期刊文献+
共找到280,900篇文章
< 1 2 250 >
每页显示 20 50 100
Research on User Profile Construction Method Based on Improved TF-IDF Algorithm
1
作者 SHAO Ze-ming LI Yu-ang +4 位作者 YANG Ke WANG Guo-peng LIU Xing-guo CHEN Han-ning SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第6期110-116,共7页
In the data-driven era of the internet and business environments,constructing accurate user profiles is paramount for personalized user understanding and classification.The traditional TF-IDF algorithm has some limita... In the data-driven era of the internet and business environments,constructing accurate user profiles is paramount for personalized user understanding and classification.The traditional TF-IDF algorithm has some limitations when evaluating the impact of words on classification results.Consequently,an improved TF-IDF-K algorithm was introduced in this study,which included an equalization factor,aimed at constructing user profiles by processing and analyzing user search records.Through the training and prediction capabilities of a Support Vector Machine(SVM),it enabled the prediction of user demographic attributes.The experimental results demonstrated that the TF-IDF-K algorithm has achieved a significant improvement in classification accuracy and reliability. 展开更多
关键词 tf-idf-K algorithm User profiling Equalization factor SVM
在线阅读 下载PDF
News Text Topic Clustering Optimized Method Based on TF-IDF Algorithm on Spark 被引量:20
2
作者 Zhuo Zhou Jiaohua Qin +3 位作者 Xuyu Xiang Yun Tan Qiang Liu Neal N.Xiong 《Computers, Materials & Continua》 SCIE EI 2020年第1期217-231,共15页
Due to the slow processing speed of text topic clustering in stand-alone architecture under the background of big data,this paper takes news text as the research object and proposes LDA text topic clustering algorithm... Due to the slow processing speed of text topic clustering in stand-alone architecture under the background of big data,this paper takes news text as the research object and proposes LDA text topic clustering algorithm based on Spark big data platform.Since the TF-IDF(term frequency-inverse document frequency)algorithm under Spark is irreversible to word mapping,the mapped words indexes cannot be traced back to the original words.In this paper,an optimized method is proposed that TF-IDF under Spark to ensure the text words can be restored.Firstly,the text feature is extracted by the TF-IDF algorithm combined CountVectorizer proposed in this paper,and then the features are inputted to the LDA(Latent Dirichlet Allocation)topic model for training.Finally,the text topic clustering is obtained.Experimental results show that for large data samples,the processing speed of LDA topic model clustering has been improved based Spark.At the same time,compared with the LDA topic model based on word frequency input,the model proposed in this paper has a reduction of perplexity. 展开更多
关键词 News text topic clustering spark platform countvectorizer algorithm tf-idf algorithm latent dirichlet allocation model
在线阅读 下载PDF
基于TF-IDF和GloVe算法面向多种类别文本自动分类系统的优化研究
3
作者 刘爱琴 王上丹 《新世纪图书馆》 2025年第10期40-46,共7页
通过检索关键词,指定一个或多个类别标签实现文本的高效组织和自动分类,是发现文档中的隐含关系、推动知识传播和创新的重要途径。然而,检索关键词的获取位置、词性以及选取是否全面等因素,会导致关键词语义信息缺失和关键词识别准确性... 通过检索关键词,指定一个或多个类别标签实现文本的高效组织和自动分类,是发现文档中的隐含关系、推动知识传播和创新的重要途径。然而,检索关键词的获取位置、词性以及选取是否全面等因素,会导致关键词语义信息缺失和关键词识别准确性较差;这两大问题,正是影响文档高效、精准自动分类的突出障碍。基于此,论文构建了一个融合TF-IDF(Term Frequency-Inverse Document Frequency)和GloVe(Global Vectors for Word Representation)的文本自动分类系统。该系统首先就词性影响因子和位置权重系数对TF-IDF算法进行改进,以弥补传统TF-IDF算法在关键词识别和语义分析上的不足;其次,使用GloVe模型对关键词集进一步扩充,使文本自动分类的准确率和召回率分别达到92.6%和90.9%;最后,通过实验比对,进一步验证该系统在处理多类别文本自动分类任务中的有效性。 展开更多
关键词 tf-idf算法 GloVe模型 文本自动分类 关键词位置 词性 语义扩展
在线阅读 下载PDF
基于TF-IDF和面向学科的图书推荐方法研究与实践
4
作者 沈静萍 张旭 韩立峰 《微型电脑应用》 2025年第3期210-214,219,共6页
随着智慧图书馆建设的不断发展,图书推荐已成为图书馆智慧服务的重要项目之一。传统的基于协同过滤的图书推荐方法主要基于个体用户的阅读历史和评价,未考虑图书本身的特征对推荐结果的影响,存在较大的用户-物品矩阵稀疏性,推荐偏差大... 随着智慧图书馆建设的不断发展,图书推荐已成为图书馆智慧服务的重要项目之一。传统的基于协同过滤的图书推荐方法主要基于个体用户的阅读历史和评价,未考虑图书本身的特征对推荐结果的影响,存在较大的用户-物品矩阵稀疏性,推荐偏差大。为此,从学科角度分析用户和图书特征,将推荐对象聚类为不同的学科群体,通过训练词频-逆文档频率(TF-IDF)算法从图书题名和文摘中提取图书特征词,构建图书—特征词—特征词权重矩阵;从学科群体用户的借阅历史中获取其阅读偏好,推荐与偏好内容相似的图书,实现对不同学科用户的精准推荐。结果证明所提方法具有较高的精准度和非热门图书曝光率,对深化学科建设、构建学院学科图书馆、提升馆藏资源利用率具有很好的实践意义。 展开更多
关键词 tf-idf算法 学科 图书推荐 个性化推荐 阅读偏好
在线阅读 下载PDF
基于TF-IDF算法的无线传感网络攻击流量检测方法研究 被引量:1
5
作者 王晨 刘鑫 《传感技术学报》 北大核心 2025年第4期744-748,共5页
无线传感网络攻击流量类型较多,攻击流量检测方法难以满足多类型的流量数据,导致检测精度较差,为此提出基于TF-IDF算法的无线传感网络攻击流量检测方法。首先划分无线传感网络流量为连续型和离散型两类,采用独热编码处理连续型流量,归... 无线传感网络攻击流量类型较多,攻击流量检测方法难以满足多类型的流量数据,导致检测精度较差,为此提出基于TF-IDF算法的无线传感网络攻击流量检测方法。首先划分无线传感网络流量为连续型和离散型两类,采用独热编码处理连续型流量,归一化处理离散型流量;然后通过TF-IDF算法提取无线传感网络流量特征,利用特征向量集训练多通道自编码器,利用TF-IDF算法计算待检测的攻击流量数据特征在无线传感网络流量内出现的频率,以此对攻击流量进行排序;最后通过Softmax分类器输出最终流量类型检测结果。仿真结果表明,所提方法的检测精确度最低值为97.05%,虚警率最高值为2.01%、测试时间平均值为20.1 s,证明所提方法能高效、精确地实现无线传感网络攻击流量检测。 展开更多
关键词 无线传感网络 攻击流量检测 tf-idf算法 多通道自编码器
在线阅读 下载PDF
基于网络爬虫与TF-IDF算法的非遗产品创新
6
作者 王菁 杨晓翔 《佳木斯大学学报(自然科学版)》 2025年第8期52-54,74,共4页
非遗产品创新无法满足当前流行趋势,提出基于网络爬虫与TF-IDF算法的非遗产品创新方法。以百度百科、天猫商城为对象基于网络爬虫技术爬取非遗产品创新热点的网络词条,构造一个语料库粗糙集;利用TF-IDF算法对语料库进行精确搜索,在传统T... 非遗产品创新无法满足当前流行趋势,提出基于网络爬虫与TF-IDF算法的非遗产品创新方法。以百度百科、天猫商城为对象基于网络爬虫技术爬取非遗产品创新热点的网络词条,构造一个语料库粗糙集;利用TF-IDF算法对语料库进行精确搜索,在传统TF-IDF算法中引入词跨度,选取权重最高的前n个作为非遗产品创新设计的关键词,获得符合非遗产品创新设计需求的结果。测试结果显示:该方法抽取的非遗创新关键词与人工抽取结果更契合,准确度均在90%以上,基于网络爬虫与TF-IDF算法的非遗产品创新具有良好的推广应用前景。 展开更多
关键词 网络爬虫 tf-idf算法 语料库 词频率 非遗创新 产品
在线阅读 下载PDF
基于熵优化的TF-IDF算法研究
7
作者 王逸蓓 王芳 《燕山大学学报》 北大核心 2025年第5期422-428,共7页
传统的TF-IDF(Term Frequency-Inverse Document Frequency)算法通过特征项的频率对文本特征项进行表示,然而该算法在考虑类别分布信息存在一定的局限性,即忽略了特征项在类内和类间分布。针对这一问题,本文首先提出基于信息熵优化的TF-... 传统的TF-IDF(Term Frequency-Inverse Document Frequency)算法通过特征项的频率对文本特征项进行表示,然而该算法在考虑类别分布信息存在一定的局限性,即忽略了特征项在类内和类间分布。针对这一问题,本文首先提出基于信息熵优化的TF-IDF算法,引入去中心化词频因子和信息熵,捕捉特征项在类内和类间的分布特征。在此基础上,进一步结合期望信息熵理论,提出基于期望交叉熵优化的TF-IDF算法。通过对比实验,基于信息熵优化的TF-IDF算法一定程度上提升了模型性能,但基于期望交叉熵优化的TF-IDF算法在精度、召回率和F1值上表现更佳。 展开更多
关键词 tf-idf 特征项 词频 期望交叉熵
在线阅读 下载PDF
基于电网对账系统的TF-IDF优化算法
8
作者 王岩 郭威 +1 位作者 隋海滨 符贵谦 《兵工自动化》 北大核心 2025年第4期83-87,共5页
为提高电网集团对账系统的工作效率,优化电网集团的服务效果,设计一种TF-IDF词频-逆向文件频率(term frequency–inverse document frequency,TF-IDF)优化算法。论述电网集团对账系统的基本设计,讨论服务器和浏览器(browser/server,B/S... 为提高电网集团对账系统的工作效率,优化电网集团的服务效果,设计一种TF-IDF词频-逆向文件频率(term frequency–inverse document frequency,TF-IDF)优化算法。论述电网集团对账系统的基本设计,讨论服务器和浏览器(browser/server,B/S)架构下的TF-IDF算法优化设计方法,对B/S架构下使用TF-IDF算法优化设计在电网系统中的综合应用效果进行分析。结果表明:该算法的对账效果提升明显,为优化电网对账系统提供了技术基础,为提升电网集团服务质量做出了贡献。 展开更多
关键词 电网集团 B/S架构 tf-idf算法 电网对账系统 对账效果
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
9
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
10
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
11
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
12
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Research on Euclidean Algorithm and Reection on Its Teaching
13
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
14
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
15
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
16
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning Improved A^(*)algorithm
在线阅读 下载PDF
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
17
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
原文传递
Improved algorithm of multi-mainlobe interference suppression under uncorrelated and coherent conditions 被引量:1
18
作者 CAI Miaohong CHENG Qiang +1 位作者 MENG Jinli ZHAO Dehua 《Journal of Southeast University(English Edition)》 2025年第1期84-90,共7页
A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the s... A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances. 展开更多
关键词 mainlobe interference suppression adaptive beamforming spatial spectral estimation iterative adaptive algorithm blocking matrix preprocessing
在线阅读 下载PDF
Intelligent sequential multi-impulse collision avoidance method for non-cooperative spacecraft based on an improved search tree algorithm 被引量:1
19
作者 Xuyang CAO Xin NING +4 位作者 Zheng WANG Suyi LIU Fei CHENG Wenlong LI Xiaobin LIAN 《Chinese Journal of Aeronautics》 2025年第4期378-393,共16页
The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making co... The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method. 展开更多
关键词 Non-cooperative target Collision avoidance Limited motion area Impulsive maneuver model Search tree algorithm Neural networks
原文传递
A Class of Parallel Algorithm for Solving Low-rank Tensor Completion
20
作者 LIU Tingyan WEN Ruiping 《应用数学》 北大核心 2025年第4期1134-1144,共11页
In this paper,we established a class of parallel algorithm for solving low-rank tensor completion problem.The main idea is that N singular value decompositions are implemented in N different processors for each slice ... In this paper,we established a class of parallel algorithm for solving low-rank tensor completion problem.The main idea is that N singular value decompositions are implemented in N different processors for each slice matrix under unfold operator,and then the fold operator is used to form the next iteration tensor such that the computing time can be decreased.In theory,we analyze the global convergence of the algorithm.In numerical experiment,the simulation data and real image inpainting are carried out.Experiment results show the parallel algorithm outperform its original algorithm in CPU times under the same precision. 展开更多
关键词 Tensor completion Low-rank CONVERGENCE Parallel algorithm
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部