critical role in the human body by governing skeletal movement,cardiovascular function,and the activities of digestive organs.Additionally,muscle tissues serve an endocrine function by secreting myogenic cytokines,thereby regulating metabolism throughout the entire body.Maintaining muscle function requires iron homeostasis.Recent studies suggest that disruptions in iron metabolism and ferroptosis,a form of iron-dependent cell death,are essential contributors to the progression of a wide range of muscle diseases and disorders,including sarcopenia,cardiomyopathy,and amyotrophic lateral sclerosis.Thus,a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention.This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury,as well as associated muscle diseases and disorders.Moreover,we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders.Finally,we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.
基金supported by National Natural Science Foundation of China(82104082)Natural Science Foundation of Qinghai Province(2024-ZJ-911).
文摘The recent commercialization of gene products has sparked significant interest in gene therapy,necessitating efficient and precise gene delivery via various vectors.Currently,viral vectors and lipid-based nanocarriers are the predominant choices and have been extensively investigated and reviewed.Beyond these vectors,polymeric nanocarriers also hold the promise in therapeutic gene delivery owing to their versatile functionalities,such as improving the stability,cellar uptake and endosomal escape of nucleic acid drugs,along with precise delivery to targeted tissues.This review presents a brief overview of the status quo of the emerging polymeric nanocarriers for therapeutic gene delivery,focusing on key cationic polymers,nanocarrier types,and preparation methods.It also highlights targeted diseases,strategies to improve delivery efficiency,and potential future directions in this research area.The review is hoped to inspire the development,optimization,and clinical translation of highly efficient polymeric nanocarriers for therapeutic gene delivery.
基金supported by the National Natural Science Foundation of China(No.82170326 and No.82470328 to Y.D.,No.82100339 to Q.D.).
文摘Atrial fibrillation(AF)is a prevalent cardiac arrhythmia with a multifactorial pathophysiology involving electrical,structural,and autonomic remodeling of the atria.AF is closely associated with elevated interleukin-6(IL-6)levels,which contribute to atrial remodeling and the progression of AF.This review summarizes the mechanisms by which IL-6 promotes AF through inflammatory pathways,atrial fibrosis,electrical remodeling,and calcium mishandling.Experimental models have demonstrated that IL-6 neutralization reduces the incidence of AF,highlighting its potential as a therapeutic target.Future studies should focus on IL-6 blockade strategies to manage AF,aiming to improve patient outcomes.
基金supported by grants from National Key R&D Program of China,No.2023YFC2506100(to JZ)the National Natural Science Foundation of China,No.82171062(to JZ).
文摘Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration.It causes local damage to photoreceptors,retinal pigment epithelium,and choroidal vessels,which leads to permanent central vision loss of patients with neovascular age-related macular degeneration.The pathogenesis of subretinal fibrosis is complex,and the underlying mechanisms are largely unknown.Therefore,there are no effective treatment options.A thorough understanding of the pathogenesis of subretinal fibrosis and its related mechanisms is important to elucidate its complications and explore potential treatments.The current article reviews several aspects of subretinal fibrosis,including the current understanding on the relationship between neovascular age-related macular degeneration and subretinal fibrosis;multimodal imaging techniques for subretinal fibrosis;animal models for studying subretinal fibrosis;cellular and non-cellular constituents of subretinal fibrosis;pathophysiological mechanisms involved in subretinal fibrosis,such as aging,infiltration of macrophages,different sources of mesenchymal transition to myofibroblast,and activation of complement system and immune cells;and several key molecules and signaling pathways participating in the pathogenesis of subretinal fibrosis,such as vascular endothelial growth factor,connective tissue growth factor,fibroblast growth factor 2,platelet-derived growth factor and platelet-derived growth factor receptor-β,transforming growth factor-βsignaling pathway,Wnt signaling pathway,and the axis of heat shock protein 70-Toll-like receptors 2/4-interleukin-10.This review will improve the understanding of the pathogenesis of subretinal fibrosis,allow the discovery of molecular targets,and explore potential treatments for the management of subretinal fibrosis.
基金supported by grants from NIH(RF1AG072491 and R01AI132695)to RM.
文摘Compelling evidence demonstrates that the levels of peripheral amyloid-β(Aβ)fluctuate in Alzheimer’s disease(AD)patients.Moreover,Aβdeposits have been identified in peripheral tissues.However,the relevance of peripheral Aβ(misfolded or not)in pathological situations,and the temporal appearance of these pathological fluctuations,are not well understood.The presence of misfolded Aβin peripheral compartments raises concerns on potential inter-individual transmissions considering the well-reported prion-like properties of this disease-associated protein.The latter is supported by multiple reports demonstrating that Aβmisfolding can be transmitted between humans and experimental animals through multiple routes of exposure.In this mini-review,we discuss the potential implications of peripheral,disease-associated Aβin disease mechanisms,as well as in diagnostic and therapeutic approaches.
基金supported by the National Natural Science Foundation of China(T2241028)the STI2030-Major Projects[2021ZD0203000(2021ZD0203003)]the Chinese Academy of Sciences Hundred Talents Program.
文摘Chronic pain,characterized by pain lasting for more than three months,is a debilitating condition frequently caused by conditions such as fibromyalgia,arthritis,neuropathy,and migraine[1-3].
文摘Autoimmune diseases frequently present with ophthalmological manifestations,posing significant diagnostic and therapeutic challenges.This review delved into the complex interplay between autoimmunity and ocular health,highlighting common manifestations such as uveitis,keratitis,and optic neuritis.We explored advanced diagnostic tools and techniques to improve early detection and accurate diagnosis.Additionally,the review addressed current therapeutic strategies,emphasizing the need for tailored treatments to manage ocular symptoms effectively while minimizing systemic side effects.By overcoming these challenges we aimed to enhance patient outcomes and quality of life for those affected by autoimmune-related eye diseases.
文摘This article summarizes recent advances in the understanding of RNA-binding proteins(RBPs),with a focus on their roles in exercise-induced mRNA regulation and their implications for schizophrenia(SZ).RBPs are critical regulators of mRNA stability,splicing,transport,translation,and degradation,directly influencing gene expression through sequence-and structure-specific binding.In the nervous system,RBPs sustain synaptic plasticity,neural development,and neuronal homeostasis.Emerging evidence shows that exercise modulates the expression and activity of RBPs,thereby influencing mRNA translation and neurotransmitter signaling,which may underlie its beneficial effects on brain function.Dysregulation of specific RBPs has been identified in SZ,implicating them in disrupted synaptic transmission,impaired plasticity,and neuroinflammation.RBPs involved in memory and emotional regulation show marked dysfunction in SZ patients.Some RBPs have been proposed as potential biomarkers for early diagnosis and treatment monitoring.Moreover,therapeutic modulation of RBPs,through pharmacological or behavioral interventions such as exercise,may restore neuronal function by targeting post-transcriptional gene regulation.Exercise,as a non-invasive modulator of RBP expression,holds promise as an adjunctive strategy in SZ treatment,particularly in early stages.Further research into RBP-mediated pathways may offer novel insights into SZ pathophysiology and inform the development of targeted interventions.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.NRF-2020R1C1C1004107)。
文摘Acupuncture,a therapeutic practice rooted in traditional Chinese medicine and integrated with modern neuroscience,achieves its effects by stimulating sensory nerves at specific anatomical points known as acupoints.This review systematically explores the therapeutic components of acupuncture,emphasizing the interplay between sensory nerve characteristics and neural signaling pathways.Key factors such as acupoint location,needling depth,stimulation intensity,retention time,and the induction of sensations(e.g.,Deqi)are analyzed for their roles in neural activation and clinical outcomes.The review highlights how variations in spinal segment targeting,tissue-specific receptor activation,and stimulation modalities(e.g.,manual acupuncture,electroacupuncture,moxibustion)influence therapeutic effects.Emerging evidence underscores the significance of ion channels,dermatomes,myotomes,and genespecific pathways in mediating systemic effects.Additionally,the differential roles of mechanical,thermal and nociceptive stimuli and the temporal dynamics of sensory and immune responses are addressed.While insights from animal models have advanced our understanding,their translation to clinical practice requires further investigation.This comprehensive review identifies critical parameters for optimizing acupuncture therapy,advocating for individualized treatment strategies informed by neuroanatomical and neurophysiological principles,ultimately enhancing its precision and efficacy in modern medicine.
基金supported by the Bridging Grant from Universiti Sains Malaysia (R501LR-RND003–0000001319–0000)funding through the Fundamental Research Grant Scheme (FRGS/1/2020/TK0/USM/02/32–6171275) awarded by the Ministry of Higher Education Malaysia
文摘Current treatments for glioblastoma face challenges such as the blood-brain barrier and lack of targeted therapy,compounded by the aggressive nature,high invasiveness,and heterogeneity of the disease.Exosomes,a subtype of extracellular vesicles are emerging as promising nanocarrier drug delivery systems to address these limitations.Exosomes released by all cell types can be easily obtained and modified as delivery vehicles or therapeutic agents.A systematic review was conducted to evaluate various methods for exosome isolation,characterization,engineering or modification,drug loading and delivery efficiency,including exosome biodistribution and treatment efficacy.A search of four databases for in vitro and in vivo studies(2000–,2023)identified 6165 records,of which 23 articles were found eligible and included for analyses.Most studies applied ultracentrifugation(UC)for exosomes isolation.Cancer cell lines being the most frequently used source of exosomes,followed by stem cells.The incubation approach was predominantly utilized to modify exosomes for drug loading.In vivo analysis showed that exosome biodistribution was primarily concentrated in the brain region,peaking in the first 6 h and remained moderately high.Compared to native exosomes and untreated control groups,utilizing modified native exosomes(cargo loaded)for treating glioblastoma disease models led to more pronounced suppression of tumor growth and proliferation,enhanced stimulation of immune response and apoptosis,effective restoration of drug chemosensitivity,increased anti-tumor effect and prolonged survival rates.Modified exosomes whether through incubation,sonication,transfection,freeze-thawing or their combination,improve targeted delivery and therapeutic efficacy against glioblastoma.
文摘Microglia(MG)are immune effector cells in the central nervous system(CNS)and play a pivotal role in the pathogenesis of various CNS diseases.Alzheimer's disease(AD)is defined as a severe chronic degenerative neurological disease in humans.The amyloid cascade hypothesis is a hypothesis on the pathogenesis of AD that suggests that abnormal extracellular aggregation ofβ-amyloid(Aβ)peptides is the main cause of the disease.Although this hypothesis has been found to be convincing,a growing body of evidence suggests that it does not fully explain the pathogenesis of AD.Neuroinflammation is a crucial element in the pathogenesis of AD,as evidenced by elevated levels of inflammatory markers and the identification of AD risk genes associated with innate immune function.This paper will first summarize the impact of microglia-mediated neuroinflammation on AD,exploring the phenotypic changes that follow microglia activation.Secondly,the interactions between microglia,Aβ,microtubule-associated protein,apolipoprotein E and neurons are thoroughly investigated,with particular focus on the interactive mechanisms.Furthermore,the recent progress and prospects of microglia as a diagnostic and therapeutic target for AD are analysed.A review of the literature on the mechanisms regulating MG for AD at home and abroad revealed that acupuncture modulation of microglia could help to delay the progression of AD.This was followed by an extensive discussion of the clinical possibilities and scientific validity of acupuncture treatment for AD,with the aim of providing new insights for acupuncture modulation of MG targeting for the treatment of AD.
基金supported by Sidra Medicine Research Fund to Ajaz A.Bhat(grant number:SDR400190)Ammira S.Al-Shabeeb Akil(grant number:SDR400175).
文摘Obesity,a global health concern,is associated with severe health issues like type 2 diabetes,heart disease,and respiratory complications.It also increases the risk of various cancers,including melanoma,endometrial,prostate,pancreatic,esophageal adenocarcinoma,colorectal carcinoma,renal adenocarcinoma,and pre-and post-menopausal breast cancer.Obesity-induced cellular changes,such as impaired CD8^(+)T cell function,dyslipi-demia,hypercholesterolemia,insulin resistance,mild hyperglycemia,and fluctuating levels of leptin,resistin,adiponectin,and IL-6,contribute to cancer development by promoting inflammation and creating a tumor-promoting microenvironment rich in adipocytes.Adipocytes release leptin,a pro-inflammatory substance that stimulates cancer cell proliferation,inflammation,and invasion,altering the tumor cell metabolic pathway.Adiponectin,an insulin-sensitizing adipokine,is typically downregulated in obese individuals.It has antipro-liferative,proapoptotic,and antiangiogenic properties,making it a potential cancer treatment.This narrative review offers a comprehensive examination of the molecular interconnections between obesity and cancer,draw-ing on an extensive,though non-systematic,survey of the recent literature.This approach allows us to integrate and synthesize findings from various studies,offering a cohesive perspective on emerging themes and potential therapeutic targets.The review explores the metabolic disturbances,cellular alterations,inflammatory responses,and shifts in the tumor microenvironment that contribute to the obesity-cancer link.Finally,it discusses poten-tial therapeutic strategies aimed at disrupting these connections,offering valuable insights into future research directions and the development of targeted interventions.
基金Deutsche Forschungsgemeinschaft(DFG,German Research Foundation),project numbers 324633948 and 409784463(DFG grants Hi 678/9-3 and Hi 678/10-2,FOR2953)to HHBundesministerium für Bildung und Forschung-BMBF,project number 16LW0463K to HT.
文摘Microglia are the resident macrophages of the central nervous system.They act as the first line of defense against pathogens and play essential roles in neuroinflammation and tissue repair after brain insult or in neurodegenerative and demyelinating diseases(Borst et al.,2021).Together with infiltrating monocyte-derived macrophages,microglia also play a critical role for brain tumor development,since immunosuppressive interactions between tumor cells and tumor-associated microglia and macrophages(TAM)are linked to malignant progression.This mechanism is of particular relevance in glioblastoma(GB),the deadliest form of brain cancer with a median overall survival of less than 15 months(Khan et al.,2023).Therefore,targeting microglia and macrophage activation is a promising strategy for therapeutic interference in brain disease.