期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Chinese News Text Classification Based on Convolutional Neural Network 被引量:2
1
作者 Hanxu Wang Xin Li 《Journal on Big Data》 2022年第1期41-60,共20页
With the explosive growth of Internet text information,the task of text classification is more important.As a part of text classification,Chinese news text classification also plays an important role.In public securit... With the explosive growth of Internet text information,the task of text classification is more important.As a part of text classification,Chinese news text classification also plays an important role.In public security work,public opinion news classification is an important topic.Effective and accurate classification of public opinion news is a necessary prerequisite for relevant departments to grasp the situation of public opinion and control the trend of public opinion in time.This paper introduces a combinedconvolutional neural network text classification model based on word2vec and improved TF-IDF:firstly,the word vector is trained through word2vec model,then the weight of each word is calculated by using the improved TFIDF algorithm based on class frequency variance,and the word vector and weight are combined to construct the text vector representation.Finally,the combined-convolutional neural network is used to train and test the Thucnews data set.The results show that the classification effect of this model is better than the traditional Text-RNN model,the traditional Text-CNN model and word2vec-CNN model.The test accuracy is 97.56%,the accuracy rate is 97%,the recall rate is 97%,and the F1-score is 97%. 展开更多
关键词 Chinese news text classification word2vec model improved tf-idf combined-convolutional neural network public opinion news
在线阅读 下载PDF
基于Word2Vec的一种文档向量表示 被引量:150
2
作者 唐明 朱磊 邹显春 《计算机科学》 CSCD 北大核心 2016年第6期214-217,269,共5页
在文本分类中,如何运用word2vec词向量高效地表达一篇文档一直是一个难点。目前,将word2vec模型与聚类算法结合形成的doc2vec模型能有效地表达文档信息。但是,这种方法很少考虑单个词对整篇文档的影响力。为了解决这个问题,利用TF-IDF... 在文本分类中,如何运用word2vec词向量高效地表达一篇文档一直是一个难点。目前,将word2vec模型与聚类算法结合形成的doc2vec模型能有效地表达文档信息。但是,这种方法很少考虑单个词对整篇文档的影响力。为了解决这个问题,利用TF-IDF算法计算每篇文档中词的权重,并结合word2vec词向量生成文档向量,最后将其应用于中文文档分类。在搜狗中文语料库上的实验验证了新方法的有效性。 展开更多
关键词 tf-idf word2vec doc2vec 文本分类
在线阅读 下载PDF
Enhancing Multi-Class Cyberbullying Classification with Hybrid Feature Extraction and Transformer-Based Models
3
作者 Suliman Mohamed Fati Mohammed A.Mahdi +4 位作者 Mohamed A.G.Hazber Shahanawaj Ahamad Sawsan A.Saad Mohammed Gamal Ragab Mohammed Al-Shalabi 《Computer Modeling in Engineering & Sciences》 2025年第5期2109-2131,共23页
Cyberbullying on social media poses significant psychological risks,yet most detection systems over-simplify the task by focusing on binary classification,ignoring nuanced categories like passive-aggressive remarks or... Cyberbullying on social media poses significant psychological risks,yet most detection systems over-simplify the task by focusing on binary classification,ignoring nuanced categories like passive-aggressive remarks or indirect slurs.To address this gap,we propose a hybrid framework combining Term Frequency-Inverse Document Frequency(TF-IDF),word-to-vector(Word2Vec),and Bidirectional Encoder Representations from Transformers(BERT)based models for multi-class cyberbullying detection.Our approach integrates TF-IDF for lexical specificity and Word2Vec for semantic relationships,fused with BERT’s contextual embeddings to capture syntactic and semantic complexities.We evaluate the framework on a publicly available dataset of 47,000 annotated social media posts across five cyberbullying categories:age,ethnicity,gender,religion,and indirect aggression.Among BERT variants tested,BERT Base Un-Cased achieved the highest performance with 93%accuracy(standard deviation across±1%5-fold cross-validation)and an average AUC of 0.96,outperforming standalone TF-IDF(78%)and Word2Vec(82%)models.Notably,it achieved near-perfect AUC scores(0.99)for age and ethnicity-based bullying.A comparative analysis with state-of-the-art benchmarks,including Generative Pre-trained Transformer 2(GPT-2)and Text-to-Text Transfer Transformer(T5)models highlights BERT’s superiority in handling ambiguous language.This work advances cyberbullying detection by demonstrating how hybrid feature extraction and transformer models improve multi-class classification,offering a scalable solution for moderating nuanced harmful content. 展开更多
关键词 Cyberbullying classification multi-class classification BERT models machine learning tf-idf word2vec social media analysis transformer models
在线阅读 下载PDF
An Optimized Chinese Filtering Model Using Value Scale Extended Text Vector
4
作者 Siyu Lu Ligao Cai +5 位作者 Zhixin Liu Shan Liu Bo Yang Lirong Yin Mingzhe Liu Wenfeng Zheng 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1881-1899,共19页
With the development of Internet technology,the explosive growth of Internet information presentation has led to difficulty in filtering effective information.Finding a model with high accuracy for text classification... With the development of Internet technology,the explosive growth of Internet information presentation has led to difficulty in filtering effective information.Finding a model with high accuracy for text classification has become a critical problem to be solved by text filtering,especially for Chinese texts.This paper selected the manually calibrated Douban movie website comment data for research.First,a text filtering model based on the BP neural network has been built;Second,based on the Term Frequency-Inverse Document Frequency(TF-IDF)vector space model and the doc2vec method,the text word frequency vector and the text semantic vector were obtained respectively,and the text word frequency vector was linearly reduced by the Principal Component Analysis(PCA)method.Third,the text word frequency vector after dimensionality reduction and the text semantic vector were combined,add the text value degree,and the text synthesis vector was constructed.Experiments show that the model combined with text word frequency vector degree after dimensionality reduction,text semantic vector,and text value has reached the highest accuracy of 84.67%. 展开更多
关键词 Chinese text filtering text vector word frequency vectors text semantic vectors value degree BP neural network tf-idf doc2vec PCA
在线阅读 下载PDF
不同特征对文本聚类效果的比较研究——以新闻文本为例 被引量:10
5
作者 张旭 孙玉伟 成颖 《情报理论与实践》 CSSCI 北大核心 2020年第1期169-176,共8页
[目的/意义]通过实验分析不同特征提取算法对新闻文本聚类效果的影响。[方法/过程]选取搜狗实验室的搜狐新闻语料库以及澳大利亚广播公司2003-2017年间的新闻标题语料库,对TF-IDF、Word2vec以及Doc2vec三种单一特征,TF-IDF+Word2vec、TF... [目的/意义]通过实验分析不同特征提取算法对新闻文本聚类效果的影响。[方法/过程]选取搜狗实验室的搜狐新闻语料库以及澳大利亚广播公司2003-2017年间的新闻标题语料库,对TF-IDF、Word2vec以及Doc2vec三种单一特征,TF-IDF+Word2vec、TF-IDF+Doc2vec、Word2vec+Doc2vec以及TF-IDF+Word2vec+Doc2vec四种组合特征在K-means、凝聚以及DBSCAN算法上分别进行聚类分析,通过Purity以及NMI两个评测指标对聚类效果进行评价。[结果/结论]单类特征中三个特征的聚类质量呈Word2vec> TF-IDF> Doc2vec关系;组合特征中TF-IDF+Word2vec的效果最优。Word2vec在单一特征中的表现最优,其也是不同组合特征间差异的主要因素,特征组合是否可以提升聚类性能需基于多因素进行综合判定。 展开更多
关键词 tf-idf word2vec doc2vec 文本聚类 比较研究 聚类分析
原文传递
面向农业科研办公的垂直搜索引擎研究与设计 被引量:1
6
作者 李昀 邓颖 吴华瑞 《西南师范大学学报(自然科学版)》 CAS 北大核心 2020年第9期43-50,共8页
在农业科研办公过程中,科研人员进行信息检索的频率高,信息需求精度高,但传统的综合性搜索引擎检索农业实用技术、政策法规、专题数据等方向性比较强的农业信息,通常返回结果数据量庞大、主旨范围宽泛,导致内容不精准、搜索面太广,筛选... 在农业科研办公过程中,科研人员进行信息检索的频率高,信息需求精度高,但传统的综合性搜索引擎检索农业实用技术、政策法规、专题数据等方向性比较强的农业信息,通常返回结果数据量庞大、主旨范围宽泛,导致内容不精准、搜索面太广,筛选结果专业性不足;且现阶段主流的农业领域的垂直搜索引擎的搜索策略主要建立在传统的文本检索上,在自身领域数据量有限的情况下,搜索结果查全率不高,且搜索结果没有排序依据(大多仅仅按信息发生时间为排序依据).本文对农业互联网信息搜索引擎进行了研究,通过对各级农业管理部门网站、农业科研院所网站、农业新闻网站、农业商业网站等数据源的模块进行定位,通过爬虫进行数据更新检测与定时抓取,从数据源上有效减少不相关信息;基于数百个互联网数据源农业相关模块的信息抽取,采用word2vec和本文提出的基于文本特征表达的doc2vec,分别创建农业词向量、文档向量空间,用来应对搜索关键词为无序词组和有序语句的搜索场景,确保垂直搜索的智能和返回结果的准确.经过实验验证,本文提出的doc2vec+tf-idf搜索算法能够在有序搜索中达到较高的准确率,结合word2vec进行的无序搜索,有针对地进行语义搜索,可以进一步提高搜索引擎的查准率,满足日益增长的对农业领域信息搜索的高效高质的需求. 展开更多
关键词 农业信息搜索引擎 语义相似度 word2vec doc2vec tf-idf 文本智能搜索
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部