Satellite images are widely used for remote sensing and defence applications,however,they are subject to a variety of threats.To ensure the security and privacy of these images,theymust be watermarked and encrypted be...Satellite images are widely used for remote sensing and defence applications,however,they are subject to a variety of threats.To ensure the security and privacy of these images,theymust be watermarked and encrypted before communication.Therefore,this paper proposes a novel watermarked satellite image encryption scheme based on chaos,Deoxyribonucleic Acid(DNA)sequence,and hash algorithm.The watermark image,DNA sequence,and plaintext image are passed through the Secure Hash Algorithm(SHA-512)to compute the initial condition(keys)for the Tangent-Delay Ellipse Reflecting Cavity Map(TD-ERCS),Henon,and Duffing chaotic maps,respectively.Through bitwise XOR and substitution,the TD-ERCS map encrypts the watermark image.The ciphered watermark image is embedded in the plaintext image.The embedded plaintext image is permuted row-wise and column-wise using the Henon chaotic map.The permuted image is then bitwise XORed with the values obtained from the Duffing map.For additional security,the XORed image is substituted through a dynamic S-Box.To evaluate the efficiency and performance of the proposed algorithm,several tests are performed which prove its resistance to various types of attacks such as brute-force and statistical attacks.展开更多
基金supported by the Deanship of Scientific Research at King Khalid University for funding this work through the large group research project under grant number RGP2/461/45the Deanship of Scientific Researchat Northern Border University,Arar,Saudi Arabia for funding this research work through the project number NBU-FFR-2025-3030-05.
文摘Satellite images are widely used for remote sensing and defence applications,however,they are subject to a variety of threats.To ensure the security and privacy of these images,theymust be watermarked and encrypted before communication.Therefore,this paper proposes a novel watermarked satellite image encryption scheme based on chaos,Deoxyribonucleic Acid(DNA)sequence,and hash algorithm.The watermark image,DNA sequence,and plaintext image are passed through the Secure Hash Algorithm(SHA-512)to compute the initial condition(keys)for the Tangent-Delay Ellipse Reflecting Cavity Map(TD-ERCS),Henon,and Duffing chaotic maps,respectively.Through bitwise XOR and substitution,the TD-ERCS map encrypts the watermark image.The ciphered watermark image is embedded in the plaintext image.The embedded plaintext image is permuted row-wise and column-wise using the Henon chaotic map.The permuted image is then bitwise XORed with the values obtained from the Duffing map.For additional security,the XORed image is substituted through a dynamic S-Box.To evaluate the efficiency and performance of the proposed algorithm,several tests are performed which prove its resistance to various types of attacks such as brute-force and statistical attacks.
基金国家自然科学基金( the National Natural Science Foundation of China under Grant No.60672041)湖南省自然科学基金( the Natural Science Foundation of Hunan Province of China under Grant No.04JJ3077)