This paper presents a description and performance evaluation of a new bit-level, lossless, adaptive, and asymmetric data compression scheme that is based on the adaptive character wordlength (ACW(n)) algorithm. Th...This paper presents a description and performance evaluation of a new bit-level, lossless, adaptive, and asymmetric data compression scheme that is based on the adaptive character wordlength (ACW(n)) algorithm. The proposed scheme enhances the compression ratio of the ACW(n) algorithm by dividing the binary sequence into a number of subsequences (s), each of them satisfying the condition that the number of decimal values (d) of the n-bit length characters is equal to or less than 256. Therefore, the new scheme is referred to as ACW(n, s), where n is the adaptive character wordlength and s is the number of subsequences. The new scheme was used to compress a number of text files from standard corpora. The obtained results demonstrate that the ACW(n, s) scheme achieves higher compression ratio than many widely used compression algorithms and it achieves a competitive performance compared to state-of-the-art compression tools.展开更多
轨迹数据驱动的行人行为分析建模在公共场合异常事件监测、人车冲突风险评估等方面具有重要意义,广布的交通视频监控是行人群轨迹数据的重要来源。行人轨迹具有趋势性和规律性,提取的原始轨迹信息冗余较大,且密集行人群频繁遮挡,不同行...轨迹数据驱动的行人行为分析建模在公共场合异常事件监测、人车冲突风险评估等方面具有重要意义,广布的交通视频监控是行人群轨迹数据的重要来源。行人轨迹具有趋势性和规律性,提取的原始轨迹信息冗余较大,且密集行人群频繁遮挡,不同行人轨迹易发生误匹配,导致数据失真。针对以上问题,根据行人轨迹的局部结构特征和数值特性,设计一种改进的两阶段自适应滑窗轨迹压缩算法ATSSW(Adaptive Two Stage Sliding Window)和基于轨迹局部转向角的误匹配识别和分割方法ABTDS(Angle-based Trajectory Detection and Segmentation),清洗和压缩行人轨迹数据。首先,ATSSW算法考虑轨迹各坐标分量的数值分布特征,将提取到的所有原始轨迹分为漂移和非漂移2类,采取不同的策略分别压缩2类轨迹;然后,ABTDS算法分析压缩后的轨迹局部转角特征,辨识误匹配轨迹样本;最后,ABTDS算法分割误匹配样本,并用分割后的轨迹更新原始轨迹数据集。研究结果表明:ATSSW算法压缩了653条原始行人轨迹,总压缩信息损失1 002.04,总平均轨迹压缩率为6.07%,总平均轨迹压缩保留率为95.35%;原始轨迹集中存在126条误匹配轨迹,ABTDS算法辨识并成功分割了其中的107条,检出率为84.92%;所提算法抑制了原始行人轨迹中漂移点和误匹配现象所致的干扰,减少了原始轨迹数据噪声,可提高轨迹数据驱动的行人行为建模精确度;适当压缩原始轨迹,可减轻轨迹数据存储处理的负担。展开更多
为降低IT运维系统的实时监测数据量、提高数据存储效率,提出一种自适应的旋转门算法(adaptive swinging door trending,ASDT)。针对传统SDT算法存在抗噪性弱、参数选取困难等缺陷,ASDT首先通过最小二乘平滑处理,减小噪声数据对SDT趋势...为降低IT运维系统的实时监测数据量、提高数据存储效率,提出一种自适应的旋转门算法(adaptive swinging door trending,ASDT)。针对传统SDT算法存在抗噪性弱、参数选取困难等缺陷,ASDT首先通过最小二乘平滑处理,减小噪声数据对SDT趋势判断的影响;然后通过改进死区限值过滤算法,对经平滑处理后的数据进行压缩;最后基于相邻压缩区间标准差变化,自适应调整压缩精度参数。实验结果表明:在保证数据保真度的前提下,ASDT的仿真数据和真实数据上的压缩比分别提高60%和24%以上。展开更多
文摘This paper presents a description and performance evaluation of a new bit-level, lossless, adaptive, and asymmetric data compression scheme that is based on the adaptive character wordlength (ACW(n)) algorithm. The proposed scheme enhances the compression ratio of the ACW(n) algorithm by dividing the binary sequence into a number of subsequences (s), each of them satisfying the condition that the number of decimal values (d) of the n-bit length characters is equal to or less than 256. Therefore, the new scheme is referred to as ACW(n, s), where n is the adaptive character wordlength and s is the number of subsequences. The new scheme was used to compress a number of text files from standard corpora. The obtained results demonstrate that the ACW(n, s) scheme achieves higher compression ratio than many widely used compression algorithms and it achieves a competitive performance compared to state-of-the-art compression tools.
文摘轨迹数据驱动的行人行为分析建模在公共场合异常事件监测、人车冲突风险评估等方面具有重要意义,广布的交通视频监控是行人群轨迹数据的重要来源。行人轨迹具有趋势性和规律性,提取的原始轨迹信息冗余较大,且密集行人群频繁遮挡,不同行人轨迹易发生误匹配,导致数据失真。针对以上问题,根据行人轨迹的局部结构特征和数值特性,设计一种改进的两阶段自适应滑窗轨迹压缩算法ATSSW(Adaptive Two Stage Sliding Window)和基于轨迹局部转向角的误匹配识别和分割方法ABTDS(Angle-based Trajectory Detection and Segmentation),清洗和压缩行人轨迹数据。首先,ATSSW算法考虑轨迹各坐标分量的数值分布特征,将提取到的所有原始轨迹分为漂移和非漂移2类,采取不同的策略分别压缩2类轨迹;然后,ABTDS算法分析压缩后的轨迹局部转角特征,辨识误匹配轨迹样本;最后,ABTDS算法分割误匹配样本,并用分割后的轨迹更新原始轨迹数据集。研究结果表明:ATSSW算法压缩了653条原始行人轨迹,总压缩信息损失1 002.04,总平均轨迹压缩率为6.07%,总平均轨迹压缩保留率为95.35%;原始轨迹集中存在126条误匹配轨迹,ABTDS算法辨识并成功分割了其中的107条,检出率为84.92%;所提算法抑制了原始行人轨迹中漂移点和误匹配现象所致的干扰,减少了原始轨迹数据噪声,可提高轨迹数据驱动的行人行为建模精确度;适当压缩原始轨迹,可减轻轨迹数据存储处理的负担。
文摘为降低IT运维系统的实时监测数据量、提高数据存储效率,提出一种自适应的旋转门算法(adaptive swinging door trending,ASDT)。针对传统SDT算法存在抗噪性弱、参数选取困难等缺陷,ASDT首先通过最小二乘平滑处理,减小噪声数据对SDT趋势判断的影响;然后通过改进死区限值过滤算法,对经平滑处理后的数据进行压缩;最后基于相邻压缩区间标准差变化,自适应调整压缩精度参数。实验结果表明:在保证数据保真度的前提下,ASDT的仿真数据和真实数据上的压缩比分别提高60%和24%以上。