针对传统人工势场(traditional artificial potential field,T-APF)算法在自主船舶应急避碰场景中存在的局部最优问题和动态障碍物避碰局限性问题,提出一种基于最近会遇时间(time to closest point of approach,TCPA)和最近会遇距离(dis...针对传统人工势场(traditional artificial potential field,T-APF)算法在自主船舶应急避碰场景中存在的局部最优问题和动态障碍物避碰局限性问题,提出一种基于最近会遇时间(time to closest point of approach,TCPA)和最近会遇距离(distance to closest point of approach,DCPA)的优化人工势场(enhanced artificial potential field,E-APF)算法,通过重构斥力势场函数,引入动态权重调整机制,并结合相对运动态势设计自适应斥力方向策略。仿真结果表明:在静态障碍物场景中,E-APF算法比T-APF算法能更早识别碰撞风险并规划更优路径;在动态障碍物场景中,可有效增大安全距离并减小转向幅度,显著提高障碍物风险评估和避碰决策的准确性。展开更多
Twisted and coiled polymer actuator(TCPA)is a type of artificial muscle that can be driven by heating due to its structure.A key issue with TCPA performance is the low driven frequency due to slow heat transfer in hea...Twisted and coiled polymer actuator(TCPA)is a type of artificial muscle that can be driven by heating due to its structure.A key issue with TCPA performance is the low driven frequency due to slow heat transfer in heating and cooling cycles,especially during cooling.We developed a numerical model of coating heating and nitrogen gas cooling that can effectively improve the driven forces and frequencies of the TCPA.Results indicate that natural cooling and electric fan cooling modes used in many experiments cannot restore the TCPA to its initial configuration when driven frequencies are high.Nitrogen gas cooling,at high driven frequencies,can fully restore the TCPA to its initial configuration,which is crucial for maintaining artificial muscle flexibility.In addition,as driven frequency increases,the corresponding driven force decreases.Systematic parametric studies were carried out to provide inspirations for optimizing TCPA design.The integrative computational study presented here provides a fundamental mechanistic understanding of the driven response in TCPA and sheds light on the rational design of TCPA through changing cooling modes.展开更多
文摘针对传统人工势场(traditional artificial potential field,T-APF)算法在自主船舶应急避碰场景中存在的局部最优问题和动态障碍物避碰局限性问题,提出一种基于最近会遇时间(time to closest point of approach,TCPA)和最近会遇距离(distance to closest point of approach,DCPA)的优化人工势场(enhanced artificial potential field,E-APF)算法,通过重构斥力势场函数,引入动态权重调整机制,并结合相对运动态势设计自适应斥力方向策略。仿真结果表明:在静态障碍物场景中,E-APF算法比T-APF算法能更早识别碰撞风险并规划更优路径;在动态障碍物场景中,可有效增大安全距离并减小转向幅度,显著提高障碍物风险评估和避碰决策的准确性。
基金Natural Science Foundation of China,11925204,Jizeng Wangthe Fundamental Research Funds for the Central Universities,lzujbky-2024-jdzx02,Zhiwen Gao。
文摘Twisted and coiled polymer actuator(TCPA)is a type of artificial muscle that can be driven by heating due to its structure.A key issue with TCPA performance is the low driven frequency due to slow heat transfer in heating and cooling cycles,especially during cooling.We developed a numerical model of coating heating and nitrogen gas cooling that can effectively improve the driven forces and frequencies of the TCPA.Results indicate that natural cooling and electric fan cooling modes used in many experiments cannot restore the TCPA to its initial configuration when driven frequencies are high.Nitrogen gas cooling,at high driven frequencies,can fully restore the TCPA to its initial configuration,which is crucial for maintaining artificial muscle flexibility.In addition,as driven frequency increases,the corresponding driven force decreases.Systematic parametric studies were carried out to provide inspirations for optimizing TCPA design.The integrative computational study presented here provides a fundamental mechanistic understanding of the driven response in TCPA and sheds light on the rational design of TCPA through changing cooling modes.