期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
结合BERT词嵌入和双向循环卷积神经网络的新闻文本分类研究
被引量:
2
1
作者
任鹏
李文杰
+2 位作者
舒宇杰
孙航
赵旖旎
《信息记录材料》
2022年第6期20-23,共4页
针对数字信息时代网络舆情爆发的复杂性及不可控性,提出一种融合BERT、TEXTRCNN、BILSTM-CRF的新闻文本分类模型,致力于提高新闻文本分类的准确率,通过采用BERT词嵌入技术高效获得句子语义特征,利用TEXTRCNN双向递归的结构以及BILSTM-CR...
针对数字信息时代网络舆情爆发的复杂性及不可控性,提出一种融合BERT、TEXTRCNN、BILSTM-CRF的新闻文本分类模型,致力于提高新闻文本分类的准确率,通过采用BERT词嵌入技术高效获得句子语义特征,利用TEXTRCNN双向递归的结构以及BILSTM-CRF模型的运用来解决序列标注问题,综合考虑上下文捕捉、词嵌入、文本特征等因素,提高对新闻识别的准确性。实验证明,使用该融合模型对新闻文本分类的准确率达到0.9551,且具有较好的泛化能力,能够更好地帮助有关部门及时处理突发舆情和失控事件。
展开更多
关键词
BERT
中文新闻
文本分类
TEXTRCNN
BILSTM-CRF
在线阅读
下载PDF
职称材料
题名
结合BERT词嵌入和双向循环卷积神经网络的新闻文本分类研究
被引量:
2
1
作者
任鹏
李文杰
舒宇杰
孙航
赵旖旎
机构
西南交通大学希望学院
四川大学外语语言训练中心
出处
《信息记录材料》
2022年第6期20-23,共4页
基金
四川省省级大学生创新创业训练计划项目(S202114262111)。
文摘
针对数字信息时代网络舆情爆发的复杂性及不可控性,提出一种融合BERT、TEXTRCNN、BILSTM-CRF的新闻文本分类模型,致力于提高新闻文本分类的准确率,通过采用BERT词嵌入技术高效获得句子语义特征,利用TEXTRCNN双向递归的结构以及BILSTM-CRF模型的运用来解决序列标注问题,综合考虑上下文捕捉、词嵌入、文本特征等因素,提高对新闻识别的准确性。实验证明,使用该融合模型对新闻文本分类的准确率达到0.9551,且具有较好的泛化能力,能够更好地帮助有关部门及时处理突发舆情和失控事件。
关键词
BERT
中文新闻
文本分类
TEXTRCNN
BILSTM-CRF
Keywords
BERT
Chinese news
Text classification
textcrcnn
BILSTM-CRF
分类号
TP31 [自动化与计算机技术—计算机软件与理论]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
结合BERT词嵌入和双向循环卷积神经网络的新闻文本分类研究
任鹏
李文杰
舒宇杰
孙航
赵旖旎
《信息记录材料》
2022
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部