Two anaerobic ammonia oxidation(anammox)systems,one with adding nano-scale zerovalent iron modified biochar(nZVI@BC)and the other with adding biochar,were constructed to explore the feasibility of nZVI@BC for enhancin...Two anaerobic ammonia oxidation(anammox)systems,one with adding nano-scale zerovalent iron modified biochar(nZVI@BC)and the other with adding biochar,were constructed to explore the feasibility of nZVI@BC for enhancing the resistance of low-nitrogen anammox processes to low temperatures.The results showed that the average nitrogen removal efficiency with nZVI@BC addition at lowtemperatureswas maintained at about 80%,while that with biochar addition gradually decreased to 69.49%.The heme-c content of biomass with nZVI@BC was significantly higher by 36.60%-91.45%.Additional,nZVI@BC addition resulted in more extracellular polymeric substances,better biomass granulation,and a higher abundance of anammox bacteria.In particularly,anammox genes hzsA/B/C,hzo and hdh played a pivotal role in maintaining nitrogen removal performance at 15℃.These findings suggest that nZVI@BC has the potential to enhance the resistance of low-nitrogen anammox processes to low temperatures,making it a valuable approach for practical applications in low-nitrogen and low-temperature wastewater treatment.展开更多
Polymer dielectrics possessing excellent electrical insulation and high thermal conductivity are pivotal for dielectric capacitors at elevated temperatures.However,the integration of electrical insulation and thermal ...Polymer dielectrics possessing excellent electrical insulation and high thermal conductivity are pivotal for dielectric capacitors at elevated temperatures.However,the integration of electrical insulation and thermal conductivity in polymers remains a challenge.In this work,we present a feasible strategy to integrate high electrical insulation and high thermal conductivity by bonding carbon quantum dots(CQDs)with the diamine monomer of polyetherimide(PEI).The CQDs with Coulomb blockade effect serve as traps for the migrating of electrons in the dielectrics,while the bonding networks formed by CQDs and PEI further deepen the traps and augment trap density.As a result,the hybrid dielectrics(PEI-NH_(2)-CQDs)exhibit nearly an order of magnitude higher electrical resistivity than that of pure PEI,leading to an 80%increase in discharge energy density with an energy efficiency of 90%at 200℃ compared to pure counterpart.Additionally,this all-organic dielectric achieves a significantly increased thermal conductivity of 0.65 W m^(-1) K^(-1) compared to 0.26 W m^(-1) K^(-1) of PEI,which supports its cyclic stability at elevated temperatures.We also demonstrate the kilogram-scale production of CQDs,synthesizing over 8 kg in a single batch,paving the way for large-scale production of reliable PEI-NH_(2)-CQDs dielectrics.展开更多
Negative Poisson ratio(NPR)steel is a new material with high strength and toughness.This study conducted tensile tests at elevated temperatures to investigate the mechanical properties of NPR steel at high temperature...Negative Poisson ratio(NPR)steel is a new material with high strength and toughness.This study conducted tensile tests at elevated temperatures to investigate the mechanical properties of NPR steel at high temperatures.The stress−strain curve,ultimate strength,yield strength,modulus of elasticity,elongation after fracture,and percentage reduction of area of NPR steel bars were measured at 9 different temperatures ranging from 20 to 800℃.The experimental results indicate that high-temperature environments significantly affect the mechanical properties of NPR steel.However,compared to other types of steel,NPR steel exhibits better resistance to deformation.When the test temperature is below 700℃,NPR steel exhibits a ductile fracture characteristic,while at 800℃,it exhibits a brittle fracture characteristic.Finally,based on the experimental findings,a constitutive model suitable for NPR steel at high temperatures is proposed.展开更多
Urban vegetation plays a crucial role in regulating temperatures and heat waves in urban areas.However,the influence of vegetation coverage and its configuration on surface temperatures in different climate zones at a...Urban vegetation plays a crucial role in regulating temperatures and heat waves in urban areas.However,the influence of vegetation coverage and its configuration on surface temperatures in different climate zones at a national scale is unclear.To address this,we utilized high-resolution data to detect spatial patterns for 31 provincial capital cities in China.We integrated day and night surface temperatures to determine the influence of vegetative coverage and configuration on urban temperatures across different climate zones and city sizes.Our study revealed that a subtropical monsoon climate and medium-sized cities had the highest vegetative coverage and shape complexity.The best connectivity and agglomeration of vegetation were found in a temperate monsoon climate and large cities.In contrast,small cities,especially those under a temperate continental climate,had low vegetation coverage,high fragmentation,and weak agglomeration and connectivity.In addition,vegetative coverage had a negative impact on daytime surface temperatures,especially in large cities in a subtropical monsoon climate.However,an increase in vegetation coverage could result in warming at night in small cities in temperate continental climates.Although urban vegetation configuration also contributed to moderating surface temperatures,especially at night,they did not surpass the influence of vegetation coverage.The effect on nighttime temperatures of the configuration of vegetation increased by 3–6%relative to that of daytime temperatures,especially in large cities in a temperate monsoon climate.The contribution vegetation coverage and configuration interaction to cooling efficiency decreased at night,especially in medium-sized cities in a temperate continental climate by 3–5%.In addition,this study identified several moderating effects of natural and social factors on the relationship between urban vegetation coverage and surface temperatures.High duration of sunshine,low humidity and high wind speed significantly enhanced the negative impact of vegetation coverage on surface temperatures.In addition,the moderating effect of vegetation coverage was more pronounced in low population density cities and high gross domestic product.This study enhances understanding of the ecological functions of urban vegetation and provides a valuable scientific basis and strategic recommendations for optimizing urban vegetation and improving urban environmental quality.展开更多
Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability o...Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability of ultrafast charging at ultralow temperature for SIBs is rarely reported.Herein,a hybrid of Bi nanoparticles embedded in carbon nanorods is demonstrated as an ideal material to address this issue,which is synthesized via a high temperature shock method.Such a hybrid shows an unprecedented rate performance(237.9 mAh g^(−1) at 2 A g^(−1))at−60℃,outperforming all reported SIB anode materials.Coupled with a Na_(3)V_(2)(PO_(4))_(3)cathode,the energy density of the full cell can reach to 181.9 Wh kg^(−1) at−40°C.Based on this work,a novel strategy of high-rate activation is proposed to enhance performances of Bi-based materials in cryogenic conditions by creating new active sites for interfacial reaction under large current.展开更多
Heating in the ocean has continued in 2024 in response to increased greenhouse gas concentrations in the atmosphere,despite the transition from an El Ni?o to neutral conditions. In 2024, both global sea surface temper...Heating in the ocean has continued in 2024 in response to increased greenhouse gas concentrations in the atmosphere,despite the transition from an El Ni?o to neutral conditions. In 2024, both global sea surface temperature(SST) and upper2000 m ocean heat content(OHC) reached unprecedented highs in the historical record. The 0–2000 m OHC in 2024exceeded that of 2023 by 16 ± 8 ZJ(1 Zetta Joules = 1021 Joules, with a 95% confidence interval)(IAP/CAS data), which is confirmed by two other data products: 18 ± 7 ZJ(CIGAR-RT reanalysis data) and 40 ± 31 ZJ(Copernicus Marine data,updated to November 2024). The Indian Ocean, tropical Atlantic, Mediterranean Sea, North Atlantic, North Pacific, and Southern Ocean also experienced record-high OHC values in 2024. The global SST continued its record-high values from2023 into the first half of 2024, and declined slightly in the second half of 2024, resulting in an annual mean of 0.61°C ±0.02°C(IAP/CAS data) above the 1981–2010 baseline, slightly higher than the 2023 annual-mean value(by 0.07°C ±0.02°C for IAP/CAS, 0.05°C ± 0.02°C for NOAA/NCEI, and 0.06°C ± 0.11°C for Copernicus Marine). The record-high values of 2024 SST and OHC continue to indicate unabated trends of global heating.展开更多
The influence of pouring temperature and mold temperature on the fluidity and hot tearing behavior of Al-2Li-2Cu-0.5Mg-0.15Sc-0.1Zr-0.1Ti alloys was investigated by experimental investigation and simulation assessment...The influence of pouring temperature and mold temperature on the fluidity and hot tearing behavior of Al-2Li-2Cu-0.5Mg-0.15Sc-0.1Zr-0.1Ti alloys was investigated by experimental investigation and simulation assessment.The results showed that the length of the spiral fluidity sample increases from 302 to 756 mm as the pouring temperature increases from 680 to 740℃,and from 293 to 736 mm as the mold temperature increases from 200 to 400℃.The hot tearing susceptibility(HTS)firstly decreases and then increases with increasing pouring and mold temperatures,which is mainly caused by the oxide inclusion originating from the high activity of Li at excessive pouring temperature.Excessive pouring and mold temperatures easily produce oxide inclusions and holes,leading to a reduction in fluidity and an increase in HTS of the alloy.Combining the experimental and simulation results,the optimized pouring and mold temperatures are~720℃ and~300℃ for the cast Al-Li alloy,respectively.展开更多
High-temperature performance of energy storage dielectric polymers is desired for many electronics and electrical applications,but the trade-off between energy density and temperature stability remains fundamentally c...High-temperature performance of energy storage dielectric polymers is desired for many electronics and electrical applications,but the trade-off between energy density and temperature stability remains fundamentally challenging.Here,we report a general material design strategy to enhance energy storage performance at high temperatures by crosslinking a polar polymer and a high glass-transition temperature polymer as a crosslinked binary blend.Such crosslinked binary polymers display a temperature-insensitive and high energy density behavior of about6.2~8.5 J cm^(-3) up to 110℃,showing a significant enhancement in thermal resistant properties and consequently outperforming most of the other ferroelectric polymers.Further microstructural investigations reveal that the improved thermal stability stems from the confinement effect on conformational motion of the crosslinking network,which is evidenced by the increased rigid amorphous fraction and steady intermolecular distance of amorphous regions from temperature-dependent X-ray diffraction results.Our findings provide a general and straightforward strategy to attain temperature-stable,high-energy-density polymer-based dielectrics for energy storage capacitors.展开更多
The performance of welded Ni-based superalloys at high temperatures is essential to be evaluated due to their particular service environment for aero-engines and high-speed aircrafts.The tensile properties and related...The performance of welded Ni-based superalloys at high temperatures is essential to be evaluated due to their particular service environment for aero-engines and high-speed aircrafts.The tensile properties and related microstructural evolutions such as the carbide precipitate and grain of a laser-welded Ni-based alloy were experimentally and numerically investigated at different temperatures(20,300,500,800℃).The results show that at room temperature,the strength of the Base Material(BM)was slightly smaller,with a difference of less than 1%,than the Welded Material(WM),which can be attributed to the more uniformly distributed needle-shaped carbide precipitates in the WM than those nonuniformly coarser spherical ones in the BM.While at 300℃ and 500℃,the strength of WM decreased more obviously compared with that of BM due to the more apparent growth of grain:13.52%loss in yield strength in WM alloys as compared with BM alloys at 300℃,and 16.57% at 500℃.At 800℃,the strength of BM and WM both decreased to a similar level due to Dynamic Recrystallization(DRX).However,a much higher elongation was observed for the BM than WM(less than 50%of BM),which can be attributed to the enhanced dislocation accumulation capability of the large spherical carbides along grain boundaries on the fracture surface in BM.Furthermore,a unified model considering the welding effects on both microstructures(dislocation,carbides,and grain)and mechanical properties evolutions at different temperatures was developed and validated.Based on this model,the key temperature ranges(20–600℃)where apparent weakening of strength and uniform plasticity occurs for welded structures were identified,providing a direct guidance for potential structure and process design.展开更多
To investigate the performance of utilizing the shape memory effect of SMA(Shape Memory Alloy)wire to generate recovery stress,this paper performed single heating recovery stress tests and reciprocating heating-coolin...To investigate the performance of utilizing the shape memory effect of SMA(Shape Memory Alloy)wire to generate recovery stress,this paper performed single heating recovery stress tests and reciprocating heating-cooling recovery stress tests on SMA wire under varying initial strain conditions.The effects of various strains and different energized heating methods on the recovery stress of SMA wires were explored in the single heating tests.The SMA wire was strained from 2%to 8%initially,and two distinct heating approaches were employed:one using a large current interval for rapid heating and one using a small current interval for slower heating.The experimental outcomes reveal that during a single heating cycle,the temperature-recovery stress relationship of SMA wire exhibits three distinct stages:the martensite phase stage,the transition stage from martensite to austenite phase,and the austenite phase stage.Notably,the choice of heating method does not influence the maximum recovery stress value,and the correlation between initial strain and maximum recovery stress is predominantly linear.Moreover,conducting the reciprocating temperature rise and fall performance test is important to better simulate the scenario in practical engineering where multiple recovery stress in SMA wires for structural repair.In this test,two temperature cycling methods were studied:interval rise and fall,as well as direct rise and fall.In the case of utilizing the interval temperature rise and fall method,it was observed that the recovery stress associated with cooling was significantly higher than that corresponding to heating at the same temperature.Furthermore,the recovery stress was lower upon subsequent heating than that measured during the previous heating cycle.Based on the experimental results,a prediction model for the temperature-recovery stress relationship has been proposed to simplify numerical calculations.It is hoped that an approximate temperaturerecovery stress curve can be obtained from the parameters of the SMA wire.The calculated values derived from this model show good alignment with the measured values,indicating its reliability.展开更多
Electrochemical impedance spectroscopy(EIS)was used to examine the electrical properties of metakaolin(MK)cement-based materials at elevated temperatures.We utilized a new equivalent circuit to investigate the EIS res...Electrochemical impedance spectroscopy(EIS)was used to examine the electrical properties of metakaolin(MK)cement-based materials at elevated temperatures.We utilized a new equivalent circuit to investigate the EIS results of cementitious materials blended with MK at these temperatures.A new evaluation method to high temperature damage is proposed.The findings show that both elevated temperatures and MK contents in cement mortar can impact the impedance spectra’s form properties.However,the residual compressive strength of the MK-blended cementitious material at elevated temperatures does not improve with the addition of MK.A quantitative relationship between the electrochemical parameters of the new equivalent circuit and the residual compressive strength is determined.The degree of high-temperature damage to cementitious materials can be evaluated based on these electrochemical parameters,providing a new approach for evaluating the high-temperature damage of MK-blend cementitious materials.展开更多
The serrated flow behavior,known as the Portevin-Le Chatelier(PLC)effect,is commonly observed during high-temperature deformation.In this study,we report a serrated flow behavior in FeCoCrNiMo0.2 high-entropy alloy(HE...The serrated flow behavior,known as the Portevin-Le Chatelier(PLC)effect,is commonly observed during high-temperature deformation.In this study,we report a serrated flow behavior in FeCoCrNiMo0.2 high-entropy alloy(HEA),which is mediated by nano-twinning and phase transformation at cryogenic temperatures.During uniaxial tensile deformation at 77 K,the alloy exhibited the formation of high-density deformation nano-twinning,cross-twinning,stacking faults(SFs)and Lomer-Cottrell locks(L-C locks).Additionally,the lower stacking fault energy(SFE)at low temperatures promotes the formation of the 9R phase.The high-density twin boundaries effectively hinder dislocation movement,leading to the instability of plastic deformation and promoting the serrated flow behavior.Furthermore,the rapid and unstable transformation of the 9R phase contributes to the pronounced serrated flow behavior.Nano-twinning,SFs,cross-twinning,L-C locks and 9R phase collectively induce a dynamic Hall-Petch effect,enhancing the strength-ductility synergy and strain-hardening ability of deformed alloy at 77 K.Our work provides valuable insights into the mechanism of tensile deformation at cryogenic temperatures in single-phase FCC HEA.展开更多
Liquefied natural gas storage and transportation as well as space propulsion systems have sparked inter-est in the martensitic transformation and behaviours of 316 L stainless steels(SS)under ultra-cryogenic deformati...Liquefied natural gas storage and transportation as well as space propulsion systems have sparked inter-est in the martensitic transformation and behaviours of 316 L stainless steels(SS)under ultra-cryogenic deformation.In this study,high-resolution transmission electron microscopy(HRTEM)and molecular dy-namics(MD)simulations were used to investigate the atomic arrangements and crystalline defects of deformation-induced γ-austenite→ε-martensite→α'-martensite and γ→α'martensitic transforma-tions in 316 L SS at 15 and 173 K.Theγ→εtransformation involves the glide of Shockley partial dislocations on(111)γplanes without a change in atomic spacing.The formation of anα'inclusion in a singleε-band is achieved by a continuous lattice distortion,accompanied by the formation of a tran-sition zone ofα'and the expansion of the average atomic spacings due to dislocation shuffling.Asα'grows further intoγ,the orientation relationship(OR)of theα'changes by lattice bending.This pro-cess follows the Bogers-Burgers-Olson-Cohen model despite it not occurring on intersecting shear bands.Stacking faults and twins can also serve as nucleation sites forα'at 173 K.We also found that direct transformation of γ→α'occurs by the glide of √6aγ[11(2)]/12 dislocations on every(111)γplane with misfit dislocations.Overall,this study provides,for the first time,insights into the atomic-scale mech-anisms of various two-step and one-step martensitic transformations induced by cryogenic deformation and corresponding local strain,enhancing our understanding of the role of martensitic transformation under ultra-cryogenic-temperature deformation in controlling the properties.展开更多
[Objectives]This study was conducted to investigate the influence mechanisms of microbial succession in raw milk under cold storage at different temperatures.[Methods]A raw milk sample was collected from a local large...[Objectives]This study was conducted to investigate the influence mechanisms of microbial succession in raw milk under cold storage at different temperatures.[Methods]A raw milk sample was collected from a local large-scale farm in Tangshan and divided into four treatment gradients:a control group(M)rapidly frozen at-80℃,and three experimental groups stored at 4℃(T),6℃(F),and 8℃(Y),respectively.A time series experiment was carried out according to time intervals of 24,48 and 72 h in each experimental group.Traditional microbial culture methods and 16S rRNA high-throughput sequencing were combined to analyze the dynamic changes in microbial abundance and structural variation.[Results]Plate counting revealed significantly lower total bacterial count and psychrotrophic bacteria in the 4℃storage group within 24 h compared with other treatment groups(P<0.01),confirming that maintaining low-temperature cold chain integrity and controlling treatment time(<24 h)can effectively inhibit microbial metabolic activity.16S rRNA sequencing analysis revealed high initial microbial diversity in raw milk,with dominant genera being Lactococcus,Acinetobacter,and Pseudomonas.Low-temperature treatment effectively reduced theαdiversity index of the microbial community.During the later stage of cold storage at 4℃,the relative abundance of Pseudomonas increased to over 90%,making it the dominant bacterial genus.[Conclusions]This study has significant application value for maintaining the quality of milk and dairy products and prolonging their shelf life.展开更多
Ultrahigh pressure generation at high temperatures is technologically challenging for large sample volumes.In this study,we successfully generated pressures of 37.3-40.4 GPa at 1900-2100 K in a Walker-type large-volum...Ultrahigh pressure generation at high temperatures is technologically challenging for large sample volumes.In this study,we successfully generated pressures of 37.3-40.4 GPa at 1900-2100 K in a Walker-type large-volume press(LVP).Expansion of the pressure range at high temperatures was achieved by adapting newly designed ZK01F tungsten carbide(WC)anvils with tapered surfaces and using cell assemblies with an^(-1) mm^(3) sample volume and hard materials,as well as by applying certain adjustments to the apparatus.The pressure efficiencies of the different types of WC anvils and cell assemblies were also studied.Using the above-mentioned techniques,we successfully synthesized and characterized bulk samples of nearly pure sp3-hybridized ultrahard amorphous carbon,core-shell nanocrystals with high Néel temperatures,as well as large-sized single crystals of lower-mantle minerals.The developed LVP techniques presented here could enable the exploration of the chemical and physical properties of novel materials and Earth’s interior.展开更多
Microstructures and properties of mortar using ammonium phosphate and potassium phosphate were tested and compared in this case.Moreover,two cementitious additions and two lightweight aggregates,including fly ash,redi...Microstructures and properties of mortar using ammonium phosphate and potassium phosphate were tested and compared in this case.Moreover,two cementitious additions and two lightweight aggregates,including fly ash,redispersible latex powder,ceramsite sand,and rubber powder,were respectively tried to be applied in magnesium ammonium phosphate cement mortar in order to modify the microstructures and properties.The experimental results show that potassium phosphate is not suitable for magnesium phosphate cement mortar for cold region construction purpose.Although fly ash can bring positive modification in the condition of normal temperature curing,it brings negative effects in the condition of sub-zero temperature curing.Either redispersible latex powder or ceramsite sand can improve the freeze-thaw cycling resistance of magnesium phosphate cement mortar in the conditions of low temperature coupled with freeze-thaw cycling,but only the ceramsite sand can improve both mechanical properties and freeze-thaw cycling resistance.The modification caused by ceramsite sand is mainly due to the exceptional bonding strength between hardened cement paste and the porous surface of ceramsite and the porous structure of ceramsite for the release of frost heave stress.展开更多
Dynamic compression experiments were conducted on red sandstone utilizing a split Hopkinson pressure bar(SHPB)to study the loading rate and high temperatures on their mechanically deformed properties and ultimate fail...Dynamic compression experiments were conducted on red sandstone utilizing a split Hopkinson pressure bar(SHPB)to study the loading rate and high temperatures on their mechanically deformed properties and ultimate failure modes,and to analyze the correlation between the strain rate,temperature,peak strength,and ultimate failure modes.The results show that the mass decreases with the increase of treatment temperature,and the pattern of the stress−strain curves is not impacted by the increase of impact velocity.Under a fixed temperature,the higher the impact velocity,the higher the strain rate and dynamical compression strength,indicating a strain rate hardening effect for red sandstone.With an increasing treatment temperature,the strain rate gradually increases when the impact loading remains unchanged,suggesting a rise in the deformability of red sandstone under high-temperature environment.Raise in both impact velocity and treatment temperature leads to an intensification of the damage features of the red sandstone.Similarly,higher strain rates lead to the intensification of the final damage mode of red sandstone regardless of the change in treatment temperature.Moreover,a dynamic damage constitutive model that considers the impacts of strain rate and temperature is proposed based on experimental results.展开更多
An equation of state(EOS)was obtained that accurately describes the thermodynamics of the system H_(2)O–CO_(2) at temperatures of 50–350°C and pressures of 0.2–3.5 kbar.The equation is based on experimental da...An equation of state(EOS)was obtained that accurately describes the thermodynamics of the system H_(2)O–CO_(2) at temperatures of 50–350°C and pressures of 0.2–3.5 kbar.The equation is based on experimental data on the compositions of the coexisting liquid and gas phases and the Van Laar model,within which the values of the Van Laar parameters A12 and A21 were found for each experimental P-T point.For the resulting sets A12(P,T),A21(P,T),approximation formulas describing the dependences of these quantities on temperature and pressure were found and the parameters contained in the formulas were fitted.This two-stage approach made it possible to obtain an adequate thermodynamic description of the system,which allows,in addition to determining the phase state of the system(homogeneous or heterogeneous),to calculate the excess free energy of mixing of H_(2)O and CO_(2),the activities of H_(2)O and CO_(2),and other thermodynamic characteristics of the system.The possibility of such calculations creates the basis for using the obtained EOS in thermodynamic models of more complicated fluid systems in P-T conditions of the middle and upper crust.These fluids play an important role in many geological processes including the transport of ore matter and forming hydrothermal ore deposits,in particular,the most of the world’s gold deposits.The knowledge of thermodynamics of these fluids is important in the technology of drilling oil and gas wells.In particular,this concerns the prevention of precipitation of solid salts in the well.展开更多
In this study,the climatology and long-term trends of middle atmospheric temperatures at mid-latitudes are investigated using Rayleigh/Sodium lidar observations collected from January 2010 to December 2021 over Hefei,...In this study,the climatology and long-term trends of middle atmospheric temperatures at mid-latitudes are investigated using Rayleigh/Sodium lidar observations collected from January 2010 to December 2021 over Hefei,China(32°N,117°E).The seasonal variations and vertical profiles of lidar-derived temperatures demonstrate strong agreement with temperature measurements from the Microwave Limb Sounder(MLS)instrument on the Earth Observing System(EOS)Aura satellite.In terms of seasonal variation,middle atmospheric temperatures primarily exhibit annual oscillations(AO)and semi-annual oscillations(SAO).Harmonic analysis of the lidar and MLS temperature data reveals close phase alignment for both AO and SAO,with AO amplitudes ranging from 2 to 6 K,and SAO amplitudes from 1 to 4 K.The dependence of temperature on solar forcing was analyzed using the F10.7 index as a proxy,showing positive solar response coefficients at all altitudes,with a maximum of 15±1.1 K/100 SFU observed near 42–44 km.After removing the temperature response to solar cycle variations,a cooling trend in mid-latitude temperatures is evident across all altitudes,ranging from 3 to 6 K/decade.展开更多
Gifford-McMahon-type pulse-tube cryocoolers(GM-PTCs)working at liquid helium temperatures are promising in quantum technology and cryogenic physics for their high reliability and minimal vibration.These features stem ...Gifford-McMahon-type pulse-tube cryocoolers(GM-PTCs)working at liquid helium temperatures are promising in quantum technology and cryogenic physics for their high reliability and minimal vibration.These features stem from the fact that there are no extra moving parts introduced into the system.The rotary valve is a key component in GM-PTCs that transfers the output exergy from the compressor to the cold head.Because a low Carnot efficiency of 1.58%is achieved at liquid helium temperatures,optimizing the rotary valve is crucial for improving the efficiency of GM-PTCs.In this regard,an exergy-loss analysis method is proposed in this paper to quantitatively obtain the leakage loss and viscosity loss of a rotary valve by experimental measurements.The results show that viscosity loss accounts for more than 97.5%of the total exergy loss in the rotary valve,and that it is possible to improve the structure of the rotary valve by expanding the flow area by 1.5 times.To verify the method,the cooling temperature and power of a remote two-stage GM-PTC were monitored,with original or optimized rotary valves installed.The experimental results show that compared to the original rotary valve,the optimized rotary valve can improve the cooling efficiency of a GM-PTC by 16.4%,with a cooling power of 0.78 W at 4.2 K.展开更多
基金supported by the China Postdoctoral Science Foundation(No.2020M671624)the State Key Laboratory of Pollution Control and Resource Reuse(No.PCRRF20011).
文摘Two anaerobic ammonia oxidation(anammox)systems,one with adding nano-scale zerovalent iron modified biochar(nZVI@BC)and the other with adding biochar,were constructed to explore the feasibility of nZVI@BC for enhancing the resistance of low-nitrogen anammox processes to low temperatures.The results showed that the average nitrogen removal efficiency with nZVI@BC addition at lowtemperatureswas maintained at about 80%,while that with biochar addition gradually decreased to 69.49%.The heme-c content of biomass with nZVI@BC was significantly higher by 36.60%-91.45%.Additional,nZVI@BC addition resulted in more extracellular polymeric substances,better biomass granulation,and a higher abundance of anammox bacteria.In particularly,anammox genes hzsA/B/C,hzo and hdh played a pivotal role in maintaining nitrogen removal performance at 15℃.These findings suggest that nZVI@BC has the potential to enhance the resistance of low-nitrogen anammox processes to low temperatures,making it a valuable approach for practical applications in low-nitrogen and low-temperature wastewater treatment.
基金supported by the National Natural Science Foundation of China(52172265)Excellent Youth Science Foundation of Hunan Province(2022JJ20067)+1 种基金The Science and Technology Innovation Program of Hunan Province(2022RC1074)Central South University Innovation-Driven Research Program(2023CXQD010).
文摘Polymer dielectrics possessing excellent electrical insulation and high thermal conductivity are pivotal for dielectric capacitors at elevated temperatures.However,the integration of electrical insulation and thermal conductivity in polymers remains a challenge.In this work,we present a feasible strategy to integrate high electrical insulation and high thermal conductivity by bonding carbon quantum dots(CQDs)with the diamine monomer of polyetherimide(PEI).The CQDs with Coulomb blockade effect serve as traps for the migrating of electrons in the dielectrics,while the bonding networks formed by CQDs and PEI further deepen the traps and augment trap density.As a result,the hybrid dielectrics(PEI-NH_(2)-CQDs)exhibit nearly an order of magnitude higher electrical resistivity than that of pure PEI,leading to an 80%increase in discharge energy density with an energy efficiency of 90%at 200℃ compared to pure counterpart.Additionally,this all-organic dielectric achieves a significantly increased thermal conductivity of 0.65 W m^(-1) K^(-1) compared to 0.26 W m^(-1) K^(-1) of PEI,which supports its cyclic stability at elevated temperatures.We also demonstrate the kilogram-scale production of CQDs,synthesizing over 8 kg in a single batch,paving the way for large-scale production of reliable PEI-NH_(2)-CQDs dielectrics.
基金Projects(41702320,52104125)supported by the National Natural Science Foundation of ChinaProject(ZR2021MD005)+2 种基金supported by the Natural Science Foundation of Shandong Province,ChinaProject(TMduracon2022002)supported by the Engineering Research Center of Marine Environmental Concrete Technology,Ministry of Education,China。
文摘Negative Poisson ratio(NPR)steel is a new material with high strength and toughness.This study conducted tensile tests at elevated temperatures to investigate the mechanical properties of NPR steel at high temperatures.The stress−strain curve,ultimate strength,yield strength,modulus of elasticity,elongation after fracture,and percentage reduction of area of NPR steel bars were measured at 9 different temperatures ranging from 20 to 800℃.The experimental results indicate that high-temperature environments significantly affect the mechanical properties of NPR steel.However,compared to other types of steel,NPR steel exhibits better resistance to deformation.When the test temperature is below 700℃,NPR steel exhibits a ductile fracture characteristic,while at 800℃,it exhibits a brittle fracture characteristic.Finally,based on the experimental findings,a constitutive model suitable for NPR steel at high temperatures is proposed.
基金supported by the National Natural Science Foundation of China(42171109,32130068)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2020237)National Key R&D Program of China(2023YFF1304604).
文摘Urban vegetation plays a crucial role in regulating temperatures and heat waves in urban areas.However,the influence of vegetation coverage and its configuration on surface temperatures in different climate zones at a national scale is unclear.To address this,we utilized high-resolution data to detect spatial patterns for 31 provincial capital cities in China.We integrated day and night surface temperatures to determine the influence of vegetative coverage and configuration on urban temperatures across different climate zones and city sizes.Our study revealed that a subtropical monsoon climate and medium-sized cities had the highest vegetative coverage and shape complexity.The best connectivity and agglomeration of vegetation were found in a temperate monsoon climate and large cities.In contrast,small cities,especially those under a temperate continental climate,had low vegetation coverage,high fragmentation,and weak agglomeration and connectivity.In addition,vegetative coverage had a negative impact on daytime surface temperatures,especially in large cities in a subtropical monsoon climate.However,an increase in vegetation coverage could result in warming at night in small cities in temperate continental climates.Although urban vegetation configuration also contributed to moderating surface temperatures,especially at night,they did not surpass the influence of vegetation coverage.The effect on nighttime temperatures of the configuration of vegetation increased by 3–6%relative to that of daytime temperatures,especially in large cities in a temperate monsoon climate.The contribution vegetation coverage and configuration interaction to cooling efficiency decreased at night,especially in medium-sized cities in a temperate continental climate by 3–5%.In addition,this study identified several moderating effects of natural and social factors on the relationship between urban vegetation coverage and surface temperatures.High duration of sunshine,low humidity and high wind speed significantly enhanced the negative impact of vegetation coverage on surface temperatures.In addition,the moderating effect of vegetation coverage was more pronounced in low population density cities and high gross domestic product.This study enhances understanding of the ecological functions of urban vegetation and provides a valuable scientific basis and strategic recommendations for optimizing urban vegetation and improving urban environmental quality.
基金supported from Science and Technology Development Program of Jilin Province(Nos.20240101128JC,20230402058GH)National Natural Science Foundation of China(No.52130101).
文摘Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability of ultrafast charging at ultralow temperature for SIBs is rarely reported.Herein,a hybrid of Bi nanoparticles embedded in carbon nanorods is demonstrated as an ideal material to address this issue,which is synthesized via a high temperature shock method.Such a hybrid shows an unprecedented rate performance(237.9 mAh g^(−1) at 2 A g^(−1))at−60℃,outperforming all reported SIB anode materials.Coupled with a Na_(3)V_(2)(PO_(4))_(3)cathode,the energy density of the full cell can reach to 181.9 Wh kg^(−1) at−40°C.Based on this work,a novel strategy of high-rate activation is proposed to enhance performances of Bi-based materials in cryogenic conditions by creating new active sites for interfacial reaction under large current.
基金supported by the National Key R&D Program of China (Grant No.2023YFF0806500)the International Partnership Program of the Chinese Academy of Sciences (Grant No.060GJHZ2024064MI)+10 种基金the Chinese Academy of Sciences and the National Research Council of Italy Scientific Cooperative Programmethe new Cornerstone Science Foundation through the XPLORER PRIZEthe National Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility” (Earth Lab), and Ocean Negative Carbon Emissions (ONCE)sponsored by the US National Science Foundationsupported by the Young Talent Support Project of Guangzhou Association for Science and Technologythe Open Research Cruise NORC2022-10+NORC2022-303 supported by NSFC shiptime Sharing Projects 42149910supported by NASA Awards 80NSSC17K0565, 80NSSC21K1191, and 80NSSC22K0046by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S.Department of Energy’s Office of Biological & Environmental Research (BER) via National Science Foundation IA 1947282supported by NOAA (Grant No.NA19NES4320002 to CISESS-MD at the University of Maryland)supported by the Austrian Science Fund (P33177)ESA (contract ref.4000145298/24/I-LR)。
文摘Heating in the ocean has continued in 2024 in response to increased greenhouse gas concentrations in the atmosphere,despite the transition from an El Ni?o to neutral conditions. In 2024, both global sea surface temperature(SST) and upper2000 m ocean heat content(OHC) reached unprecedented highs in the historical record. The 0–2000 m OHC in 2024exceeded that of 2023 by 16 ± 8 ZJ(1 Zetta Joules = 1021 Joules, with a 95% confidence interval)(IAP/CAS data), which is confirmed by two other data products: 18 ± 7 ZJ(CIGAR-RT reanalysis data) and 40 ± 31 ZJ(Copernicus Marine data,updated to November 2024). The Indian Ocean, tropical Atlantic, Mediterranean Sea, North Atlantic, North Pacific, and Southern Ocean also experienced record-high OHC values in 2024. The global SST continued its record-high values from2023 into the first half of 2024, and declined slightly in the second half of 2024, resulting in an annual mean of 0.61°C ±0.02°C(IAP/CAS data) above the 1981–2010 baseline, slightly higher than the 2023 annual-mean value(by 0.07°C ±0.02°C for IAP/CAS, 0.05°C ± 0.02°C for NOAA/NCEI, and 0.06°C ± 0.11°C for Copernicus Marine). The record-high values of 2024 SST and OHC continue to indicate unabated trends of global heating.
基金financially supported by the National Natural Science Foundation of China(Nos.51871148,51821001)。
文摘The influence of pouring temperature and mold temperature on the fluidity and hot tearing behavior of Al-2Li-2Cu-0.5Mg-0.15Sc-0.1Zr-0.1Ti alloys was investigated by experimental investigation and simulation assessment.The results showed that the length of the spiral fluidity sample increases from 302 to 756 mm as the pouring temperature increases from 680 to 740℃,and from 293 to 736 mm as the mold temperature increases from 200 to 400℃.The hot tearing susceptibility(HTS)firstly decreases and then increases with increasing pouring and mold temperatures,which is mainly caused by the oxide inclusion originating from the high activity of Li at excessive pouring temperature.Excessive pouring and mold temperatures easily produce oxide inclusions and holes,leading to a reduction in fluidity and an increase in HTS of the alloy.Combining the experimental and simulation results,the optimized pouring and mold temperatures are~720℃ and~300℃ for the cast Al-Li alloy,respectively.
基金supported by the National Natural Science Foundation of China(Grant No.52207031)the National Key R&D Program of China(Grant No.2020YFA0710500)。
文摘High-temperature performance of energy storage dielectric polymers is desired for many electronics and electrical applications,but the trade-off between energy density and temperature stability remains fundamentally challenging.Here,we report a general material design strategy to enhance energy storage performance at high temperatures by crosslinking a polar polymer and a high glass-transition temperature polymer as a crosslinked binary blend.Such crosslinked binary polymers display a temperature-insensitive and high energy density behavior of about6.2~8.5 J cm^(-3) up to 110℃,showing a significant enhancement in thermal resistant properties and consequently outperforming most of the other ferroelectric polymers.Further microstructural investigations reveal that the improved thermal stability stems from the confinement effect on conformational motion of the crosslinking network,which is evidenced by the increased rigid amorphous fraction and steady intermolecular distance of amorphous regions from temperature-dependent X-ray diffraction results.Our findings provide a general and straightforward strategy to attain temperature-stable,high-energy-density polymer-based dielectrics for energy storage capacitors.
基金co-supported by the financial support from the Fundamental Research Funds for the Central Universities,China(Nos.YWF-23-L-1012,YWF-22-L-1017)the National Natural Science Foundation of China(No.52005020)。
文摘The performance of welded Ni-based superalloys at high temperatures is essential to be evaluated due to their particular service environment for aero-engines and high-speed aircrafts.The tensile properties and related microstructural evolutions such as the carbide precipitate and grain of a laser-welded Ni-based alloy were experimentally and numerically investigated at different temperatures(20,300,500,800℃).The results show that at room temperature,the strength of the Base Material(BM)was slightly smaller,with a difference of less than 1%,than the Welded Material(WM),which can be attributed to the more uniformly distributed needle-shaped carbide precipitates in the WM than those nonuniformly coarser spherical ones in the BM.While at 300℃ and 500℃,the strength of WM decreased more obviously compared with that of BM due to the more apparent growth of grain:13.52%loss in yield strength in WM alloys as compared with BM alloys at 300℃,and 16.57% at 500℃.At 800℃,the strength of BM and WM both decreased to a similar level due to Dynamic Recrystallization(DRX).However,a much higher elongation was observed for the BM than WM(less than 50%of BM),which can be attributed to the enhanced dislocation accumulation capability of the large spherical carbides along grain boundaries on the fracture surface in BM.Furthermore,a unified model considering the welding effects on both microstructures(dislocation,carbides,and grain)and mechanical properties evolutions at different temperatures was developed and validated.Based on this model,the key temperature ranges(20–600℃)where apparent weakening of strength and uniform plasticity occurs for welded structures were identified,providing a direct guidance for potential structure and process design.
基金financially supported by National Natural Science Foundation of China(Project No.51878156).
文摘To investigate the performance of utilizing the shape memory effect of SMA(Shape Memory Alloy)wire to generate recovery stress,this paper performed single heating recovery stress tests and reciprocating heating-cooling recovery stress tests on SMA wire under varying initial strain conditions.The effects of various strains and different energized heating methods on the recovery stress of SMA wires were explored in the single heating tests.The SMA wire was strained from 2%to 8%initially,and two distinct heating approaches were employed:one using a large current interval for rapid heating and one using a small current interval for slower heating.The experimental outcomes reveal that during a single heating cycle,the temperature-recovery stress relationship of SMA wire exhibits three distinct stages:the martensite phase stage,the transition stage from martensite to austenite phase,and the austenite phase stage.Notably,the choice of heating method does not influence the maximum recovery stress value,and the correlation between initial strain and maximum recovery stress is predominantly linear.Moreover,conducting the reciprocating temperature rise and fall performance test is important to better simulate the scenario in practical engineering where multiple recovery stress in SMA wires for structural repair.In this test,two temperature cycling methods were studied:interval rise and fall,as well as direct rise and fall.In the case of utilizing the interval temperature rise and fall method,it was observed that the recovery stress associated with cooling was significantly higher than that corresponding to heating at the same temperature.Furthermore,the recovery stress was lower upon subsequent heating than that measured during the previous heating cycle.Based on the experimental results,a prediction model for the temperature-recovery stress relationship has been proposed to simplify numerical calculations.It is hoped that an approximate temperaturerecovery stress curve can be obtained from the parameters of the SMA wire.The calculated values derived from this model show good alignment with the measured values,indicating its reliability.
基金Funded by the Natural Science Foundation of Inner Mongolia Autonomous Region(No.2024QN05023)High Level Talent Research Launch Foundation of Inner Mongolia University(No.10000-22311201/008)。
文摘Electrochemical impedance spectroscopy(EIS)was used to examine the electrical properties of metakaolin(MK)cement-based materials at elevated temperatures.We utilized a new equivalent circuit to investigate the EIS results of cementitious materials blended with MK at these temperatures.A new evaluation method to high temperature damage is proposed.The findings show that both elevated temperatures and MK contents in cement mortar can impact the impedance spectra’s form properties.However,the residual compressive strength of the MK-blended cementitious material at elevated temperatures does not improve with the addition of MK.A quantitative relationship between the electrochemical parameters of the new equivalent circuit and the residual compressive strength is determined.The degree of high-temperature damage to cementitious materials can be evaluated based on these electrochemical parameters,providing a new approach for evaluating the high-temperature damage of MK-blend cementitious materials.
基金supported by the National Natural Science Foundation of China(Nos.52474403,52364050 and 52301137)Guizhou Provincial Program on Commercialization of Scientific and Technological Achievements(No.[2023]001)+2 种基金Guizhou Province Science and Technology Project(No.[2022]050)Guiyang city Science and Technology Project(No.[2023]48-16)the Central Government in Guidance of Local Science and Technology Development Funds(No.[2024]032).
文摘The serrated flow behavior,known as the Portevin-Le Chatelier(PLC)effect,is commonly observed during high-temperature deformation.In this study,we report a serrated flow behavior in FeCoCrNiMo0.2 high-entropy alloy(HEA),which is mediated by nano-twinning and phase transformation at cryogenic temperatures.During uniaxial tensile deformation at 77 K,the alloy exhibited the formation of high-density deformation nano-twinning,cross-twinning,stacking faults(SFs)and Lomer-Cottrell locks(L-C locks).Additionally,the lower stacking fault energy(SFE)at low temperatures promotes the formation of the 9R phase.The high-density twin boundaries effectively hinder dislocation movement,leading to the instability of plastic deformation and promoting the serrated flow behavior.Furthermore,the rapid and unstable transformation of the 9R phase contributes to the pronounced serrated flow behavior.Nano-twinning,SFs,cross-twinning,L-C locks and 9R phase collectively induce a dynamic Hall-Petch effect,enhancing the strength-ductility synergy and strain-hardening ability of deformed alloy at 77 K.Our work provides valuable insights into the mechanism of tensile deformation at cryogenic temperatures in single-phase FCC HEA.
基金supported by the Henry Royce Institute for Advanced Materials,funded through Engineering and Physical Sciences Research Council(EPSRC)grants EP/R00661X/1,EP/S019367/1,EP/P025021/1,and EP/P025498/1.
文摘Liquefied natural gas storage and transportation as well as space propulsion systems have sparked inter-est in the martensitic transformation and behaviours of 316 L stainless steels(SS)under ultra-cryogenic deformation.In this study,high-resolution transmission electron microscopy(HRTEM)and molecular dy-namics(MD)simulations were used to investigate the atomic arrangements and crystalline defects of deformation-induced γ-austenite→ε-martensite→α'-martensite and γ→α'martensitic transforma-tions in 316 L SS at 15 and 173 K.Theγ→εtransformation involves the glide of Shockley partial dislocations on(111)γplanes without a change in atomic spacing.The formation of anα'inclusion in a singleε-band is achieved by a continuous lattice distortion,accompanied by the formation of a tran-sition zone ofα'and the expansion of the average atomic spacings due to dislocation shuffling.Asα'grows further intoγ,the orientation relationship(OR)of theα'changes by lattice bending.This pro-cess follows the Bogers-Burgers-Olson-Cohen model despite it not occurring on intersecting shear bands.Stacking faults and twins can also serve as nucleation sites forα'at 173 K.We also found that direct transformation of γ→α'occurs by the glide of √6aγ[11(2)]/12 dislocations on every(111)γplane with misfit dislocations.Overall,this study provides,for the first time,insights into the atomic-scale mech-anisms of various two-step and one-step martensitic transformations induced by cryogenic deformation and corresponding local strain,enhancing our understanding of the role of martensitic transformation under ultra-cryogenic-temperature deformation in controlling the properties.
基金Supported by Tangshan Talent Funding Project(A202202005)Dairy Industry Revitalization Major Technological Innovation Project of Hebei Key Research and Development Program(19227516D)High-level Talents Funding Project of Hebei Province(A201803034).
文摘[Objectives]This study was conducted to investigate the influence mechanisms of microbial succession in raw milk under cold storage at different temperatures.[Methods]A raw milk sample was collected from a local large-scale farm in Tangshan and divided into four treatment gradients:a control group(M)rapidly frozen at-80℃,and three experimental groups stored at 4℃(T),6℃(F),and 8℃(Y),respectively.A time series experiment was carried out according to time intervals of 24,48 and 72 h in each experimental group.Traditional microbial culture methods and 16S rRNA high-throughput sequencing were combined to analyze the dynamic changes in microbial abundance and structural variation.[Results]Plate counting revealed significantly lower total bacterial count and psychrotrophic bacteria in the 4℃storage group within 24 h compared with other treatment groups(P<0.01),confirming that maintaining low-temperature cold chain integrity and controlling treatment time(<24 h)can effectively inhibit microbial metabolic activity.16S rRNA sequencing analysis revealed high initial microbial diversity in raw milk,with dominant genera being Lactococcus,Acinetobacter,and Pseudomonas.Low-temperature treatment effectively reduced theαdiversity index of the microbial community.During the later stage of cold storage at 4℃,the relative abundance of Pseudomonas increased to over 90%,making it the dominant bacterial genus.[Conclusions]This study has significant application value for maintaining the quality of milk and dairy products and prolonging their shelf life.
基金supported by the National Key Research and Development Program of China(2022YFB3706600 and 2023YFA1406200)the National Natural Science Founda-tion of China(42272041,52302043,12304015,41902034,and 12011530063)+1 种基金the Jilin University High-level Innovation Team Foundation,China(2021TD-05)the National Major Science Facility Synergetic Extreme Condition User Facility Achievement Transformation Platform Construction(2021FGWCXNLJSKJ01).
文摘Ultrahigh pressure generation at high temperatures is technologically challenging for large sample volumes.In this study,we successfully generated pressures of 37.3-40.4 GPa at 1900-2100 K in a Walker-type large-volume press(LVP).Expansion of the pressure range at high temperatures was achieved by adapting newly designed ZK01F tungsten carbide(WC)anvils with tapered surfaces and using cell assemblies with an^(-1) mm^(3) sample volume and hard materials,as well as by applying certain adjustments to the apparatus.The pressure efficiencies of the different types of WC anvils and cell assemblies were also studied.Using the above-mentioned techniques,we successfully synthesized and characterized bulk samples of nearly pure sp3-hybridized ultrahard amorphous carbon,core-shell nanocrystals with high Néel temperatures,as well as large-sized single crystals of lower-mantle minerals.The developed LVP techniques presented here could enable the exploration of the chemical and physical properties of novel materials and Earth’s interior.
基金Funded by the National Natural Science Foundation of China(No.51878227)。
文摘Microstructures and properties of mortar using ammonium phosphate and potassium phosphate were tested and compared in this case.Moreover,two cementitious additions and two lightweight aggregates,including fly ash,redispersible latex powder,ceramsite sand,and rubber powder,were respectively tried to be applied in magnesium ammonium phosphate cement mortar in order to modify the microstructures and properties.The experimental results show that potassium phosphate is not suitable for magnesium phosphate cement mortar for cold region construction purpose.Although fly ash can bring positive modification in the condition of normal temperature curing,it brings negative effects in the condition of sub-zero temperature curing.Either redispersible latex powder or ceramsite sand can improve the freeze-thaw cycling resistance of magnesium phosphate cement mortar in the conditions of low temperature coupled with freeze-thaw cycling,but only the ceramsite sand can improve both mechanical properties and freeze-thaw cycling resistance.The modification caused by ceramsite sand is mainly due to the exceptional bonding strength between hardened cement paste and the porous surface of ceramsite and the porous structure of ceramsite for the release of frost heave stress.
基金Project(BZ2024023)supported by the Jiangsu Province International Collaboration Program-Key National Industrial Technology Research and Development Cooperation,China。
文摘Dynamic compression experiments were conducted on red sandstone utilizing a split Hopkinson pressure bar(SHPB)to study the loading rate and high temperatures on their mechanically deformed properties and ultimate failure modes,and to analyze the correlation between the strain rate,temperature,peak strength,and ultimate failure modes.The results show that the mass decreases with the increase of treatment temperature,and the pattern of the stress−strain curves is not impacted by the increase of impact velocity.Under a fixed temperature,the higher the impact velocity,the higher the strain rate and dynamical compression strength,indicating a strain rate hardening effect for red sandstone.With an increasing treatment temperature,the strain rate gradually increases when the impact loading remains unchanged,suggesting a rise in the deformability of red sandstone under high-temperature environment.Raise in both impact velocity and treatment temperature leads to an intensification of the damage features of the red sandstone.Similarly,higher strain rates lead to the intensification of the final damage mode of red sandstone regardless of the change in treatment temperature.Moreover,a dynamic damage constitutive model that considers the impacts of strain rate and temperature is proposed based on experimental results.
基金funded by the Research program FMUW-2021-0002 of the IPGG RAS.
文摘An equation of state(EOS)was obtained that accurately describes the thermodynamics of the system H_(2)O–CO_(2) at temperatures of 50–350°C and pressures of 0.2–3.5 kbar.The equation is based on experimental data on the compositions of the coexisting liquid and gas phases and the Van Laar model,within which the values of the Van Laar parameters A12 and A21 were found for each experimental P-T point.For the resulting sets A12(P,T),A21(P,T),approximation formulas describing the dependences of these quantities on temperature and pressure were found and the parameters contained in the formulas were fitted.This two-stage approach made it possible to obtain an adequate thermodynamic description of the system,which allows,in addition to determining the phase state of the system(homogeneous or heterogeneous),to calculate the excess free energy of mixing of H_(2)O and CO_(2),the activities of H_(2)O and CO_(2),and other thermodynamic characteristics of the system.The possibility of such calculations creates the basis for using the obtained EOS in thermodynamic models of more complicated fluid systems in P-T conditions of the middle and upper crust.These fluids play an important role in many geological processes including the transport of ore matter and forming hydrothermal ore deposits,in particular,the most of the world’s gold deposits.The knowledge of thermodynamics of these fluids is important in the technology of drilling oil and gas wells.In particular,this concerns the prevention of precipitation of solid salts in the well.
基金supported by the National Natural Science Foundation of China(Grant 42125402,42174183 and 42304165)the National Key Technologies R&D Program of China(Grant 2022YFF0503703)+7 种基金the B-type Strategic Priority Program of CAS(Grant XDB0780000)the Chinese Meridian Projectthe Fundamental Research Funds for the Central Universitiesthe Joint Open Fund of Mengcheng National Geophysical Observatory(MENGO-202406,MENGO-202407)the National Natural Science Foundation of China(NSFC)Distinguished Overseas Young Talents ProgramBasic Research Project of the National Key Laboratory of Deep Space Exploration(NKLDSE2023A002)the Pre-research project on Civil Aerospace Technologies No.D010305 and D010301 funded by China National Space Administration(CNSA)Supported by the Specialized Research Fund for State Key Laboratory of Solar Activity and Space Weathe.
文摘In this study,the climatology and long-term trends of middle atmospheric temperatures at mid-latitudes are investigated using Rayleigh/Sodium lidar observations collected from January 2010 to December 2021 over Hefei,China(32°N,117°E).The seasonal variations and vertical profiles of lidar-derived temperatures demonstrate strong agreement with temperature measurements from the Microwave Limb Sounder(MLS)instrument on the Earth Observing System(EOS)Aura satellite.In terms of seasonal variation,middle atmospheric temperatures primarily exhibit annual oscillations(AO)and semi-annual oscillations(SAO).Harmonic analysis of the lidar and MLS temperature data reveals close phase alignment for both AO and SAO,with AO amplitudes ranging from 2 to 6 K,and SAO amplitudes from 1 to 4 K.The dependence of temperature on solar forcing was analyzed using the F10.7 index as a proxy,showing positive solar response coefficients at all altitudes,with a maximum of 15±1.1 K/100 SFU observed near 42–44 km.After removing the temperature response to solar cycle variations,a cooling trend in mid-latitude temperatures is evident across all altitudes,ranging from 3 to 6 K/decade.
基金supported by the National Key Research&Development Program of China(No.2023YFF0721304)the Key Research&Development Program of Jiangsu Province(No.2021015-4),China。
文摘Gifford-McMahon-type pulse-tube cryocoolers(GM-PTCs)working at liquid helium temperatures are promising in quantum technology and cryogenic physics for their high reliability and minimal vibration.These features stem from the fact that there are no extra moving parts introduced into the system.The rotary valve is a key component in GM-PTCs that transfers the output exergy from the compressor to the cold head.Because a low Carnot efficiency of 1.58%is achieved at liquid helium temperatures,optimizing the rotary valve is crucial for improving the efficiency of GM-PTCs.In this regard,an exergy-loss analysis method is proposed in this paper to quantitatively obtain the leakage loss and viscosity loss of a rotary valve by experimental measurements.The results show that viscosity loss accounts for more than 97.5%of the total exergy loss in the rotary valve,and that it is possible to improve the structure of the rotary valve by expanding the flow area by 1.5 times.To verify the method,the cooling temperature and power of a remote two-stage GM-PTC were monitored,with original or optimized rotary valves installed.The experimental results show that compared to the original rotary valve,the optimized rotary valve can improve the cooling efficiency of a GM-PTC by 16.4%,with a cooling power of 0.78 W at 4.2 K.