A series of high-strength wind power steels with various microstructural morphologies was produced by hot-rolled and thermo-mechanical controlled processes.The microstructure,microhardness,and tensile behavior observe...A series of high-strength wind power steels with various microstructural morphologies was produced by hot-rolled and thermo-mechanical controlled processes.The microstructure,microhardness,and tensile behavior observed using in-situ techniques in various types of steels were investigated.The experimental results demonstrated that the 3 microstructural morphologies(band-,net-,and fiber-structures)can be clarified and categorized;each type possesses different tensile strengths,yield behaviors,and strain hardening behaviors.This can be attributed to different strain distribution caused by the structural morphology;band-structure steels exhibit a yield plateau primarily attributed to the relatively weak constraint effect of pearlite on ferrite;net-structure steels display 3 strain hardening stages due to the staged plastic deformation;fiber-structure steels achieve superior strength through their uniform stress distribution.Furthermore,the initial strain hardening rate,transition strain,and uniform elongation were influenced by the features of the constituent phases.Based on these findings,methods for estimating the yield strength and tensile strength of the steels with two phases were discussed and experimentally validated.展开更多
Only a few studies have reported the efects of electrochemical hydrogenation on the tensile mechanical properties of additively manufactured Ti–6Al–4V alloy,in all of them the alloy was processed by laser powder-bed...Only a few studies have reported the efects of electrochemical hydrogenation on the tensile mechanical properties of additively manufactured Ti–6Al–4V alloy,in all of them the alloy was processed by laser powder-bed fusion.Furthermore,the efects of either hot isostatic pressing(HIP)or heat treatment(HT)post-treatments on the mechanical properties were not reported.Here,the Young’s modulus,ultimate tensile stress,and uniform(homogeneous)strain of as-built electron beam melted(EBM)Ti–6Al–4V alloys were studied using small tensile specimens before and after electrochemical hydrogenation,as well as before and after secondary processes of HIP at 920℃ and HT at 1000℃.The tensile properties of all hydrogenated alloys were signifcantly degraded compared to their non-hydrogenated counterparts.The yield stress could not be determined for all hydrogenated alloys,as failure occurred at a strain below 0.2%ofset.The uniform strain of the hydrogenated alloys was less than 1%,compared to 1%–5%for the non-hydrogenated alloys.The fracture mode of the hydrogenated alloys after HIP and HT revealed cleavage fracture,indicating increased brittleness.In the as-built hydrogenated alloy,the fracture mode varied with location:brittle fracture occurred near the surface due to the formation of a hydride layer,while a more ductile fracture with dimples was observed below this layer.展开更多
We present an assumed enhanced strain finite element framework for the simulation of tensile fracturing processes in transversely isotropic rocks.Fractures along the weak bedding planes and through the anisotropic roc...We present an assumed enhanced strain finite element framework for the simulation of tensile fracturing processes in transversely isotropic rocks.Fractures along the weak bedding planes and through the anisotropic rock matrix are treated with distinct enrichment,and a recently proposed dualmechanism tensile failure criterion for transversely isotropic rocks is adopted to determine crack initiation for the two failure modes.The cohesive crack model is adopted to characterize the response of embedded cracks.As for the numerical implementation of the proposed framework,both algorithms for the update of local history variables at Gauss points and of the global finite element system are derived.Four boundary-value problem simulations are carried out with the proposed framework,including uniaxial tension tests of Argillite,pre-notched square loaded in tension,three-point bending tests on Longmaxi shale,and simulations of tensile cracks induced by a strip load around a tunnel in transversely isotropic rocks.Simulation results reveal that the proposed framework can properly capture the tensile strength anisotropy and the anisotropic evolution of tensile cracks in transversely isotropic rocks.展开更多
The tensile strength of rocks under real-time high-temperatures is essential for enhanced geothermal system development.However,the complex occurrence and deep burial of hot dry rocks limit the quantity and quality of...The tensile strength of rocks under real-time high-temperatures is essential for enhanced geothermal system development.However,the complex occurrence and deep burial of hot dry rocks limit the quantity and quality of standard samples for mechanical testing.This paper compared the tensile strengths obtained from Brazilian splitting tests on standard samples(with a diameter of 50 mm and a thickness of 25 mm)and micro-tensile samples(with a diameter of 50 mm and a thickness of 25 mm)of two types of granites.A power-law size effect model was established between the two sets of data,validating the reliability of the testing method.Then,miniature Brazilian splitting under real-time high-temperature,combined with X-ray diffraction(XRD)revealed temperature-dependent strength variations and microstructural damage mechanisms.The results show that:(1)The comparison error between the tensile strength obtained by the fitting model and that of the measured standard samples was less than 6%.(2)In real-time high-temperature conditions,tensile strength of granite exhibited non-monotonic behavior,increasing below 300°C before decreasing,with sharp declines at 400–500°C and 600–700°C.(3)Thermal damage stems from the differences in the high-temperature behavior of minerals,including dehydration,phase transformation,and differential expansion.展开更多
The effect of holding time of double annealing process on the microstructure and mechanical properties of Ti-5Al-5Mo-5V1Cr-1Fe(Ti55511)alloy was investigated.Results reveal that the shape and size of the primaryα(α_...The effect of holding time of double annealing process on the microstructure and mechanical properties of Ti-5Al-5Mo-5V1Cr-1Fe(Ti55511)alloy was investigated.Results reveal that the shape and size of the primaryα(α_(p))phase are predominantly influenced by the holding time at the first stage.With the prolongation of holding time,the long strip of α_(p) is transformed into a short rod due to the terminal migration mechanism,leading to the broadening growth,and the growth of α_(p) slows down when the holding time is over 2 h.The volume fraction of α_(p) is mainly affected by the holding time of the second stage:with the prolongation of holding time,the volume fraction of α_(p) is increased,which is accompanied by the precipitation of the secondaryα(α_(s)).The mechanical properties of Ti55511 alloy are influenced by bothα_(p) andαs.Tensile results indicate that the optimal holding time of double annealing is 1-4 h for the first stage and 0.5-2 h for the second stage.展开更多
Coke is the only solid charge component in the lower part of the blast furnace,and its strength is crucial to its production.Si and Al are the two most abundant elements in coke ash.The influences of these oxides on t...Coke is the only solid charge component in the lower part of the blast furnace,and its strength is crucial to its production.Si and Al are the two most abundant elements in coke ash.The influences of these oxides on the tensile strength of the coke matrix were studied by splitting tests.According to the Weibull analysis,with increasing Si and Al oxide concentrations,the fracture stress range of the coke widened,the upper and lower limits decreased,the probability of fracture under the same stress conditions increased,and the randomness and dispersion of strength increased.These results can be attributed to the inhibitory effect of ash during coal pyrolysis.Ash impedes the growth and contact of mesophase,leading to a decrease in graphitic carbon structures and an increase in edge carbon and aliphatic carbon structures in the resulting coke.Consequently,the overall ordering of the carbon structure is reduced.Moreover,SiO_(2)and Al_(2)O_(3)promoted the development of coke pores,thinned the coke pore wall,and significantly increased the proportion of large pores(>500μm).Moreover,Al_(2)O_(3)had more significant influences on the coke strength,carbon structure and stomatal ratio than SiO_(2).In addition,the position where the ash particles bonded to the carbon matrix easily produced cracks and holes,and the sharp edge of the matrix was likely to produce stress concentration points when subjected to an external force,leading to structural damage.Therefore,controlling the concentration of ash could effectively reduce the number of structural defects inside coke,which is conducive to improving the strength.展开更多
The anisotropy and tension-compression asymmetry of rare-earth magnesium(Mg-RE) alloys have attracted significant attention.In this study,the room-temperature tensile anisotropy and tensioncompression asymmetry of the...The anisotropy and tension-compression asymmetry of rare-earth magnesium(Mg-RE) alloys have attracted significant attention.In this study,the room-temperature tensile anisotropy and tensioncompression asymmetry of the extruded Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy were investigated utilizing techniques such as optical microscopy(OM),electron backscatter diffraction(EBSD),and viscoplastic self-consistent(VPSC) modeling.Among the tensile samples,the TO sample(with axis parallel to extrusion direction) exhibits the greatest tensile yield strength(TYS) of 270 MPa and ultimate tensile strength(UTS) of 336 MPa,the T45 sample(with axis inclined at a 45° angle to extrusion direction) and T90 sample(with axis perpendicular to extrusion direction) exhibit lower TYS and UTS.The CO sample shows a slightly greater compressive yield strength(CYS) of 290 MPa.The ratio of TYS/CYS is approximately 1.07.This study significantly adjusts the VPSC hardening parameters through the Schmid factor of deformation mechanisms in Mg-RE alloy,particularly increasing the τ0(critical resolved shear stress,CRSS) and τ1values for basalslip and {10-12} twinning.The ratios of CRSS for other deformation mechanisms to basalslip are approximately as follows:CRSSTwin/CRSSBas=2,CRSSpri/CRSSBas≈2.7and CRSSPyr/CRSSBas≈3.3,while these ratios in traditional alloys are generally higher.The stress-strain curves and pole figures obtained from the modified VPSC model demonstrate excellent agreement with experimental results.According to the VPSC simulation results,the primary factor contributing to tensile anisotropy is the disparity in the activation levels of slip systems.The inclusion of rare-earth elements mitigates the tension-compression asymmetry by reducing the difference of CRSS between different deformation mechanisms.展开更多
This study investigated the validity and sensitivity of a custom-made shoelace tensile testing system.The aim was to analyze the distribution pattern of shoelace tension in different positions and under different tigh...This study investigated the validity and sensitivity of a custom-made shoelace tensile testing system.The aim was to analyze the distribution pattern of shoelace tension in different positions and under different tightness levels during running.Mechanical tests were conducted using 16 weights,and various statistical analyses,including linear regression,Bland-Altman plots,coefficient of variation,and intraclass correlation coefficient,were performed to assess the system’s validity.Fifteen male amateur runners participated in the study,and three conditions(loose,comfortable,and tight)were measured during an upright stance.The system utilized VICON motion systems,a Kistler force plate,and a Photoelectric gate speed measurement system.Results showed a linear relationship between voltage and load at the three sensors(R2≥0.9997).Bland-Altman plots demonstrated 95%prediction intervals within±1.96SD from zero for all sensors.The average coefficient of variation for each sensor was less than 0.38%.Intraclass correlation coefficient values were larger than 0.999(p<0.0001)for each sensor.The peak tension of the front shoelace was greater than that of the front and middle when the shoelace was loose and tight.The rear shoelace had the highest tension force.The study also found that shoelace tension varied throughout the gait cycle during running.Overall,this research provides a novel and validated method for measuring shoelace tensile stress,which has implications for developing automatic shoelace fastening systems.展开更多
The evolution of microstructure and texture in Mg-3Al-1Zn-1Ca alloy sheets subjected to in-plane shear(IPS)loading was investigated using experimental techniques and viscoplastic self-consistent(VPSC)modeling.The spec...The evolution of microstructure and texture in Mg-3Al-1Zn-1Ca alloy sheets subjected to in-plane shear(IPS)loading was investigated using experimental techniques and viscoplastic self-consistent(VPSC)modeling.The specimens were deformed under varying degrees of IPS strain(γ12=0.05,0.10,and 0.15)using a customized jig.Electron backscatter diffraction(EBSD)observations revealed profuse tensile twinning(TTW)even at an IPS strain of 0.05,with its intensity continuously increased as the IPS strain increased.The TTWs progressively engulfed parent grains with increasing shear strain,evolving into an unusual deformation twin morphology.Furthermore,VPSC model predictions confirmed basal slip as the dominant deformation mode at low IPS strains,transitioning to prismatic slip dominance at higher IPS strains.The activity of the TTW mode was significantly higher during the initial stages of IPS strain and saturated to lower values at higher strains.VPSC simulation results also indicated preferential shear accumulation on a single twin system,explaining the phenomenon of a single twin variant engulfing a parent grain.Additionally,the influence of individual slip and twin modes on texture evolution was evaluated through orientation tracking of representative grains at various shear strain increments using VPSC simulation.The simulation results quantitatively highlighted the activities of basal slip,prismatic slip,and tensile twinning,establishing a correlation between texture evolution and the underlying deformation mechanisms.展开更多
The microstructures,mechanical properties,and fracture behaviors of an Al-5.9Zn-1.9Mg alloy subjected to thermomechanical treatment across different pre-rolling temperatures have been exhaustively investigated in pres...The microstructures,mechanical properties,and fracture behaviors of an Al-5.9Zn-1.9Mg alloy subjected to thermomechanical treatment across different pre-rolling temperatures have been exhaustively investigated in present work.The pre-deformation temperature exerts a modest influence on grain morphology,while it profoundly impacts the dislocation configurations and precipitation behaviors.Elevating the rolling temperature from ambient to 170℃results in a reduction in dislocation density within grains accompanied by a notable enhancement in their distributional uniformity.While advancing the temperature to 320℃prompts the premature formation of precipitates during deformation,which diminishes the precipitation during the subsequent ageing.Tensile results reveal that the thermomechanical treatment incorporating pre-rolling at 170℃confers a substantial strengthening effect on the alloy on the basis of both grain boundary strengthening and dislocation strengthening stemmed from pre-deformation along with the precipitation strengthening generated by ageing.Furthermore,the microstructure exhibits a relatively scarce presence of inhomogeneous features such as dislocation pile-ups and micro shear bands,contributing favorably to enhance the ductility of the alloy that presents the mixture of cleavage fracture and dimple-induced failure.展开更多
Plant root systems serve as a natural reinforcing material,significantly improving soil stability.Furthermore,the tensile strength of soil is crucial in mitigating the formation of cracks.Consequently,this study aims ...Plant root systems serve as a natural reinforcing material,significantly improving soil stability.Furthermore,the tensile strength of soil is crucial in mitigating the formation of cracks.Consequently,this study aims to investigate the influence of plant roots on the tensile strength of soil.For this investigation,Amorpha fruticose was selected due to its large root diameter and the ease of root extraction.Indoor tensile tests were conducted on individual roots and root-soil complexes under three varying factors.The results indicate a power law relationship between root diameter and tensile strength.Increased root content and dry density notably enhance the tensile strength of the root-soil complex while roots mitigate damage associated with soil brittleness.When root content increases from 0 to 10,the maximum enhancement in tensile strength of the root-soil complex reaches 42.3 kPa.The tensile strength of the root-soil complex at a dry density of 1.7 g/cm^(3)is four to five times greater than that of the complex at a dry density of 1.4 g/cm^(3).Moreover,as moisture content increases,the tensile strength of the root-soil complex initially rises before declining,with an increase range of 7.7-35.8 kPa.These findings provide a scientific basis for understanding the role of vegetation roots in soil tensile strength and for guiding slope reinforcement strategies.展开更多
The effect ofωiso andαprecipitation on microstructure,microhardness,tensile properties and impact toughness of Ti-25Nb-10Ta-1Zr-0.2Fe(TNTZF)alloy was investigated.The results showed that the solution treated TNTZF a...The effect ofωiso andαprecipitation on microstructure,microhardness,tensile properties and impact toughness of Ti-25Nb-10Ta-1Zr-0.2Fe(TNTZF)alloy was investigated.The results showed that the solution treated TNTZF alloy with a small amount of nano-sizedωath particles inβmatrix possesses tensile strength of 697 MPa,elongation of~34%,Young’s modulus(YM)of 75 GPa,and impact toughness of 58.7 J/cm^(2).After aging at relatively lower temperatures of 400℃,the hardness and modulus of the alloy increased significantly,while the plasticity and toughness dropped sharply due to the precipitation ofωiso phase.ωiso phase displayed an ellipsoidal morphology with high volume fraction and a size of about 50 nm after aging at 400℃,leading to the highest hardness of 364 HV and YM of 108 GPa,along with completely embrittlement since elongation and toughness were almost zero.A brittle impact fracture morphology was observed in the alloy,which is dominated by intergranular fracture,with a mixed fracture characteristics of cleavage surfaces,terraces and tiny dimples.When aged at 550℃,plate-likeαdistributed inβmatrix uniformly and inβgrain boundaries in parallel,resulting in the high strength of 804 MPa,as well as lowest YM of 72 GPa,elongation of 9%and toughness of 35.8 J/cm^(2).The fracture morphology of the alloy aged at 550℃showed a ductile fracture mechanism with a large number of dimples.展开更多
Lightweight aluminum alloy conductor materials(Al-Mg-Si alloys)require not only high electrical conductivity to reduce electrical loss,but also high strength to withstand extreme weather conditions.To improve electric...Lightweight aluminum alloy conductor materials(Al-Mg-Si alloys)require not only high electrical conductivity to reduce electrical loss,but also high strength to withstand extreme weather conditions.To improve electrical conductivity and mechanical properties of Al-Mg-Si alloy simultaneously,the rare earth La was introduced to modify the Al-Mg-Si alloy.The effect of La addition on the microstructure,tensile properties and electrical conductivity of cast Al-Mg-Si alloy was investigated systematically.Results indicate that the appropriate La content is helpful to improve the strength and electrical conductivity of Al-Mg-Si alloys.When the addition of La is 0.2wt.%,theα-Al grains are refined apparently,Mg and Si solute atoms in the Al matrix are reduced by the formation of Mg_(2)Si phase;the distribution of Al_(11)La_(3)phases is uniform,and the morphology of AlFeSi phase transforms from continuous state to discontinuous state.The Al-Mg-Si-0.2La alloy exhibits the optimal tensile properties and electrical conductivity,with an ultimate tensile strength of 170 MPa,a yield strength of 88 MPa,an elongation of 18.9%,and an electrical conductivity of 44.0%IACS.These values represent improvements of 9.0%,15.8%,70.3%,and 17.3%,respectively,compared to the Al-Mg-Si alloy without La addition.However,excessive La deteriorates the properties of Al-Mg-Si-xLa alloys.展开更多
The effects of tungsten inert gas arc-assisted friction stir welding(TIG-FSW)on the microstructure,tensile properties and corrosion resistance of AA6016 and AA2519 alloys lap joints were investigated by means of optic...The effects of tungsten inert gas arc-assisted friction stir welding(TIG-FSW)on the microstructure,tensile properties and corrosion resistance of AA6016 and AA2519 alloys lap joints were investigated by means of optical microscope,scanning electron microscope,tensile test at room temperature,corrosion immersion tests and electrochemical measurements.The results show that the introduction of TIG arc during FSW process results in a more uniform microstructure of the joint with no tunnel hole defects.Furthermore,it enhances tensile strength and elongation of the joint with increased rates of 11.5%and 50.0%,respectively;meanwhile,the corrosion current density and largest corrosion depth are decreased with reduction rates of 78.2%and 45.7%,respectively.TIG-FSW can promote flow,contact and diffusion of materials,thus improving microstructure of the joint.Additionally,it reduces the size and number of secondary phase particles.Consequently,these factors contribute to the higher tensile properties and corrosion resistance of the joints.展开更多
The effect of electro-pulsing treatment(EPT)with different peak current densities(Jm)on tensile properties of selective laser melting(SLM)-produced TC4 alloy was investigated for significant improvement in the tensile...The effect of electro-pulsing treatment(EPT)with different peak current densities(Jm)on tensile properties of selective laser melting(SLM)-produced TC4 alloy was investigated for significant improvement in the tensile properties of the alloy.When Jm is 30 A/mm2,the elongation is improved distinctly by 19.72%while the ultimate tensile strength remains nearly constant.The improved ductility is evidenced by deeper dimples on the fracture surface and cracks from the shear lip zone.Additionally,the improvement is reflected by widely distributed voids and prominent slip bands in the longitudinal section of the fracture.The fracture behavior is attributed to the increased high-angle grain boundaries fraction and the reduced dislocation density induced by the appropriate EPT.This microstructure leads to a decrease in texture intensity of the basal plane and an enhancement in crystalline slip capacity of the plane,consequently,the improved plastic deformation capacity of the alloy.展开更多
Stretchability is a crucial property of flexible all-in-one supercapacitors.This work reports a novel hydrogel electrolyte,polyacrylamidedivinylbenzene-Li2SO4(PAM-DVB-Li)synthesized by using a strategy of combining hy...Stretchability is a crucial property of flexible all-in-one supercapacitors.This work reports a novel hydrogel electrolyte,polyacrylamidedivinylbenzene-Li2SO4(PAM-DVB-Li)synthesized by using a strategy of combining hydrophobic nodes and hydrophilic networks as well as a method of dispersing hydrophobic DVB crosslinker to acrylamide monomer/Li2SO4 aqueous solution by micelles and followedγ-radiation induced polymerization and crosslinking.The resultant PAM-DVB-Li hydrogel electrolyte possesses excellent mechanical properties with 5627±241%stretchability and high ionic conductivity of 53±3 mS cm^(-1).By in situ polymerization of conducting polyaniline(PANI)on the PAM-DVB-Li hydrogel electrolyte,a novel all-in-one supercapacitor,PAM-DVB-Li/PANI,with highly integrated structure is prepared further.Benefiting from the excellent properties of hydrogel electrolyte and the all-in-one structure,the device exhibits a high specific capacitance of 469 mF cm^(-2) at 0.5 mA cm^(-2),good cyclic stability,safety,and deformation damage resistance.More importantly,the device demonstrates a superior tensile resistance(working normally under no more than 300%strain,capacitance stability in 1000 cycles of 1000%stretching and 10 cycles of 3000%stretching)far beyond that of other all-in-one supercapacitors.This work proposes a novel strategy to construct tensile-resistant all-in-one flexible supercapacitors that can be used as an energy storage device for stretchable electronic devices.展开更多
This study systematically investigates the unusual tensile mechanical behavior of Mg-RE solid solution(SS)alloys,exhibiting anomalous tensile strengths(ATS)and an enhanced strain-hardening rate at high temperature.Bot...This study systematically investigates the unusual tensile mechanical behavior of Mg-RE solid solution(SS)alloys,exhibiting anomalous tensile strengths(ATS)and an enhanced strain-hardening rate at high temperature.Both the peak ultimate tensile strength(UTS)and tensile yield strength(TYS)values occur at 150-200℃,which are 12-50%higher compared to those at room temperature(RT).Meanwhile,the strain-hardening rate increases with the temperature rising from RT to 200℃ during the plastic deformation process.The results reveal that the formation of stacking faults(SFs)and the locking of dislocations,particularly immobile (c) partial dislocations,enhance resistance to plastic deformation,leading to higher strengths at high temperature.Furthermore,the interactivity between SFs and (c+a) dislocations intensify with rising of temperature.The presence of RE atoms in the SS plays a critical role in this unique mechanical behavior,as they preferentially occupy non-basal planes rather than basal planes,thereby reducing the stacking fault(SF)formation energy.This study provides new insights into the high-temperature strengthening mechanisms of Mg-RE based alloys,offering potential guidance for the design of advanced lightweight materials with superior mechanical properties.展开更多
The effect of Mo on dual-phase precipitation behavior and tensile properties of Fe26Mn8Al1.2C–(2–3.5 wt.%)Mo lightweight austenitic steels after annealing at 700℃was investigated by electron backscatter diffraction...The effect of Mo on dual-phase precipitation behavior and tensile properties of Fe26Mn8Al1.2C–(2–3.5 wt.%)Mo lightweight austenitic steels after annealing at 700℃was investigated by electron backscatter diffraction,transmission electron microscopy,hardness and tensile tests.Alloying with Mo in the steels promotes the precipitation of Mo_(2)C carbides while inhibits the precipitation ofκ-carbides.The addition of Mo exceeding 2.5 wt.%facilitates the precipitation of intragranular Mo_(2)C carbides,whereas with up to 2.5 wt.%Mo,only intergranular Mo_(2)C carbides precipitate.With containing more Mo in the steels,the strength increases due to enhancement of precipitation strengthening and solid solution strengthening,while ductility gradually decreases.3Mo steel exhibits excellent overall mechanical properties,with the synergistic increase in strength,ductility,and work-hardening rate,which can be attributed to the precipitation of fine intragranular Mo_(2)C distributed uniformly in the matrix and the suppression of the formation of coarsenedκ-carbides.However,in 3.5Mo steel,abundant coarsened Mo2C precipitation strongly interacts with dislocations to promote crack propagation along non-coherent interfaces,leading to a high initial work-hardening rate but severe ductility loss.展开更多
Tensile deformation and microvoid formation of quenched and tempered SA508 Gr.3 steel were studied using an in-situ digital image correlation technique and in-situ electron backscatter diffraction(EBSD)measurements.Th...Tensile deformation and microvoid formation of quenched and tempered SA508 Gr.3 steel were studied using an in-situ digital image correlation technique and in-situ electron backscatter diffraction(EBSD)measurements.The quenched steel with a mixture of up-per bainite and granular bainite exhibited a high ultimate tensile strength(UTS)of~795 MPa and an elongation of~25%.After temper-ing,long-rod carbides and accumulated carbide particles were formed at the interface of bainite–ferrite subunits and prior austenite grain boundaries(PAGBs),respectively.The UTS of the tempered steel decreased to~607 MPa,whereas the total elongation increased to 33.0%with a local strain of 191.0%at the necked area.In-situ EBSD results showed that strain localization in the bainite–ferrite pro-duced lattice rotation and dislocation pileup,thus leading to stress concentration at the discontinuities(e.g.,martensite–austenite islands and carbides).Consequently,the decohesion of PAGBs dotted with martensite–austenite islands was the dominant microvoid initiation mechanism in the quenched steel,whereas microvoids primarily initiated through the fracturing of long-rod carbides and the decohesion of PAGBs with carbides aggregation in the tempered steel.The fracture surfaces for both the quenched and tempered specimens featured dimples,indicating the ductile failure mechanism caused by microvoid coalescence.展开更多
A solution for the lithospheric deformation of a uniform,elastically isotropic layer(EIL)of uniform thickness welded with a uniform,elastically orthotropic half-space(EOHS)due to a vertical tensile line fault(VTLF)wit...A solution for the lithospheric deformation of a uniform,elastically isotropic layer(EIL)of uniform thickness welded with a uniform,elastically orthotropic half-space(EOHS)due to a vertical tensile line fault(VTLF)with an opening in the horizontal direction located in the isotropic layer is derived in the integral form by employing Airy’s stress function approach for the plane strain case.The linear combination of exponential terms appearing in the denominator of the integral expressions of the deformation field of the EIL is expressed as a finite sum of exponential terms(FSET)by applying the method of least squares to analytically compute the deformation field.The displacement field is discussed in detail and computed numerically by considering the EOHS as olivine or barytes material or considering half-space to be isotropic.展开更多
基金funded by the National Key Research and Development Program of China(No.2022YFB3708200)。
文摘A series of high-strength wind power steels with various microstructural morphologies was produced by hot-rolled and thermo-mechanical controlled processes.The microstructure,microhardness,and tensile behavior observed using in-situ techniques in various types of steels were investigated.The experimental results demonstrated that the 3 microstructural morphologies(band-,net-,and fiber-structures)can be clarified and categorized;each type possesses different tensile strengths,yield behaviors,and strain hardening behaviors.This can be attributed to different strain distribution caused by the structural morphology;band-structure steels exhibit a yield plateau primarily attributed to the relatively weak constraint effect of pearlite on ferrite;net-structure steels display 3 strain hardening stages due to the staged plastic deformation;fiber-structure steels achieve superior strength through their uniform stress distribution.Furthermore,the initial strain hardening rate,transition strain,and uniform elongation were influenced by the features of the constituent phases.Based on these findings,methods for estimating the yield strength and tensile strength of the steels with two phases were discussed and experimentally validated.
基金supported by the Pazy Foundation of the Israel Atomic Energy Commission and the Israeli Council of Higher Education(Grant No.322/20)。
文摘Only a few studies have reported the efects of electrochemical hydrogenation on the tensile mechanical properties of additively manufactured Ti–6Al–4V alloy,in all of them the alloy was processed by laser powder-bed fusion.Furthermore,the efects of either hot isostatic pressing(HIP)or heat treatment(HT)post-treatments on the mechanical properties were not reported.Here,the Young’s modulus,ultimate tensile stress,and uniform(homogeneous)strain of as-built electron beam melted(EBM)Ti–6Al–4V alloys were studied using small tensile specimens before and after electrochemical hydrogenation,as well as before and after secondary processes of HIP at 920℃ and HT at 1000℃.The tensile properties of all hydrogenated alloys were signifcantly degraded compared to their non-hydrogenated counterparts.The yield stress could not be determined for all hydrogenated alloys,as failure occurred at a strain below 0.2%ofset.The uniform strain of the hydrogenated alloys was less than 1%,compared to 1%–5%for the non-hydrogenated alloys.The fracture mode of the hydrogenated alloys after HIP and HT revealed cleavage fracture,indicating increased brittleness.In the as-built hydrogenated alloy,the fracture mode varied with location:brittle fracture occurred near the surface due to the formation of a hydride layer,while a more ductile fracture with dimples was observed below this layer.
基金supported by the National Natural Science Foundation of China(Grant Nos.52038005 and 52201326)the fellowship of China Postdoctoral Science Foundation(Grant No.2022M721883)Tsinghua University Initiative Scientific Research Program.
文摘We present an assumed enhanced strain finite element framework for the simulation of tensile fracturing processes in transversely isotropic rocks.Fractures along the weak bedding planes and through the anisotropic rock matrix are treated with distinct enrichment,and a recently proposed dualmechanism tensile failure criterion for transversely isotropic rocks is adopted to determine crack initiation for the two failure modes.The cohesive crack model is adopted to characterize the response of embedded cracks.As for the numerical implementation of the proposed framework,both algorithms for the update of local history variables at Gauss points and of the global finite element system are derived.Four boundary-value problem simulations are carried out with the proposed framework,including uniaxial tension tests of Argillite,pre-notched square loaded in tension,three-point bending tests on Longmaxi shale,and simulations of tensile cracks induced by a strip load around a tunnel in transversely isotropic rocks.Simulation results reveal that the proposed framework can properly capture the tensile strength anisotropy and the anisotropic evolution of tensile cracks in transversely isotropic rocks.
基金supported by the National Natural Science Foundation of China(Nos.52174175 and 52274078)the Program for the Scientific and Technological Innovation Team in Universities of Henan Province(No.23IRTSTHN005)。
文摘The tensile strength of rocks under real-time high-temperatures is essential for enhanced geothermal system development.However,the complex occurrence and deep burial of hot dry rocks limit the quantity and quality of standard samples for mechanical testing.This paper compared the tensile strengths obtained from Brazilian splitting tests on standard samples(with a diameter of 50 mm and a thickness of 25 mm)and micro-tensile samples(with a diameter of 50 mm and a thickness of 25 mm)of two types of granites.A power-law size effect model was established between the two sets of data,validating the reliability of the testing method.Then,miniature Brazilian splitting under real-time high-temperature,combined with X-ray diffraction(XRD)revealed temperature-dependent strength variations and microstructural damage mechanisms.The results show that:(1)The comparison error between the tensile strength obtained by the fitting model and that of the measured standard samples was less than 6%.(2)In real-time high-temperature conditions,tensile strength of granite exhibited non-monotonic behavior,increasing below 300°C before decreasing,with sharp declines at 400–500°C and 600–700°C.(3)Thermal damage stems from the differences in the high-temperature behavior of minerals,including dehydration,phase transformation,and differential expansion.
文摘The effect of holding time of double annealing process on the microstructure and mechanical properties of Ti-5Al-5Mo-5V1Cr-1Fe(Ti55511)alloy was investigated.Results reveal that the shape and size of the primaryα(α_(p))phase are predominantly influenced by the holding time at the first stage.With the prolongation of holding time,the long strip of α_(p) is transformed into a short rod due to the terminal migration mechanism,leading to the broadening growth,and the growth of α_(p) slows down when the holding time is over 2 h.The volume fraction of α_(p) is mainly affected by the holding time of the second stage:with the prolongation of holding time,the volume fraction of α_(p) is increased,which is accompanied by the precipitation of the secondaryα(α_(s)).The mechanical properties of Ti55511 alloy are influenced by bothα_(p) andαs.Tensile results indicate that the optimal holding time of double annealing is 1-4 h for the first stage and 0.5-2 h for the second stage.
基金supported by the National Natural Science Foundation of China(No.51974212)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202116)+2 种基金the Science and Technology Major Project of Wuhan(No.2023020302020572)the Postdoctor Project of Hubei Province(No.2024HBBHCXA074)the Foundation of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education(No.FMRUlab23-04).
文摘Coke is the only solid charge component in the lower part of the blast furnace,and its strength is crucial to its production.Si and Al are the two most abundant elements in coke ash.The influences of these oxides on the tensile strength of the coke matrix were studied by splitting tests.According to the Weibull analysis,with increasing Si and Al oxide concentrations,the fracture stress range of the coke widened,the upper and lower limits decreased,the probability of fracture under the same stress conditions increased,and the randomness and dispersion of strength increased.These results can be attributed to the inhibitory effect of ash during coal pyrolysis.Ash impedes the growth and contact of mesophase,leading to a decrease in graphitic carbon structures and an increase in edge carbon and aliphatic carbon structures in the resulting coke.Consequently,the overall ordering of the carbon structure is reduced.Moreover,SiO_(2)and Al_(2)O_(3)promoted the development of coke pores,thinned the coke pore wall,and significantly increased the proportion of large pores(>500μm).Moreover,Al_(2)O_(3)had more significant influences on the coke strength,carbon structure and stomatal ratio than SiO_(2).In addition,the position where the ash particles bonded to the carbon matrix easily produced cracks and holes,and the sharp edge of the matrix was likely to produce stress concentration points when subjected to an external force,leading to structural damage.Therefore,controlling the concentration of ash could effectively reduce the number of structural defects inside coke,which is conducive to improving the strength.
基金Project supported by the Key Research and Development Program of Heilongjiang (2022ZX01A01)National Natural Science Foundation of China (51975167)Natural Science Foundation of Heilongjiang Province(LH2022E080)
文摘The anisotropy and tension-compression asymmetry of rare-earth magnesium(Mg-RE) alloys have attracted significant attention.In this study,the room-temperature tensile anisotropy and tensioncompression asymmetry of the extruded Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy were investigated utilizing techniques such as optical microscopy(OM),electron backscatter diffraction(EBSD),and viscoplastic self-consistent(VPSC) modeling.Among the tensile samples,the TO sample(with axis parallel to extrusion direction) exhibits the greatest tensile yield strength(TYS) of 270 MPa and ultimate tensile strength(UTS) of 336 MPa,the T45 sample(with axis inclined at a 45° angle to extrusion direction) and T90 sample(with axis perpendicular to extrusion direction) exhibit lower TYS and UTS.The CO sample shows a slightly greater compressive yield strength(CYS) of 290 MPa.The ratio of TYS/CYS is approximately 1.07.This study significantly adjusts the VPSC hardening parameters through the Schmid factor of deformation mechanisms in Mg-RE alloy,particularly increasing the τ0(critical resolved shear stress,CRSS) and τ1values for basalslip and {10-12} twinning.The ratios of CRSS for other deformation mechanisms to basalslip are approximately as follows:CRSSTwin/CRSSBas=2,CRSSpri/CRSSBas≈2.7and CRSSPyr/CRSSBas≈3.3,while these ratios in traditional alloys are generally higher.The stress-strain curves and pole figures obtained from the modified VPSC model demonstrate excellent agreement with experimental results.According to the VPSC simulation results,the primary factor contributing to tensile anisotropy is the disparity in the activation levels of slip systems.The inclusion of rare-earth elements mitigates the tension-compression asymmetry by reducing the difference of CRSS between different deformation mechanisms.
文摘This study investigated the validity and sensitivity of a custom-made shoelace tensile testing system.The aim was to analyze the distribution pattern of shoelace tension in different positions and under different tightness levels during running.Mechanical tests were conducted using 16 weights,and various statistical analyses,including linear regression,Bland-Altman plots,coefficient of variation,and intraclass correlation coefficient,were performed to assess the system’s validity.Fifteen male amateur runners participated in the study,and three conditions(loose,comfortable,and tight)were measured during an upright stance.The system utilized VICON motion systems,a Kistler force plate,and a Photoelectric gate speed measurement system.Results showed a linear relationship between voltage and load at the three sensors(R2≥0.9997).Bland-Altman plots demonstrated 95%prediction intervals within±1.96SD from zero for all sensors.The average coefficient of variation for each sensor was less than 0.38%.Intraclass correlation coefficient values were larger than 0.999(p<0.0001)for each sensor.The peak tension of the front shoelace was greater than that of the front and middle when the shoelace was loose and tight.The rear shoelace had the highest tension force.The study also found that shoelace tension varied throughout the gait cycle during running.Overall,this research provides a novel and validated method for measuring shoelace tensile stress,which has implications for developing automatic shoelace fastening systems.
文摘The evolution of microstructure and texture in Mg-3Al-1Zn-1Ca alloy sheets subjected to in-plane shear(IPS)loading was investigated using experimental techniques and viscoplastic self-consistent(VPSC)modeling.The specimens were deformed under varying degrees of IPS strain(γ12=0.05,0.10,and 0.15)using a customized jig.Electron backscatter diffraction(EBSD)observations revealed profuse tensile twinning(TTW)even at an IPS strain of 0.05,with its intensity continuously increased as the IPS strain increased.The TTWs progressively engulfed parent grains with increasing shear strain,evolving into an unusual deformation twin morphology.Furthermore,VPSC model predictions confirmed basal slip as the dominant deformation mode at low IPS strains,transitioning to prismatic slip dominance at higher IPS strains.The activity of the TTW mode was significantly higher during the initial stages of IPS strain and saturated to lower values at higher strains.VPSC simulation results also indicated preferential shear accumulation on a single twin system,explaining the phenomenon of a single twin variant engulfing a parent grain.Additionally,the influence of individual slip and twin modes on texture evolution was evaluated through orientation tracking of representative grains at various shear strain increments using VPSC simulation.The simulation results quantitatively highlighted the activities of basal slip,prismatic slip,and tensile twinning,establishing a correlation between texture evolution and the underlying deformation mechanisms.
基金Project(ZZYJKT2025-03) supported by the Project of State Key Laboratory of Precision Manufacturing for Extreme Service Performance,Central South University,ChinaProject(2024YFB3411200) supported by the National Key Research and Development Program of China。
文摘The microstructures,mechanical properties,and fracture behaviors of an Al-5.9Zn-1.9Mg alloy subjected to thermomechanical treatment across different pre-rolling temperatures have been exhaustively investigated in present work.The pre-deformation temperature exerts a modest influence on grain morphology,while it profoundly impacts the dislocation configurations and precipitation behaviors.Elevating the rolling temperature from ambient to 170℃results in a reduction in dislocation density within grains accompanied by a notable enhancement in their distributional uniformity.While advancing the temperature to 320℃prompts the premature formation of precipitates during deformation,which diminishes the precipitation during the subsequent ageing.Tensile results reveal that the thermomechanical treatment incorporating pre-rolling at 170℃confers a substantial strengthening effect on the alloy on the basis of both grain boundary strengthening and dislocation strengthening stemmed from pre-deformation along with the precipitation strengthening generated by ageing.Furthermore,the microstructure exhibits a relatively scarce presence of inhomogeneous features such as dislocation pile-ups and micro shear bands,contributing favorably to enhance the ductility of the alloy that presents the mixture of cleavage fracture and dimple-induced failure.
基金The authors would like to acknowledge financial support from the Joint Funds of the National Nature Science Foundation of China(No.U22A20232)Supported by Open Project Funding of Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes,Ministry of Education(HGKFZ07)+2 种基金the National Natural Science Foundation of China(No.51978249)Innovation Research Team Project of the Hubei Provincial Department of Science and Technology(JCZRQT202500027)the International Collaborative Research Fund for Young Scholars in the Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes.
文摘Plant root systems serve as a natural reinforcing material,significantly improving soil stability.Furthermore,the tensile strength of soil is crucial in mitigating the formation of cracks.Consequently,this study aims to investigate the influence of plant roots on the tensile strength of soil.For this investigation,Amorpha fruticose was selected due to its large root diameter and the ease of root extraction.Indoor tensile tests were conducted on individual roots and root-soil complexes under three varying factors.The results indicate a power law relationship between root diameter and tensile strength.Increased root content and dry density notably enhance the tensile strength of the root-soil complex while roots mitigate damage associated with soil brittleness.When root content increases from 0 to 10,the maximum enhancement in tensile strength of the root-soil complex reaches 42.3 kPa.The tensile strength of the root-soil complex at a dry density of 1.7 g/cm^(3)is four to five times greater than that of the complex at a dry density of 1.4 g/cm^(3).Moreover,as moisture content increases,the tensile strength of the root-soil complex initially rises before declining,with an increase range of 7.7-35.8 kPa.These findings provide a scientific basis for understanding the role of vegetation roots in soil tensile strength and for guiding slope reinforcement strategies.
基金supported by the Natural Science Foundation of Hunan Province(2023JJ50055,2023JJ30081)the Science Research Foundation of Hunan Provincial Education Department(21A0546)+1 种基金the Youth Project of the National Natural Science Foundation of China(62003056)the Open Fund of Hunan Engineering Research Center of Research and Development of Degradable Materials and Molding Technology(2023KFKT05).
文摘The effect ofωiso andαprecipitation on microstructure,microhardness,tensile properties and impact toughness of Ti-25Nb-10Ta-1Zr-0.2Fe(TNTZF)alloy was investigated.The results showed that the solution treated TNTZF alloy with a small amount of nano-sizedωath particles inβmatrix possesses tensile strength of 697 MPa,elongation of~34%,Young’s modulus(YM)of 75 GPa,and impact toughness of 58.7 J/cm^(2).After aging at relatively lower temperatures of 400℃,the hardness and modulus of the alloy increased significantly,while the plasticity and toughness dropped sharply due to the precipitation ofωiso phase.ωiso phase displayed an ellipsoidal morphology with high volume fraction and a size of about 50 nm after aging at 400℃,leading to the highest hardness of 364 HV and YM of 108 GPa,along with completely embrittlement since elongation and toughness were almost zero.A brittle impact fracture morphology was observed in the alloy,which is dominated by intergranular fracture,with a mixed fracture characteristics of cleavage surfaces,terraces and tiny dimples.When aged at 550℃,plate-likeαdistributed inβmatrix uniformly and inβgrain boundaries in parallel,resulting in the high strength of 804 MPa,as well as lowest YM of 72 GPa,elongation of 9%and toughness of 35.8 J/cm^(2).The fracture morphology of the alloy aged at 550℃showed a ductile fracture mechanism with a large number of dimples.
基金supported by the National Natural Science Foundation of China(No.51704087)the Natural Science Foundation of Heilongjiang Province(No.LH2020E083).
文摘Lightweight aluminum alloy conductor materials(Al-Mg-Si alloys)require not only high electrical conductivity to reduce electrical loss,but also high strength to withstand extreme weather conditions.To improve electrical conductivity and mechanical properties of Al-Mg-Si alloy simultaneously,the rare earth La was introduced to modify the Al-Mg-Si alloy.The effect of La addition on the microstructure,tensile properties and electrical conductivity of cast Al-Mg-Si alloy was investigated systematically.Results indicate that the appropriate La content is helpful to improve the strength and electrical conductivity of Al-Mg-Si alloys.When the addition of La is 0.2wt.%,theα-Al grains are refined apparently,Mg and Si solute atoms in the Al matrix are reduced by the formation of Mg_(2)Si phase;the distribution of Al_(11)La_(3)phases is uniform,and the morphology of AlFeSi phase transforms from continuous state to discontinuous state.The Al-Mg-Si-0.2La alloy exhibits the optimal tensile properties and electrical conductivity,with an ultimate tensile strength of 170 MPa,a yield strength of 88 MPa,an elongation of 18.9%,and an electrical conductivity of 44.0%IACS.These values represent improvements of 9.0%,15.8%,70.3%,and 17.3%,respectively,compared to the Al-Mg-Si alloy without La addition.However,excessive La deteriorates the properties of Al-Mg-Si-xLa alloys.
文摘The effects of tungsten inert gas arc-assisted friction stir welding(TIG-FSW)on the microstructure,tensile properties and corrosion resistance of AA6016 and AA2519 alloys lap joints were investigated by means of optical microscope,scanning electron microscope,tensile test at room temperature,corrosion immersion tests and electrochemical measurements.The results show that the introduction of TIG arc during FSW process results in a more uniform microstructure of the joint with no tunnel hole defects.Furthermore,it enhances tensile strength and elongation of the joint with increased rates of 11.5%and 50.0%,respectively;meanwhile,the corrosion current density and largest corrosion depth are decreased with reduction rates of 78.2%and 45.7%,respectively.TIG-FSW can promote flow,contact and diffusion of materials,thus improving microstructure of the joint.Additionally,it reduces the size and number of secondary phase particles.Consequently,these factors contribute to the higher tensile properties and corrosion resistance of the joints.
基金financial support from the National Natural Science Foundation of China(No.52205490)the Natural Science Foundation of Sichuan Province,China(No.2022NSFSC0336)。
文摘The effect of electro-pulsing treatment(EPT)with different peak current densities(Jm)on tensile properties of selective laser melting(SLM)-produced TC4 alloy was investigated for significant improvement in the tensile properties of the alloy.When Jm is 30 A/mm2,the elongation is improved distinctly by 19.72%while the ultimate tensile strength remains nearly constant.The improved ductility is evidenced by deeper dimples on the fracture surface and cracks from the shear lip zone.Additionally,the improvement is reflected by widely distributed voids and prominent slip bands in the longitudinal section of the fracture.The fracture behavior is attributed to the increased high-angle grain boundaries fraction and the reduced dislocation density induced by the appropriate EPT.This microstructure leads to a decrease in texture intensity of the basal plane and an enhancement in crystalline slip capacity of the plane,consequently,the improved plastic deformation capacity of the alloy.
基金financial support from National Natural Science Foundation of China(No.12375336,11875078)。
文摘Stretchability is a crucial property of flexible all-in-one supercapacitors.This work reports a novel hydrogel electrolyte,polyacrylamidedivinylbenzene-Li2SO4(PAM-DVB-Li)synthesized by using a strategy of combining hydrophobic nodes and hydrophilic networks as well as a method of dispersing hydrophobic DVB crosslinker to acrylamide monomer/Li2SO4 aqueous solution by micelles and followedγ-radiation induced polymerization and crosslinking.The resultant PAM-DVB-Li hydrogel electrolyte possesses excellent mechanical properties with 5627±241%stretchability and high ionic conductivity of 53±3 mS cm^(-1).By in situ polymerization of conducting polyaniline(PANI)on the PAM-DVB-Li hydrogel electrolyte,a novel all-in-one supercapacitor,PAM-DVB-Li/PANI,with highly integrated structure is prepared further.Benefiting from the excellent properties of hydrogel electrolyte and the all-in-one structure,the device exhibits a high specific capacitance of 469 mF cm^(-2) at 0.5 mA cm^(-2),good cyclic stability,safety,and deformation damage resistance.More importantly,the device demonstrates a superior tensile resistance(working normally under no more than 300%strain,capacitance stability in 1000 cycles of 1000%stretching and 10 cycles of 3000%stretching)far beyond that of other all-in-one supercapacitors.This work proposes a novel strategy to construct tensile-resistant all-in-one flexible supercapacitors that can be used as an energy storage device for stretchable electronic devices.
基金supported by the National Natural Science Foundation of China(Grant No 52401209,52192603,52275308)Fundamental Research Funds for the Central Universities(2023JG007)。
文摘This study systematically investigates the unusual tensile mechanical behavior of Mg-RE solid solution(SS)alloys,exhibiting anomalous tensile strengths(ATS)and an enhanced strain-hardening rate at high temperature.Both the peak ultimate tensile strength(UTS)and tensile yield strength(TYS)values occur at 150-200℃,which are 12-50%higher compared to those at room temperature(RT).Meanwhile,the strain-hardening rate increases with the temperature rising from RT to 200℃ during the plastic deformation process.The results reveal that the formation of stacking faults(SFs)and the locking of dislocations,particularly immobile (c) partial dislocations,enhance resistance to plastic deformation,leading to higher strengths at high temperature.Furthermore,the interactivity between SFs and (c+a) dislocations intensify with rising of temperature.The presence of RE atoms in the SS plays a critical role in this unique mechanical behavior,as they preferentially occupy non-basal planes rather than basal planes,thereby reducing the stacking fault(SF)formation energy.This study provides new insights into the high-temperature strengthening mechanisms of Mg-RE based alloys,offering potential guidance for the design of advanced lightweight materials with superior mechanical properties.
基金supported by the funding of National Science and Technology Major Project,China(J2019-VI-0019-0134).
文摘The effect of Mo on dual-phase precipitation behavior and tensile properties of Fe26Mn8Al1.2C–(2–3.5 wt.%)Mo lightweight austenitic steels after annealing at 700℃was investigated by electron backscatter diffraction,transmission electron microscopy,hardness and tensile tests.Alloying with Mo in the steels promotes the precipitation of Mo_(2)C carbides while inhibits the precipitation ofκ-carbides.The addition of Mo exceeding 2.5 wt.%facilitates the precipitation of intragranular Mo_(2)C carbides,whereas with up to 2.5 wt.%Mo,only intergranular Mo_(2)C carbides precipitate.With containing more Mo in the steels,the strength increases due to enhancement of precipitation strengthening and solid solution strengthening,while ductility gradually decreases.3Mo steel exhibits excellent overall mechanical properties,with the synergistic increase in strength,ductility,and work-hardening rate,which can be attributed to the precipitation of fine intragranular Mo_(2)C distributed uniformly in the matrix and the suppression of the formation of coarsenedκ-carbides.However,in 3.5Mo steel,abundant coarsened Mo2C precipitation strongly interacts with dislocations to promote crack propagation along non-coherent interfaces,leading to a high initial work-hardening rate but severe ductility loss.
基金financially supported by the National Natural Science Foundation of China(No.52171042),the National Key Research and Development Program of China(No.2023YFB3406804)the“Jianbing”R&D Program of Zhejiang Province,China(No.2023C01081)the Na-tional Engineering Research Center for Advanced Manufac-turing Technology and Equipment of Heavy Castings and Forgings(Erzhong(Deyang)Heavy Equipment Co.,Ltd.).
文摘Tensile deformation and microvoid formation of quenched and tempered SA508 Gr.3 steel were studied using an in-situ digital image correlation technique and in-situ electron backscatter diffraction(EBSD)measurements.The quenched steel with a mixture of up-per bainite and granular bainite exhibited a high ultimate tensile strength(UTS)of~795 MPa and an elongation of~25%.After temper-ing,long-rod carbides and accumulated carbide particles were formed at the interface of bainite–ferrite subunits and prior austenite grain boundaries(PAGBs),respectively.The UTS of the tempered steel decreased to~607 MPa,whereas the total elongation increased to 33.0%with a local strain of 191.0%at the necked area.In-situ EBSD results showed that strain localization in the bainite–ferrite pro-duced lattice rotation and dislocation pileup,thus leading to stress concentration at the discontinuities(e.g.,martensite–austenite islands and carbides).Consequently,the decohesion of PAGBs dotted with martensite–austenite islands was the dominant microvoid initiation mechanism in the quenched steel,whereas microvoids primarily initiated through the fracturing of long-rod carbides and the decohesion of PAGBs with carbides aggregation in the tempered steel.The fracture surfaces for both the quenched and tempered specimens featured dimples,indicating the ductile failure mechanism caused by microvoid coalescence.
文摘A solution for the lithospheric deformation of a uniform,elastically isotropic layer(EIL)of uniform thickness welded with a uniform,elastically orthotropic half-space(EOHS)due to a vertical tensile line fault(VTLF)with an opening in the horizontal direction located in the isotropic layer is derived in the integral form by employing Airy’s stress function approach for the plane strain case.The linear combination of exponential terms appearing in the denominator of the integral expressions of the deformation field of the EIL is expressed as a finite sum of exponential terms(FSET)by applying the method of least squares to analytically compute the deformation field.The displacement field is discussed in detail and computed numerically by considering the EOHS as olivine or barytes material or considering half-space to be isotropic.