A previously developed hybrid coupled model(HCM)is composed of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model(AGCM),denoted as HCMAGCM.In this study,different El Ni...A previously developed hybrid coupled model(HCM)is composed of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model(AGCM),denoted as HCMAGCM.In this study,different El Niño flavors,namely the Eastern-Pacific(EP)and Central-Pacific(CP)types,and the associated global atmospheric teleconnections are examined in a 1000-yr control simulation of the HCMAGCM.The HCMAGCM indicates profoundly different characteristics among EP and CP El Niño events in terms of related oceanic and atmospheric variables in the tropical Pacific,including the amplitude and spatial patterns of sea surface temperature(SST),zonal wind stress,and precipitation anomalies.An SST budget analysis indicates that the thermocline feedback and zonal advective feedback dominantly contribute to the growth of EP and CP El Niño events,respectively.Corresponding to the shifts in the tropical rainfall and deep convection during EP and CP El Niño events,the model also reproduces the differences in the extratropical atmospheric responses during the boreal winter.In particular,the EP El Niño tends to be dominant in exciting a poleward wave train pattern to the Northern Hemisphere,while the CP El Niño tends to preferably produce a wave train similar to the Pacific North American(PNA)pattern.As a result,different climatic impacts exist in North American regions,with a warm-north and cold-south pattern during an EP El Niño and a warm-northeast and cold-southwest pattern during a CP El Niño,respectively.This modeling result highlights the importance of internal natural processes within the tropical Pacific as they relate to the genesis of ENSO diversity because the active ocean–atmosphere coupling is allowed only in the tropical Pacific within the framework of the HCMAGCM.展开更多
The question of possible teleconnections between the middle latitude general circulation and the Indian south-west monsoon was investigated in this paper. Within the framework of a simple model it was shown that there...The question of possible teleconnections between the middle latitude general circulation and the Indian south-west monsoon was investigated in this paper. Within the framework of a simple model it was shown that there can exist such an interaction via the ultra-long Rossby waves.展开更多
Existing limited understanding on the teleconnections between ocean-atmosphere coupled phenomena and drought occurrences in Ethiopia has been undermining the decisions and interventions related to climate change adapt...Existing limited understanding on the teleconnections between ocean-atmosphere coupled phenomena and drought occurrences in Ethiopia has been undermining the decisions and interventions related to climate change adaptation and mitigation. The two drought indices Standardized Precipitation Index and Reconnaissance Drought Index were used for correlation and lag correlation with global indices El-Nino Southern Oscillation, Oceanic Nino, Indian Ocean Dipole and Pacific Decadal Oscillation. The indices were obtained from their respective database websites of the National Center for Environmental Prediction. Historical EL-Nino and La-Nina years and Ethiopian drought years were collected from literatures. Meteorological data on seasonal mean rainfall, maximum and minimum temperatures from 1916-2016 were collected from Tigray regional meteorology agency. In addition, the Cru/ Model data were collected from KNMI climate explorer. The analysis results the strong correlations of global indices Nino3.4, IOD and PDO with local indices for April to June rainy season while SOI and IOD indices for July-Sep. The positive correlation of indices weakened and/or dislocated the rain-producing components for main rainy season, while those systems enhanced in low rain season. This shows global indices alter rain fall distribution & conveys Meteorological and Agricultural drought. The study revealed that, in addition to El Nino impacts, other events such as PDO, SOI and IOD are important factors for triggering meteorological and agricultural droughts in Tigray region of Ethiopia. This information has multiple implications, among others, improves seasonal forecast to make informed decisions.展开更多
To study the impact of climate change on Godthab(Greenland), temperature and precipitation gathered from the Global Historical Climatology Network (GHCN) were analyzed for patterns within 1866-2011. Both temperature a...To study the impact of climate change on Godthab(Greenland), temperature and precipitation gathered from the Global Historical Climatology Network (GHCN) were analyzed for patterns within 1866-2011. Both temperature and precipitation have experienced an overall increase throughout the past 146 years. Precipitation, however, has experienced a declining trend since 1985. North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) indices showed strong correlations with average annual temperature (R = ?0.6) and smaller correlations with annual total precipitation (R = ?0.2). There are moderate correlations between temperature, precipitation, and Southern-Oscillation Index (SOI). The positive phases of Pacific-North American (PNA) led to increased winter and spring precipitation. The climate mode’s influential strength on Godthab’s temperature and precipitation, vary seasonally. In contrast with global average temperatures, Greenland has not experienced a continual warming trend since the 1950s;30- and 10-year trends show a cooling period between 1965 and 1995. From 1866 to 2011, Godthab’s average annual temperature has increased by 1.9?C, and is anticipated to continue to warm in accordance with the global warming trend and the Arctic’s associated feedback mechanisms.展开更多
The aim of the paper is to analyze a possible teleconnection of Quasi-Biennial Oscillation (QBO), Southern Oscillation (SO), North Atlantic Oscillation (NAO), and Arctic Oscillation (AO) phenomena with longter...The aim of the paper is to analyze a possible teleconnection of Quasi-Biennial Oscillation (QBO), Southern Oscillation (SO), North Atlantic Oscillation (NAO), and Arctic Oscillation (AO) phenomena with longterm streamflow fluctuation of the Bela River (1895-2004) and Cierny Hron River (1931-2004) (central Slovakia). Homogeneity, long-term trends, as well as inter-annual dry and wet cycles were analyzed for the entire 1895-2004 time series of the Bela River and for the 1931-2004 time series of the Cierny Hron River. Inter-annual fluctuation of the wet and dry periods was identified using spectral analysis. The most significant period is that of 3.6 years. Other significant periods are those of 2.35 years, 13.5 years, and 21 years. Since these periods were found in other rivers of the world, as well as in SO, NAO, and AO phenomena, they can be considered as relating to the general regularity of the Earth.展开更多
East Asian summer climate is strongly affected by extratropical circulation disturbances.In this study,impacts of four atmospheric teleconnections over Eurasia on East Asian summer rainfall are investigated using Nati...East Asian summer climate is strongly affected by extratropical circulation disturbances.In this study,impacts of four atmospheric teleconnections over Eurasia on East Asian summer rainfall are investigated using National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data and Climatic Research Unit (CRU) land precipitation data during 1979-2009.The four teleconnections include the Scandinavian (SCA),the Polar/Eurasian (PEU),the East Atlantic/Western Russian (EAWR),and the circumglobal teleconnection (CGT).Moreover,the related changes of lower-tropospheric circulation are explored,specifically,the low pressure over northern East Asia (NEAL) and the subtropical high over the western North Pacific (WNPSH).The results presented are in the positive phase.The PEU and SCA induce significant negative anomalies in North China rainfall (NCR),while the CGT induces significant positive anomalies.In the past three decades,the PEU and SCA explain more than 20% of the variance in NCR,twice that explained by the CGT,suggesting a more important role of the former two teleconnections in NCR variation than the latter one.Meanwhile,the PEU and SCA reduce rainfall in Northeast China and South Korea,respectively,and the CGT enhances rainfall in Japan.The rainfall responses are attributed to the SCA-induced northward shift of the NEAL,and PEU-induced northward shift and weakening of the NEAL,respectively.For the CGT,the dipole pattern of rainfall anomalies between North China and Japan is affected by both westward extension of the NEAL and northwestward expansion of the WNPSH.In addition,the EAWR leads to an increase of sporadic rainfall in South China as a result of the eastward retreat of the WNPSH.展开更多
Recent advances in the bridging roles played by the Tibetan Plateau(TP)are reviewed in terms of the remote influence of circulation anomalies over the North Atlantic Ocean on Asian monsoon and El Niño-Southern Os...Recent advances in the bridging roles played by the Tibetan Plateau(TP)are reviewed in terms of the remote influence of circulation anomalies over the North Atlantic Ocean on Asian monsoon and El Niño-Southern Oscillation(ENSO)events,and in a clear link between the tropical oceans and Asian climate anomalies.The authors firstly introduce how the winter and spring anomalies in the North Atlantic Ocean affect the seasonal transition over the South Asian monsoon region and subsequent ENSO events on the interannual timescale.A distinct negative sensible heating-baroclinic structure in May over the TP is found to provide an intermediate bridging effect in this Atlantic-Asian-Pacific connection.In summer,the North Atlantic Oscillation is significantly correlated with the variations of East China summer rainfall,and it is the TP’s latent heating that plays the bridging role within.On the other hand,such a TP bridging effect also exists in the connection from the tropical oceans to extreme precipitation events over eastern China in summer,and from the midlatitude wave train to the biweekly oscillation of South China rainfall in spring.展开更多
The relationship between the variability of the surface elevation of the Greenland Ice Sheet (GIS) in winter and sea level pressure is identified through analysis of data from satellite-borne radar altimeters, togethe...The relationship between the variability of the surface elevation of the Greenland Ice Sheet (GIS) in winter and sea level pressure is identified through analysis of data from satellite-borne radar altimeters, together with meteorological data fields during 1993 2005. We found that both the North Pacific Oscillation (NPO) and the North Atlantic Oscillation (NAO), the two major teleconnection patterns of the atmospheric surface pressure fields in the Northern Hemisphere, significantly influence the GIS winter elevation change. Further, it is suggested that the NPO may affect the GIS accumulation by influencing the NAO, particularly by changing the intensity and location of the Icelandic Low.展开更多
The intense of Northern Hemisphere summer East Asia/Pacific and snow-forced pattern telecon-nections have been documented in terms of 43-year summer 500 hPa height data. The analysis results show the phase relationshi...The intense of Northern Hemisphere summer East Asia/Pacific and snow-forced pattern telecon-nections have been documented in terms of 43-year summer 500 hPa height data. The analysis results show the phase relationship between these summer teleconnections at quasi-4-year oscillation. The possible relation to ENSO cycle at such time scale has also been deduced.展开更多
The snow cover over the Taurus Mountains affects water supply, agriculture, and hydropower generation in the region. In this study, we analyzed the monthly Snow Cover Extent(SCE) from November to April in the Central ...The snow cover over the Taurus Mountains affects water supply, agriculture, and hydropower generation in the region. In this study, we analyzed the monthly Snow Cover Extent(SCE) from November to April in the Central Taurus Mountains(Bolkar, Aladaglar, Tahtali and Binboga Mountains) from 1981 to 2021. Linear trends of snow cover season(November to April) over the last 41 years showed decreases in SCE primarily at lower elevations. The downward trend in SCE was found to be more pronounced and statistically significant for only November and March. SCE in the Central Taurus Mountains has declined about-6.3% per decade for 2500-3000 m in November and about-6.0% per decade for 1000-1500 m and 3000+ m in March over the last 41 years. The loss of SCE has become evident since the 2000s, and the lowest negative anomalies in SCE have been observed in 2014, 2001, and 2007 in the last 41 years, which are consistent with an increase in air temperature and decreased precipitation. SCE was correlated with both mean temperature and precipitation, with temperature having a greater relative importance at all elevated gradients. Results showed that there is a strong linear relationship between SCE and the mean air temperature(r =-0.80) and precipitation(r = 0.44) for all elevated gradients during the snow season. The Arctic Oscillation(AO), the North Atlantic Oscillation(NAO), and the Mediterranean Oscillation(MO) winter indices were used to explain the year-to-year variability in SCE over the Central Taurus Mountains. The results showed that the inter-annual variability observed in the winter SCE on the Central Taurus Mountains was positively correlated with the phases of the winter AO, NAO and MO, especially below 2000 m elevation.展开更多
The Arctic,Antarctic,and Tibetan Plateau(TP)are often referred to as Earth’s three poles,and they exert outsized influence on the global climate.The three poles have undergone accelerating loss of sea ice,ice shelves...The Arctic,Antarctic,and Tibetan Plateau(TP)are often referred to as Earth’s three poles,and they exert outsized influence on the global climate.The three poles have undergone accelerating loss of sea ice,ice shelves,and/or glaciers,accompanied by pronounced warming in the Arctic and TP and region-specific warming in Antarctica.Despite their geographical remoteness,the three poles exhibit evident linkages,yet substantial gaps remain in our understanding of their climate teleconnections.This review summarizes the interactions among Earth’s three poles.The three poles are dynamically linked through a hierarchy of pathways.The Arctic–TP interactions are dominated by stationary Rossby-wave trains triggered by sea-ice and snow anomalies and reinforced by land-surface feedback over the plateau.The Arctic–Antarctic coupling relies on ocean heat transport through the Atlantic Meridional Overturning Circulation and on the modulation of tropical Atlantic temperature and the Intertropical Convergence Zone.The Antarctic–TP signals travel via sea-surface temperature anomalies in the Indian Ocean forced by the Antarctic Oscillation,which propagate northward and excite wave trains and transport moisture onto the TP.Closing the remaining knowledge gaps will require coordinated paleoclimate constraints,targeted field campaigns over the Southern Ocean and TP,and next-generation Earth-system models equipped with machine-learning techniques.Such integrative efforts are essential for more reliable projections of compound extremes and for informing adaptation strategies.展开更多
The predictability of a coupled system composed of a coupled reduced-order extratropical ocean-atmosphere model forced by a low-order three-variable tropical recharge-discharge model is explored with emphasis on its l...The predictability of a coupled system composed of a coupled reduced-order extratropical ocean-atmosphere model forced by a low-order three-variable tropical recharge-discharge model is explored with emphasis on its long-term forecasting capabilities.Highly idealized ensemble forecasts are produced taking into account the uncertainties in the initial states of the system,with specific attention to the structure of the initial errors in the tropical model.Three main types of experiments are explored:with random perturbations along the three Lyapunov vectors of the tropical model;along the two dominant Lyapunov vectors;and along the first Lyapunov vector only.When perturbations are introduced along all vectors,forecasting biases develop even if in a perfect model framework and with known initial uncertainty properties.Theses biases are considerably reduced only when the perturbations are introduced along the dominant Lyapunov vector.Furthermore,this perturbation strategy allows a reduced mean square error to be obtained at long lead times of a few years,as well as reliable ensemble forecasts across the whole time range.These very counterintuitive findings further underline the importance of appropriately controlling the initial error structure in the tropics through data assimilation.展开更多
Using multi-source reanalysis data,this study examines the relationship between the tropical Pacific-Atlantic SST Dipole Mode(TPA-DM)and summer precipitation in North China(NCSP)on the interannual timescale during the...Using multi-source reanalysis data,this study examines the relationship between the tropical Pacific-Atlantic SST Dipole Mode(TPA-DM)and summer precipitation in North China(NCSP)on the interannual timescale during the period of 1979-2022.The results show that the TPA-DM,the dominant pattern of interannual variability in the tropical Pacific and Atlantic regions,exhibits a significant negative correlation with NCSP.The positive phase of TPA-DM induces subsidence over the Maritime Continent through a zonal circulation pattern,which initiates a Pacific-Japan-like wave train along the East Asian coast.The circulation anomalies lead to moisture deficits and convergence subsidence over North China,leading to below-normal rainfall.Further analysis reveals that cooler SST in the Southern Tropical Atlantic facilitates the persistence of the TPA-DM by stimulating the anomalous Walker circulation associated with wind-evaporation-SST-convection feedback.展开更多
This study evaluates the performance of CAMS-CSM(the climate system model of the Chinese Academy of Meteorological Sciences) in simulating the features, dynamics, and teleconnections to East Asian climate of the El N...This study evaluates the performance of CAMS-CSM(the climate system model of the Chinese Academy of Meteorological Sciences) in simulating the features, dynamics, and teleconnections to East Asian climate of the El Ni?o–Southern Oscillation(ENSO). In general, fundamental features of ENSO, such as its dominant patterns and phase-locking features, are reproduced well. The two types of El Ni?o are also represented, in terms of their spatial distributions and mutual independency. However, the skewed feature is missed in the model and the simulation of ENSO is extremely strong, which is found—based on Bjerknes index assessment—to be caused by underestimation of the shortwave damping effect. Besides, the modeled ENSO exhibits a regular oscillation with a period shorter than observed. By utilizing the Wyrtki index, it is suggested that this periodicity bias results from an overly quick phase transition induced by feedback from the thermocline and zonal advection. In addition to internal dynamics of ENSO,its external precursors—such as the North Pacific Oscillation with its accompanying seasonal footprinting mechanism, and the Indian Ocean Dipole with its 1-yr lead correlation with ENSO—are reproduced well by the model. Furthermore, with respect to the impacts of ENSO on the East Asian summer monsoon, although the anomalous Philippine anticyclone is reproduced in the post-El Ni?o summer, it exhibits an eastward shift compared with observation;and as a consequence, the observed flooding of the Yangtze River basin is poorly represented, with unrealistic air–sea interaction over the South China Sea being the likely physical origin of this bias. The response of wintertime lowertropospheric circulation to ENSO is simulated well, in spite of an underestimation of temperature anomalies in central China. This study highlights the dynamic processes that are key for the simulation of ENSO, which could shed some light on improving this model in the future.展开更多
The interactions among the Asian-Pacific monsoon subsystems have significant impacts on the climatic regimes in the monsoon region and even the whole world. Based on the domestic and foreign related research, an analy...The interactions among the Asian-Pacific monsoon subsystems have significant impacts on the climatic regimes in the monsoon region and even the whole world. Based on the domestic and foreign related research, an analysis is made of four different teleconnection modes found in the Asian-Pacific monsoon region, which reveal clearly the interactions among the Indian summer monsoon (ISM), the East Asian summer monsoon (EASM), and the western North Pacific summer monsoon (WNPSM). The results show that: (1) In the period of the Asian monsoon onset, the date of ISM onset is two weeks earlier than the beginning of the Meiyu over the Yangtze River Basin, and a teleconnection mode is set up from the southwestern India via the Bay of Bengal (BOB) to the Yangtze River Basin and southern Japan, i.e., the "southern" teleconnection of the Asian summer monsoon. (2) In the Asian monsoon culmination period, the precipitation of the Yangtze River Basin is influenced significantly by the WNPSM through their teleconnection relationship, and is negatively related to the WNPSM rainfall, that is, when the WNPSM is weaker than normal, the precipitation of the Yangtze River Basin is more than normal. (3) In contrast to the rainfall over the Yangtze River Basin, the precipitation of northern China (from the 4th pentad of July to the 3rd pentad of August) is positively related to the WNPSM. When the WNPSM is stronger than normal, the position of the western Pacific subtropical high (WPSH) becomes farther northeast than normal, the anomalous northeastward water vapor transport along the southwestern flank of WPSH is converged over northern China, providing adequate moisture for more rainfalls than normal there. (4) The summer rainfall in northern China has also a positive correlation with the ISM. During the peak period of ISM, a teleconnection pattern is formed from Northwest India via the Tibetan Plateau to northern China, i.e., the "northern" teleconnection of the Asian summer monsoon. The above four kinds of teleconnections reflect the links among the Asian monsoon subsystems of ISM, EASM, and WNPSM during the northward advancing march of the Asian summer monsoons.展开更多
The East Asia-Pacific(EAP)and Eurasian(EU)teleconnections are independent of each other on the seasonal timescale(with a correlation coefficient of only 0.03).But they may occur concurrently with consistent or opposit...The East Asia-Pacific(EAP)and Eurasian(EU)teleconnections are independent of each other on the seasonal timescale(with a correlation coefficient of only 0.03).But they may occur concurrently with consistent or opposite phases.This paper investigates their synergistic effect on the summer precipitation in North Asia.Based on the signs/phases of EAP and EU indices,the EAP and EU teleconnection anomalies occur in four cases:(Ⅰ)positive EAP+positive EU,(Ⅱ)negative EAP+negative EU,(Ⅲ)positive EAP+negative EU,and(Ⅳ)negative EAP+positive EU.Further analyses show that these four configurations of EAP and EU anomalies are coherently related to different atmospheric circulations over the midlatitude Eurasian continent,leading to different summer precipitation modes in North Asia.CategoryⅠ(Ⅱ)corresponds to a zonal tripole structure of the geopotential height at 500 hPa over eastern Europe and the Sea of Japan,leading to less(more)than normal precipitation in eastern Europe,Japan,and the surrounding areas,and more(less)precipitation from central China to Lake Baikal and eastern Russia.CategoryⅢ(Ⅳ)corresponds to a meridional dipole structure of the geopotential height at 500 hPa over North Asia,leading to more(less)precipitation in the northern North Asia and less(more)precipitation in most of the southern North Asia.Independent analysis reveals that the EAP teleconnection itself is positively correlated with the precipitation in the region between the eastern part of Lake Baikal and Okhotsk Sea,and negatively correlated with the precipitation in the region between Northeast China and Japan.Coincidently,the EU pattern and precipitation have negative correlations in Ural Mountain and Okhotsk Sea areas and positive correlations in the Lake Baikal area.The respective relations of EAP and EU with the summer precipitation in North Asia suggest that the EAP northern lobe overlapped with the EU central and eastern lobes could extend the geopotential anomalies over Lake Baikal to Russian Far East,creating an EAP-EU synergistic effect on the summer precipitation in North Asia.展开更多
As one of the strongest convection bands in the Southern Hemisphere,the South Pacific Convergence Zone(SPCZ)substantially influences the variabilities in the atmospheric circulation and Antarctic climate.In this study...As one of the strongest convection bands in the Southern Hemisphere,the South Pacific Convergence Zone(SPCZ)substantially influences the variabilities in the atmospheric circulation and Antarctic climate.In this study,it is revealed that the intensity of the SPCZ can change the characteristics of sea ice in the West Antarctica during austral autumn,which is significantly independent of the El Niño-Southern Oscillation(ENSO).Observational and numerical results suggest that a stronger-than-usual SPCZ can generate a poleward-propagating Rossby wave train along a great circular route and induce a weakening of the Amundsen Sea Low(ASL)near West Antarctica,which may somewhat offset the teleconnections exerted by ENSO.These changes in the strength and zonal extent of ASL is noticeable and robustly lead to a tripole response of sea-ice perturbations in the Ross,Amundsen,and Weddell Seas.We find that the wind-driven dynamical processes determine the local sea-ice changes,while the influence from thermodynamic processes is trivial.This research underscores the need to consider the SPCZ variability for a comprehensive understanding of sea-ice changes in West Antarctica on interannual timescales.展开更多
The winter temperature variability of the Antarctic Peninsula(AP)has been proven to be influenced by sea surface temperature(SST)anomalies over the Tasman Sea.Using outputs over an extended time period from historical...The winter temperature variability of the Antarctic Peninsula(AP)has been proven to be influenced by sea surface temperature(SST)anomalies over the Tasman Sea.Using outputs over an extended time period from historical experiments,the skills of CMIP6 models in simulating the atmospheric responses to Tasman Sea SST are evaluated in this study,with an emphasis on the relationships with AP temperatures.The spatial correlation coefficient and normalized standard deviation are used as the evaluation metrics.Corresponding results suggest that the majority of CMIP6 models can capture the basic spatial distributions of Tasman Sea-related teleconnections across the Southern Hemisphere extratropical region,featuring a Pacific–South America-like pattern.However,the overestimation of atmospheric interannual variability and the underestimation of oceanic interannual variability in CMIP6 models result in a considerable amplification of the atmospheric responses to SST anomalies.The model uncertainty in depicting the relationships between Tasman Sea SSTs and AP surface temperatures,as well as the associated teleconnections,can partially be attributed to variations in grid resolutions among models.Additionally,further analysis of the Antarctic sea ice shows that the Tasman Sea SST may contribute to the interannual variability of the Antarctic dipole in CMIP6.展开更多
Multi-angle statistical analysis of tropical cyclones(TCs)and their distant thermodynamic disturbances over Northwest Pacific from July to September during 2001-2020 was conducted.The results show that TCs could trigg...Multi-angle statistical analysis of tropical cyclones(TCs)and their distant thermodynamic disturbances over Northwest Pacific from July to September during 2001-2020 was conducted.The results show that TCs could trigger distant thermodynamic disturbances,which mainly caused an increase in air pressure and a rise in temperature in northern China.The distant thermodynamic disturbances triggered by TCs differed in spatial distribution and intensity in different months.In the same month,the spatial distribution of such disturbances triggered by high-intensity TCs was consistent with the overall pattern,and there was a significant increase in intensity and area.From the probability of TC activities and the significance test of variance of analysis under different levels of P-J index,it is found that TC activities could stimulate the increase of P-J teleconnection index.There was a significant positive correlation between them,which was accompanied by a step effect.展开更多
The connection between rainfall over topographic regions and their downstream areas represents a phenomenon of great concern in atmospheric research.Focusing on the rainfall events of the past two decades,we analyzed ...The connection between rainfall over topographic regions and their downstream areas represents a phenomenon of great concern in atmospheric research.Focusing on the rainfall events of the past two decades,we analyzed the impact of rainfall over the Northeastern Slope of the Tibetan Plateau(NSTP)on rainfall in downstream areas.We discovered that rainfall followed two propagation routes,guided by two modes related to the three-dimensional circulation structure.In the first mode,dominated by cold(warm)anomalies along the west(east)direction,rainfall over the NSTP was concentrated between an upstream cyclonic and a downstream anti-cyclonic anomalous circulation(an upstream trough and a downstream ridge).This pattern was accompanied by upper-level divergence,low-level convergence,a deep moist layer,and a vertical updraft.As a consequence of the eastward movement of the trough-ridge system associated with the coldwarm anomalies,the rainfall over the NSTP moved eastward along 37°-40°N,reaching North China after about 36 h.In the second mode,the circulation structure was also dominated by cold-warm anomalies but rotated clockwise,introducing cold anomalies to the northeast and warm anomalies to the east of the plateau.Following the southeastward movement of the circulation structure,rainfall concentrated upstream of the anti-cyclonic circulation around the warm center before moving southeastward to the Sichuan Basin along the eastern edge of the plateau after 30-36 h.The findings of this study could broaden the understanding of rainfall-related teleconnection between two distant regions and offer helpful guidance for identifying early signals of rainfall disasters over the Chinese mainland.展开更多
基金supported by the National Natural Science Foundation of China(NSFCGrant No.42275061)+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB40000000)the Laoshan Laboratory(Grant No.LSKJ202202404)the NSFC(Grant No.42030410)the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology.
文摘A previously developed hybrid coupled model(HCM)is composed of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model(AGCM),denoted as HCMAGCM.In this study,different El Niño flavors,namely the Eastern-Pacific(EP)and Central-Pacific(CP)types,and the associated global atmospheric teleconnections are examined in a 1000-yr control simulation of the HCMAGCM.The HCMAGCM indicates profoundly different characteristics among EP and CP El Niño events in terms of related oceanic and atmospheric variables in the tropical Pacific,including the amplitude and spatial patterns of sea surface temperature(SST),zonal wind stress,and precipitation anomalies.An SST budget analysis indicates that the thermocline feedback and zonal advective feedback dominantly contribute to the growth of EP and CP El Niño events,respectively.Corresponding to the shifts in the tropical rainfall and deep convection during EP and CP El Niño events,the model also reproduces the differences in the extratropical atmospheric responses during the boreal winter.In particular,the EP El Niño tends to be dominant in exciting a poleward wave train pattern to the Northern Hemisphere,while the CP El Niño tends to preferably produce a wave train similar to the Pacific North American(PNA)pattern.As a result,different climatic impacts exist in North American regions,with a warm-north and cold-south pattern during an EP El Niño and a warm-northeast and cold-southwest pattern during a CP El Niño,respectively.This modeling result highlights the importance of internal natural processes within the tropical Pacific as they relate to the genesis of ENSO diversity because the active ocean–atmosphere coupling is allowed only in the tropical Pacific within the framework of the HCMAGCM.
文摘The question of possible teleconnections between the middle latitude general circulation and the Indian south-west monsoon was investigated in this paper. Within the framework of a simple model it was shown that there can exist such an interaction via the ultra-long Rossby waves.
文摘Existing limited understanding on the teleconnections between ocean-atmosphere coupled phenomena and drought occurrences in Ethiopia has been undermining the decisions and interventions related to climate change adaptation and mitigation. The two drought indices Standardized Precipitation Index and Reconnaissance Drought Index were used for correlation and lag correlation with global indices El-Nino Southern Oscillation, Oceanic Nino, Indian Ocean Dipole and Pacific Decadal Oscillation. The indices were obtained from their respective database websites of the National Center for Environmental Prediction. Historical EL-Nino and La-Nina years and Ethiopian drought years were collected from literatures. Meteorological data on seasonal mean rainfall, maximum and minimum temperatures from 1916-2016 were collected from Tigray regional meteorology agency. In addition, the Cru/ Model data were collected from KNMI climate explorer. The analysis results the strong correlations of global indices Nino3.4, IOD and PDO with local indices for April to June rainy season while SOI and IOD indices for July-Sep. The positive correlation of indices weakened and/or dislocated the rain-producing components for main rainy season, while those systems enhanced in low rain season. This shows global indices alter rain fall distribution & conveys Meteorological and Agricultural drought. The study revealed that, in addition to El Nino impacts, other events such as PDO, SOI and IOD are important factors for triggering meteorological and agricultural droughts in Tigray region of Ethiopia. This information has multiple implications, among others, improves seasonal forecast to make informed decisions.
文摘To study the impact of climate change on Godthab(Greenland), temperature and precipitation gathered from the Global Historical Climatology Network (GHCN) were analyzed for patterns within 1866-2011. Both temperature and precipitation have experienced an overall increase throughout the past 146 years. Precipitation, however, has experienced a declining trend since 1985. North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) indices showed strong correlations with average annual temperature (R = ?0.6) and smaller correlations with annual total precipitation (R = ?0.2). There are moderate correlations between temperature, precipitation, and Southern-Oscillation Index (SOI). The positive phases of Pacific-North American (PNA) led to increased winter and spring precipitation. The climate mode’s influential strength on Godthab’s temperature and precipitation, vary seasonally. In contrast with global average temperatures, Greenland has not experienced a continual warming trend since the 1950s;30- and 10-year trends show a cooling period between 1965 and 1995. From 1866 to 2011, Godthab’s average annual temperature has increased by 1.9?C, and is anticipated to continue to warm in accordance with the global warming trend and the Arctic’s associated feedback mechanisms.
文摘The aim of the paper is to analyze a possible teleconnection of Quasi-Biennial Oscillation (QBO), Southern Oscillation (SO), North Atlantic Oscillation (NAO), and Arctic Oscillation (AO) phenomena with longterm streamflow fluctuation of the Bela River (1895-2004) and Cierny Hron River (1931-2004) (central Slovakia). Homogeneity, long-term trends, as well as inter-annual dry and wet cycles were analyzed for the entire 1895-2004 time series of the Bela River and for the 1931-2004 time series of the Cierny Hron River. Inter-annual fluctuation of the wet and dry periods was identified using spectral analysis. The most significant period is that of 3.6 years. Other significant periods are those of 2.35 years, 13.5 years, and 21 years. Since these periods were found in other rivers of the world, as well as in SO, NAO, and AO phenomena, they can be considered as relating to the general regularity of the Earth.
基金supported by the National Natural Science Foundation of China (Grant Nos.41375086 and 41320104007)the National Basic Research Program of China (Grant No.2010CB950403)
文摘East Asian summer climate is strongly affected by extratropical circulation disturbances.In this study,impacts of four atmospheric teleconnections over Eurasia on East Asian summer rainfall are investigated using National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data and Climatic Research Unit (CRU) land precipitation data during 1979-2009.The four teleconnections include the Scandinavian (SCA),the Polar/Eurasian (PEU),the East Atlantic/Western Russian (EAWR),and the circumglobal teleconnection (CGT).Moreover,the related changes of lower-tropospheric circulation are explored,specifically,the low pressure over northern East Asia (NEAL) and the subtropical high over the western North Pacific (WNPSH).The results presented are in the positive phase.The PEU and SCA induce significant negative anomalies in North China rainfall (NCR),while the CGT induces significant positive anomalies.In the past three decades,the PEU and SCA explain more than 20% of the variance in NCR,twice that explained by the CGT,suggesting a more important role of the former two teleconnections in NCR variation than the latter one.Meanwhile,the PEU and SCA reduce rainfall in Northeast China and South Korea,respectively,and the CGT enhances rainfall in Japan.The rainfall responses are attributed to the SCA-induced northward shift of the NEAL,and PEU-induced northward shift and weakening of the NEAL,respectively.For the CGT,the dipole pattern of rainfall anomalies between North China and Japan is affected by both westward extension of the NEAL and northwestward expansion of the WNPSH.In addition,the EAWR leads to an increase of sporadic rainfall in South China as a result of the eastward retreat of the WNPSH.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research[grant number 2020B0301030004]the National Natural Science Foundation of China[grant number 91937302].
文摘Recent advances in the bridging roles played by the Tibetan Plateau(TP)are reviewed in terms of the remote influence of circulation anomalies over the North Atlantic Ocean on Asian monsoon and El Niño-Southern Oscillation(ENSO)events,and in a clear link between the tropical oceans and Asian climate anomalies.The authors firstly introduce how the winter and spring anomalies in the North Atlantic Ocean affect the seasonal transition over the South Asian monsoon region and subsequent ENSO events on the interannual timescale.A distinct negative sensible heating-baroclinic structure in May over the TP is found to provide an intermediate bridging effect in this Atlantic-Asian-Pacific connection.In summer,the North Atlantic Oscillation is significantly correlated with the variations of East China summer rainfall,and it is the TP’s latent heating that plays the bridging role within.On the other hand,such a TP bridging effect also exists in the connection from the tropical oceans to extreme precipitation events over eastern China in summer,and from the midlatitude wave train to the biweekly oscillation of South China rainfall in spring.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-Q1-02)the National Basic Research Program of China (973 Program, Grant No. 2009CB421406) and the Nansen Scientific Society in Norway
文摘The relationship between the variability of the surface elevation of the Greenland Ice Sheet (GIS) in winter and sea level pressure is identified through analysis of data from satellite-borne radar altimeters, together with meteorological data fields during 1993 2005. We found that both the North Pacific Oscillation (NPO) and the North Atlantic Oscillation (NAO), the two major teleconnection patterns of the atmospheric surface pressure fields in the Northern Hemisphere, significantly influence the GIS winter elevation change. Further, it is suggested that the NPO may affect the GIS accumulation by influencing the NAO, particularly by changing the intensity and location of the Icelandic Low.
基金National Key Programme for Developing Basic Sciences (G1998040900-part1)
文摘The intense of Northern Hemisphere summer East Asia/Pacific and snow-forced pattern telecon-nections have been documented in terms of 43-year summer 500 hPa height data. The analysis results show the phase relationship between these summer teleconnections at quasi-4-year oscillation. The possible relation to ENSO cycle at such time scale has also been deduced.
文摘The snow cover over the Taurus Mountains affects water supply, agriculture, and hydropower generation in the region. In this study, we analyzed the monthly Snow Cover Extent(SCE) from November to April in the Central Taurus Mountains(Bolkar, Aladaglar, Tahtali and Binboga Mountains) from 1981 to 2021. Linear trends of snow cover season(November to April) over the last 41 years showed decreases in SCE primarily at lower elevations. The downward trend in SCE was found to be more pronounced and statistically significant for only November and March. SCE in the Central Taurus Mountains has declined about-6.3% per decade for 2500-3000 m in November and about-6.0% per decade for 1000-1500 m and 3000+ m in March over the last 41 years. The loss of SCE has become evident since the 2000s, and the lowest negative anomalies in SCE have been observed in 2014, 2001, and 2007 in the last 41 years, which are consistent with an increase in air temperature and decreased precipitation. SCE was correlated with both mean temperature and precipitation, with temperature having a greater relative importance at all elevated gradients. Results showed that there is a strong linear relationship between SCE and the mean air temperature(r =-0.80) and precipitation(r = 0.44) for all elevated gradients during the snow season. The Arctic Oscillation(AO), the North Atlantic Oscillation(NAO), and the Mediterranean Oscillation(MO) winter indices were used to explain the year-to-year variability in SCE over the Central Taurus Mountains. The results showed that the inter-annual variability observed in the winter SCE on the Central Taurus Mountains was positively correlated with the phases of the winter AO, NAO and MO, especially below 2000 m elevation.
基金supported by the National Natural Science Foundation of China(42030602 and 42275032).
文摘The Arctic,Antarctic,and Tibetan Plateau(TP)are often referred to as Earth’s three poles,and they exert outsized influence on the global climate.The three poles have undergone accelerating loss of sea ice,ice shelves,and/or glaciers,accompanied by pronounced warming in the Arctic and TP and region-specific warming in Antarctica.Despite their geographical remoteness,the three poles exhibit evident linkages,yet substantial gaps remain in our understanding of their climate teleconnections.This review summarizes the interactions among Earth’s three poles.The three poles are dynamically linked through a hierarchy of pathways.The Arctic–TP interactions are dominated by stationary Rossby-wave trains triggered by sea-ice and snow anomalies and reinforced by land-surface feedback over the plateau.The Arctic–Antarctic coupling relies on ocean heat transport through the Atlantic Meridional Overturning Circulation and on the modulation of tropical Atlantic temperature and the Intertropical Convergence Zone.The Antarctic–TP signals travel via sea-surface temperature anomalies in the Indian Ocean forced by the Antarctic Oscillation,which propagate northward and excite wave trains and transport moisture onto the TP.Closing the remaining knowledge gaps will require coordinated paleoclimate constraints,targeted field campaigns over the Southern Ocean and TP,and next-generation Earth-system models equipped with machine-learning techniques.Such integrative efforts are essential for more reliable projections of compound extremes and for informing adaptation strategies.
基金supported by the National Key R&D Program of China(Grant No.2023YFF0805100)。
文摘The predictability of a coupled system composed of a coupled reduced-order extratropical ocean-atmosphere model forced by a low-order three-variable tropical recharge-discharge model is explored with emphasis on its long-term forecasting capabilities.Highly idealized ensemble forecasts are produced taking into account the uncertainties in the initial states of the system,with specific attention to the structure of the initial errors in the tropical model.Three main types of experiments are explored:with random perturbations along the three Lyapunov vectors of the tropical model;along the two dominant Lyapunov vectors;and along the first Lyapunov vector only.When perturbations are introduced along all vectors,forecasting biases develop even if in a perfect model framework and with known initial uncertainty properties.Theses biases are considerably reduced only when the perturbations are introduced along the dominant Lyapunov vector.Furthermore,this perturbation strategy allows a reduced mean square error to be obtained at long lead times of a few years,as well as reliable ensemble forecasts across the whole time range.These very counterintuitive findings further underline the importance of appropriately controlling the initial error structure in the tropics through data assimilation.
基金jointly supported by the Second Tibetan Plateau Scientific Expedition and Research Program[grant number-ber 2019QZKK0103]the National Natural Science Foundation of China[grant number 42293294]the China Meteorological Admin-istration Climate Change Special Program[grant number QBZ202303]。
文摘Using multi-source reanalysis data,this study examines the relationship between the tropical Pacific-Atlantic SST Dipole Mode(TPA-DM)and summer precipitation in North China(NCSP)on the interannual timescale during the period of 1979-2022.The results show that the TPA-DM,the dominant pattern of interannual variability in the tropical Pacific and Atlantic regions,exhibits a significant negative correlation with NCSP.The positive phase of TPA-DM induces subsidence over the Maritime Continent through a zonal circulation pattern,which initiates a Pacific-Japan-like wave train along the East Asian coast.The circulation anomalies lead to moisture deficits and convergence subsidence over North China,leading to below-normal rainfall.Further analysis reveals that cooler SST in the Southern Tropical Atlantic facilitates the persistence of the TPA-DM by stimulating the anomalous Walker circulation associated with wind-evaporation-SST-convection feedback.
基金Supported by the National Key Research and Development Program of China(2018YFC1506002,2017YFC1502302,and2016YFA0602104)Key Research Program of Xinjiang Meteorological Bureau(ZD201802)+1 种基金China Meteorological Administration Special Public Welfare Research Fund(GYHY201506013)National Natural Science Foundation of China(41205058,41375062,41405080,41505065,41606019,and 41605116)
文摘This study evaluates the performance of CAMS-CSM(the climate system model of the Chinese Academy of Meteorological Sciences) in simulating the features, dynamics, and teleconnections to East Asian climate of the El Ni?o–Southern Oscillation(ENSO). In general, fundamental features of ENSO, such as its dominant patterns and phase-locking features, are reproduced well. The two types of El Ni?o are also represented, in terms of their spatial distributions and mutual independency. However, the skewed feature is missed in the model and the simulation of ENSO is extremely strong, which is found—based on Bjerknes index assessment—to be caused by underestimation of the shortwave damping effect. Besides, the modeled ENSO exhibits a regular oscillation with a period shorter than observed. By utilizing the Wyrtki index, it is suggested that this periodicity bias results from an overly quick phase transition induced by feedback from the thermocline and zonal advection. In addition to internal dynamics of ENSO,its external precursors—such as the North Pacific Oscillation with its accompanying seasonal footprinting mechanism, and the Indian Ocean Dipole with its 1-yr lead correlation with ENSO—are reproduced well by the model. Furthermore, with respect to the impacts of ENSO on the East Asian summer monsoon, although the anomalous Philippine anticyclone is reproduced in the post-El Ni?o summer, it exhibits an eastward shift compared with observation;and as a consequence, the observed flooding of the Yangtze River basin is poorly represented, with unrealistic air–sea interaction over the South China Sea being the likely physical origin of this bias. The response of wintertime lowertropospheric circulation to ENSO is simulated well, in spite of an underestimation of temperature anomalies in central China. This study highlights the dynamic processes that are key for the simulation of ENSO, which could shed some light on improving this model in the future.
基金Supported by the National Science and Technology Support Program (2007BAC03A01)the National Plan on Key Basic Research and Development (2006CB403604).
文摘The interactions among the Asian-Pacific monsoon subsystems have significant impacts on the climatic regimes in the monsoon region and even the whole world. Based on the domestic and foreign related research, an analysis is made of four different teleconnection modes found in the Asian-Pacific monsoon region, which reveal clearly the interactions among the Indian summer monsoon (ISM), the East Asian summer monsoon (EASM), and the western North Pacific summer monsoon (WNPSM). The results show that: (1) In the period of the Asian monsoon onset, the date of ISM onset is two weeks earlier than the beginning of the Meiyu over the Yangtze River Basin, and a teleconnection mode is set up from the southwestern India via the Bay of Bengal (BOB) to the Yangtze River Basin and southern Japan, i.e., the "southern" teleconnection of the Asian summer monsoon. (2) In the Asian monsoon culmination period, the precipitation of the Yangtze River Basin is influenced significantly by the WNPSM through their teleconnection relationship, and is negatively related to the WNPSM rainfall, that is, when the WNPSM is weaker than normal, the precipitation of the Yangtze River Basin is more than normal. (3) In contrast to the rainfall over the Yangtze River Basin, the precipitation of northern China (from the 4th pentad of July to the 3rd pentad of August) is positively related to the WNPSM. When the WNPSM is stronger than normal, the position of the western Pacific subtropical high (WPSH) becomes farther northeast than normal, the anomalous northeastward water vapor transport along the southwestern flank of WPSH is converged over northern China, providing adequate moisture for more rainfalls than normal there. (4) The summer rainfall in northern China has also a positive correlation with the ISM. During the peak period of ISM, a teleconnection pattern is formed from Northwest India via the Tibetan Plateau to northern China, i.e., the "northern" teleconnection of the Asian summer monsoon. The above four kinds of teleconnections reflect the links among the Asian monsoon subsystems of ISM, EASM, and WNPSM during the northward advancing march of the Asian summer monsoons.
基金Supported by the National Key Research and Development Program of China(2018YFA0606301 and 2018YFC1507702)National Natural Science Foundation of China(41875100,41575082,and 41530531).
文摘The East Asia-Pacific(EAP)and Eurasian(EU)teleconnections are independent of each other on the seasonal timescale(with a correlation coefficient of only 0.03).But they may occur concurrently with consistent or opposite phases.This paper investigates their synergistic effect on the summer precipitation in North Asia.Based on the signs/phases of EAP and EU indices,the EAP and EU teleconnection anomalies occur in four cases:(Ⅰ)positive EAP+positive EU,(Ⅱ)negative EAP+negative EU,(Ⅲ)positive EAP+negative EU,and(Ⅳ)negative EAP+positive EU.Further analyses show that these four configurations of EAP and EU anomalies are coherently related to different atmospheric circulations over the midlatitude Eurasian continent,leading to different summer precipitation modes in North Asia.CategoryⅠ(Ⅱ)corresponds to a zonal tripole structure of the geopotential height at 500 hPa over eastern Europe and the Sea of Japan,leading to less(more)than normal precipitation in eastern Europe,Japan,and the surrounding areas,and more(less)precipitation from central China to Lake Baikal and eastern Russia.CategoryⅢ(Ⅳ)corresponds to a meridional dipole structure of the geopotential height at 500 hPa over North Asia,leading to more(less)precipitation in the northern North Asia and less(more)precipitation in most of the southern North Asia.Independent analysis reveals that the EAP teleconnection itself is positively correlated with the precipitation in the region between the eastern part of Lake Baikal and Okhotsk Sea,and negatively correlated with the precipitation in the region between Northeast China and Japan.Coincidently,the EU pattern and precipitation have negative correlations in Ural Mountain and Okhotsk Sea areas and positive correlations in the Lake Baikal area.The respective relations of EAP and EU with the summer precipitation in North Asia suggest that the EAP northern lobe overlapped with the EU central and eastern lobes could extend the geopotential anomalies over Lake Baikal to Russian Far East,creating an EAP-EU synergistic effect on the summer precipitation in North Asia.
基金supported by the National Natural Science Foundation of China(Grant No.42375024).
文摘As one of the strongest convection bands in the Southern Hemisphere,the South Pacific Convergence Zone(SPCZ)substantially influences the variabilities in the atmospheric circulation and Antarctic climate.In this study,it is revealed that the intensity of the SPCZ can change the characteristics of sea ice in the West Antarctica during austral autumn,which is significantly independent of the El Niño-Southern Oscillation(ENSO).Observational and numerical results suggest that a stronger-than-usual SPCZ can generate a poleward-propagating Rossby wave train along a great circular route and induce a weakening of the Amundsen Sea Low(ASL)near West Antarctica,which may somewhat offset the teleconnections exerted by ENSO.These changes in the strength and zonal extent of ASL is noticeable and robustly lead to a tripole response of sea-ice perturbations in the Ross,Amundsen,and Weddell Seas.We find that the wind-driven dynamical processes determine the local sea-ice changes,while the influence from thermodynamic processes is trivial.This research underscores the need to consider the SPCZ variability for a comprehensive understanding of sea-ice changes in West Antarctica on interannual timescales.
基金jointly supported by the National Natural Science Foundation of China(Grant No.42375027)the Natural Science Foundation of Guangdong Province(Grant No.2023A1515010889)。
文摘The winter temperature variability of the Antarctic Peninsula(AP)has been proven to be influenced by sea surface temperature(SST)anomalies over the Tasman Sea.Using outputs over an extended time period from historical experiments,the skills of CMIP6 models in simulating the atmospheric responses to Tasman Sea SST are evaluated in this study,with an emphasis on the relationships with AP temperatures.The spatial correlation coefficient and normalized standard deviation are used as the evaluation metrics.Corresponding results suggest that the majority of CMIP6 models can capture the basic spatial distributions of Tasman Sea-related teleconnections across the Southern Hemisphere extratropical region,featuring a Pacific–South America-like pattern.However,the overestimation of atmospheric interannual variability and the underestimation of oceanic interannual variability in CMIP6 models result in a considerable amplification of the atmospheric responses to SST anomalies.The model uncertainty in depicting the relationships between Tasman Sea SSTs and AP surface temperatures,as well as the associated teleconnections,can partially be attributed to variations in grid resolutions among models.Additionally,further analysis of the Antarctic sea ice shows that the Tasman Sea SST may contribute to the interannual variability of the Antarctic dipole in CMIP6.
基金the National Natural Science Foundation of China(42305011).
文摘Multi-angle statistical analysis of tropical cyclones(TCs)and their distant thermodynamic disturbances over Northwest Pacific from July to September during 2001-2020 was conducted.The results show that TCs could trigger distant thermodynamic disturbances,which mainly caused an increase in air pressure and a rise in temperature in northern China.The distant thermodynamic disturbances triggered by TCs differed in spatial distribution and intensity in different months.In the same month,the spatial distribution of such disturbances triggered by high-intensity TCs was consistent with the overall pattern,and there was a significant increase in intensity and area.From the probability of TC activities and the significance test of variance of analysis under different levels of P-J index,it is found that TC activities could stimulate the increase of P-J teleconnection index.There was a significant positive correlation between them,which was accompanied by a step effect.
基金supported by the National Natural Science Foundation of China(Grant No.U2142204 and 42475013)the Beijing Nova Program(Z211100002121100)+1 种基金the National Key Research and Development Program of China(2023YFC3007504)the Science&Technology Development Fund of Chinese Academy of Meteorological Sciences(CAMS)(2022KJ007)。
文摘The connection between rainfall over topographic regions and their downstream areas represents a phenomenon of great concern in atmospheric research.Focusing on the rainfall events of the past two decades,we analyzed the impact of rainfall over the Northeastern Slope of the Tibetan Plateau(NSTP)on rainfall in downstream areas.We discovered that rainfall followed two propagation routes,guided by two modes related to the three-dimensional circulation structure.In the first mode,dominated by cold(warm)anomalies along the west(east)direction,rainfall over the NSTP was concentrated between an upstream cyclonic and a downstream anti-cyclonic anomalous circulation(an upstream trough and a downstream ridge).This pattern was accompanied by upper-level divergence,low-level convergence,a deep moist layer,and a vertical updraft.As a consequence of the eastward movement of the trough-ridge system associated with the coldwarm anomalies,the rainfall over the NSTP moved eastward along 37°-40°N,reaching North China after about 36 h.In the second mode,the circulation structure was also dominated by cold-warm anomalies but rotated clockwise,introducing cold anomalies to the northeast and warm anomalies to the east of the plateau.Following the southeastward movement of the circulation structure,rainfall concentrated upstream of the anti-cyclonic circulation around the warm center before moving southeastward to the Sichuan Basin along the eastern edge of the plateau after 30-36 h.The findings of this study could broaden the understanding of rainfall-related teleconnection between two distant regions and offer helpful guidance for identifying early signals of rainfall disasters over the Chinese mainland.