期刊文献+
共找到231篇文章
< 1 2 12 >
每页显示 20 50 100
基于VMD-TCN-BiLSTM-Attention的短期电力负荷预测
1
作者 刘义艳 李国良 代杰 《智慧电力》 北大核心 2025年第10期87-94,共8页
针对短期电力负荷数据具有非线性和波动性等特点而导致的预测精度不足问题,提出一种基于变分模态分解(VMD)、时间卷积网络(TCN)、双向长短期记忆网络(BiLSTM)与注意力机制(Attention)相结合的新型预测模型。首先,采用VMD方法将电力负荷... 针对短期电力负荷数据具有非线性和波动性等特点而导致的预测精度不足问题,提出一种基于变分模态分解(VMD)、时间卷积网络(TCN)、双向长短期记忆网络(BiLSTM)与注意力机制(Attention)相结合的新型预测模型。首先,采用VMD方法将电力负荷数据分解成多个不同频率的模态分量,利用TCN模型提取模态分量中的时序特征;其次,通过BiLSTM网络进一步挖掘序列依赖关系;最后,引入注意力机制对BiLSTM输出的特征进行加权处理。实验结果表明,所提模型与其他传统模型相比预测精度显著提升,在短期电力负荷预测中具有较高的应用价值。 展开更多
关键词 短期电力负荷 变分模态分解 时间卷积网络 双向长短期记忆网络 注意力机制
在线阅读 下载PDF
PAM结合TCN优化Transformer的光伏功率预测研究
2
作者 张红 李峰 +2 位作者 马彦宏 姬文宣 郑启鹏 《计算机工程》 北大核心 2025年第10期140-149,共10页
准确的光伏功率预测对于提高电网稳定性和用电效率至关重要。针对现有研究难以同时考虑光伏功率长期依赖性和短期变化模式的缺陷,提出一种金字塔注意力模块(PAM)结合时间卷积网络(TCN)优化Transformer的光伏功率预测方法Solarformer。... 准确的光伏功率预测对于提高电网稳定性和用电效率至关重要。针对现有研究难以同时考虑光伏功率长期依赖性和短期变化模式的缺陷,提出一种金字塔注意力模块(PAM)结合时间卷积网络(TCN)优化Transformer的光伏功率预测方法Solarformer。基于多种特征选择机制筛选输入特征,增强对光伏数据特征的表征能力;利用粗粒度构造模块和PAM优化Transformer编码器,在多尺度上捕获光伏功率的长期时间依赖特征;利用光伏功率日出日落效应约束机制和TCN优化Transformer解码器,增强光伏功率的短期变化特征,以更好地捕捉其短期变化模式。在澳大利亚Sanyo数据集上进行实验,结果表明,Solarformer能够有效提高光伏功率的预测精度,相比DLinear模型,其均方根误差(RMSE)、平均绝对误差(MAE)和对称平均绝对百分比误差(SMAPE)分别降低了约7.45%、6.99%和14.10%。 展开更多
关键词 光伏功率预测 Transformer模型 金字塔注意力模块 约束机制 时间卷积网络
在线阅读 下载PDF
基于非负矩阵分解的EEG-TCNet运动想象分类
3
作者 张学军 石宝明 《数据采集与处理》 北大核心 2025年第5期1361-1370,共10页
针对深度学习进行脑电信号(Electroencephalogram,EEG)的运动想象分类时,未利用通道特征研究通道之间相关性,以及没有充分发掘频率、时间和空间信息等问题,提出了一种基于非负矩阵分解(Nonnegative matrix factorization,NMF)的时间卷... 针对深度学习进行脑电信号(Electroencephalogram,EEG)的运动想象分类时,未利用通道特征研究通道之间相关性,以及没有充分发掘频率、时间和空间信息等问题,提出了一种基于非负矩阵分解(Nonnegative matrix factorization,NMF)的时间卷积网络(Temporal convolutional network,TCN)与紧凑型卷积神经网络EEGNet相结合的分类方法,记为NTEEGNet,以相对少量的参数来提高运动想象分类的性能。模型的NMF能更好地提取通道特征,且充分地利用了频率、时间和空间等信息;同时,在TCN的作用下,网络的感受野呈指数级增加,从而能在较少的参数下具有更强的特征提取能力。在BCI Competition Ⅳ 2a数据集上的实验结果表明,NTEEGNet的分类准确率达到83.99%,在EEG-TCNet的基础上提升了6.64%。 展开更多
关键词 运动想象 深度学习 卷积神经网络 非负矩阵分解 时间卷积网络
在线阅读 下载PDF
基于CEEMDAN-SA-TCN的原油期货价格预测
4
作者 潘少伟 杨帆 赵超越 《天然气与石油》 2025年第3期147-154,共8页
原油期货价格预测对原油开采规划具有重大意义,准确的原油期货价格预测可以实现资源的优化配置和风险的适当规避。在时间卷积网络(Temporal Convolutional Network,TCN)的基础上,利用自适应噪声的完备集合经验模态分解(Complete Ensembl... 原油期货价格预测对原油开采规划具有重大意义,准确的原油期货价格预测可以实现资源的优化配置和风险的适当规避。在时间卷积网络(Temporal Convolutional Network,TCN)的基础上,利用自适应噪声的完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)进行原油期货价格数据的特征分解,采用主成分分析(Principal Component Analysis,PCA)对特征分解后的数据进行降维处理,引入自注意力机制(Self-attention,SA)对降维后的数据特征进行注意力分配。结合CEEMDAN、PCA和SA的TCN简记为CEEMDAN-SA-TCN。基于美国西德克萨斯中质原油(West Texas Intermediate,WTI)原油期货价格数据集,利用CEEMDAN-SA-TCN构建原油期货价格预测模型并进行测试。测试结果表明,与线性回归(Linear Regression,LR)、支持向量回归(Support Vector Regression,SVR)、反向传播神经网络(Back Propagation Neural Network,BPNN)、Transformer、Informer、TCN、SA-TCN和CEEMDAN-TCN相比,CEEMDAN-SA-TCN对原油期货价格预测具有更高的准确率,产生的平均绝对误差(MAE)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)的平均值分别为1.642、2.098和1.670。CEEMDAN-SA-TCN可应用于原油期货价格预测中,为原油期货市场的分析与决策提供有力支持。 展开更多
关键词 原油期货价格 时间卷积网络 经验模态分解 自注意力机制
在线阅读 下载PDF
基于多头注意力机制的TCN-BiGRU密度测井曲线重构方法 被引量:2
5
作者 王欢欢 赵彬 +3 位作者 刘建新 陶良清 高楚桥 廖文龙 《地球物理学进展》 北大核心 2025年第2期592-604,共13页
在测井过程中,受仪器故障、井壁坍塌等因素的影响,部分井段密度曲线常常出现失真或缺失,导致储层评价存在误差.为了提高储层评价的准确性,重构密度曲线显得尤为重要.鉴于传统的机器学习曲线重构方法难以满足精度要求,本文提出了一种融... 在测井过程中,受仪器故障、井壁坍塌等因素的影响,部分井段密度曲线常常出现失真或缺失,导致储层评价存在误差.为了提高储层评价的准确性,重构密度曲线显得尤为重要.鉴于传统的机器学习曲线重构方法难以满足精度要求,本文提出了一种融合时间卷积网络(TCN)、双向门控循环单元(BiGRU)和多头注意力机制(MHA)的密度曲线重构方法.该方法通过TCN的卷积特性捕捉测井数据的长期依赖关系,同时引入多头注意力机制增强BiGRU对重要特征的选择能力,实现精准的密度曲线重构.将该方法应用于研究区实测数据进行重构实验,首先验证了加入地层岩性指标对模型重构能力的影响,然后对比分析了本文网络与Gardner公式、多元拟合、门控循环单元、双向门控循环单元的重构结果,最后通过岩心标定验证本文网络的泛化性.结果表明,本文提出的密度曲线重构方法具有更高的精度,并表现出良好的泛化性. 展开更多
关键词 密度测井曲线重构 多头注意力机制 时间卷积网络 双向门控循环单元 物理约束
原文传递
一种基于Attention-TCN-GRU的船舶轨迹预测模型
6
作者 郑元洲 黄海超 +3 位作者 钱龙 曹婧欣 侯文波 李鑫 《武汉理工大学学报(交通科学与工程版)》 2025年第2期439-447,共9页
本文提出了一种串行Attention-TCN-GRU的轨迹预测模型.通过数据清洗和异常值处理等过程筛选出有效AIS数据,并采用三次样条插值算法补全船舶轨迹缺失值,有效提高数据的可用性.该模型将时间卷积神经网络(TCN)强大的时序数据特征提取能力... 本文提出了一种串行Attention-TCN-GRU的轨迹预测模型.通过数据清洗和异常值处理等过程筛选出有效AIS数据,并采用三次样条插值算法补全船舶轨迹缺失值,有效提高数据的可用性.该模型将时间卷积神经网络(TCN)强大的时序数据特征提取能力与门控循环网络(GRU)相结合,通过串行结构设计,有效提高了船舶航行信息的处理能力.同时针对内河船舶在桥区水域及大角度弯曲航道的航行特点,将注意力机制引入预测模型,实现了较高精确度的航迹数据特征提取和趋势预测.本文开展了基于AIS数据的多工况轨迹预测实验,结果表明:Attention-TCN-GRU对内河复杂水域船舶航迹预测精确度明显优于传统神经网络. 展开更多
关键词 船舶轨迹预测 AIS数据 时间卷积神经网络 注意力机制 Attention-tcn-GRU
在线阅读 下载PDF
基于TCN和AUKF联合迭代的PEMFC寿命融合预测方法 被引量:1
7
作者 赵波 张领先 +3 位作者 章雷其 陈哲 刘相万 谢长君 《中国电机工程学报》 北大核心 2025年第9期3609-3623,I0029,共16页
针对质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)的剩余使用寿命预测问题,该文提出一种基于时序卷积神经网络(temporal convolutional network,TCN)和自适应无迹卡尔曼滤波(adaptive unscented Kalman filter,AUKF)... 针对质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)的剩余使用寿命预测问题,该文提出一种基于时序卷积神经网络(temporal convolutional network,TCN)和自适应无迹卡尔曼滤波(adaptive unscented Kalman filter,AUKF)联合迭代的融合预测方法。该方法首先利用TCN进行短期预测,并用贝叶斯算法计算融合权重。然后利用离散小波变换将老化数据分解为波动趋势和老化趋势,基于TCN长期迭代预测波动趋势,基于TCN和AUKF联合迭代长期预测老化趋势,并将两种趋势叠加得到长期预测结果。最后利用融合权重将多个单体PEMFC的长期预测结果相融合。基于2种工况下5个单体电池的数据验证,短期预测结果表明TCN具有高预测精度,长期预测结果表明融合过程降低了PEMFC单体间老化程度不均衡的影响,提高电堆整体寿命预测的稳定性。 展开更多
关键词 质子交换膜燃料电池 剩余使用寿命 时序卷积网络 联合迭代 融合权重
原文传递
基于CBAM-STCN的齿轮箱故障智能诊断方法
8
作者 万志国 王治国 +1 位作者 赵伟 窦益华 《科学技术与工程》 北大核心 2025年第9期3760-3768,共9页
针对齿轮箱在多种工况下故障特征存在差异,故障诊断易受噪声干扰,导致故障诊断模型泛化性差和识别准确率低的问题,提出一种端到端的具有混合注意力机制和软阈值化特点的时间卷积神经网络(convolutional block attention module-sparse t... 针对齿轮箱在多种工况下故障特征存在差异,故障诊断易受噪声干扰,导致故障诊断模型泛化性差和识别准确率低的问题,提出一种端到端的具有混合注意力机制和软阈值化特点的时间卷积神经网络(convolutional block attention module-sparse temporal convolutional network with soft thresholding,CBAM-STCN)齿轮箱故障诊断模型识别分类方法。首先,利用希尔伯特变换将齿轮故障振动信号转换为包络谱信号;然后,将其输入CBAM-STCN故障诊断模型中;该模型嵌入的混合注意力机制模块(convolutional block attention module,CBAM),能够自适应学习通道和空间注意力的权重,提取与故障特征相关的敏感信息;嵌入的软阈值函数能够最小化模型输出和原输入之间的差异;最后,利用所提出的方法对两种工况、不同类型的齿轮故障进行识别分类。结果表明:CBAM-STCN故障诊断模型对齿轮故障智能诊断的平均准确率为98.95%。该方法对于齿轮箱故障的智能诊断具有一定的参考价值。 展开更多
关键词 齿轮箱 故障智能诊断 混合注意力机制 软阈值化 时间卷积神经网络
在线阅读 下载PDF
基于CBDAE和TCN-Transformer的工业传感器时间序列预测
9
作者 许涛 南新元 +1 位作者 蔡鑫 赵濮 《南京信息工程大学学报》 北大核心 2025年第4期455-466,共12页
在真实的工业物联网环境中,传感器信号常受外界噪声干扰,难以获取纯净数据,这影响了基于数据驱动的时间序列预测任务的准确性.为此,基于改进的对比盲去噪自编码器(Contrast Blind Denoising AutoEncoder,CBDAE)和TCN-Transformer网络,... 在真实的工业物联网环境中,传感器信号常受外界噪声干扰,难以获取纯净数据,这影响了基于数据驱动的时间序列预测任务的准确性.为此,基于改进的对比盲去噪自编码器(Contrast Blind Denoising AutoEncoder,CBDAE)和TCN-Transformer网络,本文提出一种新型时间序列预测框架,称为MoCo-CBDAE-TCN-Transformer.该框架通过引入额外的动量编码器、动态队列和信息噪声对比估计正则化,增强了对时间序列数据动态特征的捕捉能力,并有效利用历史负样本信息.在无需噪声先验知识和传感器纯净数据的前提下,通过捕捉和对比时间相关性和噪声特征,实现传感器数据的盲去噪.去噪后的数据通过TCN-Transformer网络进行时间序列预测.TCN-Transformer网络结合残差连接和膨胀卷积的优势以及Transformer的注意力机制,显著提高了预测的准确性和效率.最后,在公开的四缸过程数据集上进行仿真验证,实验结果表明,与传统的去噪方法和时间序列预测模型相比,本文设计的模型能够获得更好的去噪效果和更高的预测精度,其实时处理能力适合部署在实际的工业环境中,为工业物联网中的数据处理和分析提供了一种有效的技术方案. 展开更多
关键词 去噪自编码器 动量编码器 动态队列 信息噪声对比估计 时间卷积网络 TRANSFORMER
在线阅读 下载PDF
基于改进GRU-TCN的磨煤机故障诊断算法 被引量:1
10
作者 马记 许伟强 +3 位作者 王荣昌 徐良友 陈世彪 胡勇 《计算机测量与控制》 2025年第4期17-23,122,共8页
磨煤机系统的监测与诊断对电厂的安全运行至关重要;由于真实故障数据的稀缺性以及故障与正常数据之间的不平衡,传统数据驱动的故障诊断方法在故障识别上表现不佳,有时甚至会产生误判;为了高效地识别磨煤机在不同工况下的典型故障,设计... 磨煤机系统的监测与诊断对电厂的安全运行至关重要;由于真实故障数据的稀缺性以及故障与正常数据之间的不平衡,传统数据驱动的故障诊断方法在故障识别上表现不佳,有时甚至会产生误判;为了高效地识别磨煤机在不同工况下的典型故障,设计了一种结合了卷积块注意力模块的GRU-TCN融合算法,用于建立磨的故障识别模型,新算法不仅能提升分类准确性,还能实现故障的提前预警;首先,通过调整磨煤机故障生成模型的关键参数,模拟断煤、堵煤和自燃3种典型故障,获取大量不同工况下的故障样本数据;然后,采用新分类算法建立基于典型样本的故障预警模型,旨在提高故障识别的准确性,在故障初期提醒操作人员进行干预,从而避免磨煤机故障进一步扩大。 展开更多
关键词 磨煤机故障诊断 典型故障样本 注意力机制 门控循环单元(GRU) 时间卷积网络(tcn)
在线阅读 下载PDF
基于TCN-LSTM模型的页岩气产量预测
11
作者 史峥峥 李道伦 +1 位作者 付宁 张康 《合肥工业大学学报(自然科学版)》 北大核心 2025年第9期1259-1264,1275,共7页
准确预测页岩气产量有助于提前规划生产计划、优化生产方案。现有研究在进行产量预测时,往往需要长时间的生产数据或大量特征数据,当生产时间较短或特征数据较少时,难以准确预测产量。为此,文章提出一种具有注意力机制的时间卷积网络-... 准确预测页岩气产量有助于提前规划生产计划、优化生产方案。现有研究在进行产量预测时,往往需要长时间的生产数据或大量特征数据,当生产时间较短或特征数据较少时,难以准确预测产量。为此,文章提出一种具有注意力机制的时间卷积网络-长短期记忆网络(temporal convolutional network-long short-term memory network,TCN-LSTM)模型。该模型使用3口井生产数据联合训练,其中TCN和LSTM模块分别提取局部和全局特征,然后用全连接网络融合;并使用注意力机制聚焦关键信息,从已有井生产数据中学习流动规律,提高了对初期数据匮乏的新井的预测精度。结果表明,多井联合预测模型在精度和趋势预测方面均优于单井预测模型,基于平均绝对误差(mean absolute error,MAE)评估指标的预测精度提高了约4倍,并且减少了对长周期数据和多特征的依赖,在油藏开发中具有重要意义。 展开更多
关键词 时间卷积网络(tcn) 长短期记忆网络(LSTM) 注意力机制 产量预测 多井
在线阅读 下载PDF
基于序列成分重组与时序自注意力机制改进TCN-BiLSTM的短期电力负荷预测
12
作者 易雅雯 娄素华 《电力系统及其自动化学报》 北大核心 2025年第4期78-87,共10页
针对区域级电力负荷预测精度较低的问题,提出一种基于序列成分重组与时序自注意力机制改进时间卷积网络-双向长短期记忆网络(TCN-BiLSTM)的短期负荷预测方法。首先,通过中心频率法确定最佳初始分解数目,进而采用变分模态分解算法将原始... 针对区域级电力负荷预测精度较低的问题,提出一种基于序列成分重组与时序自注意力机制改进时间卷积网络-双向长短期记忆网络(TCN-BiLSTM)的短期负荷预测方法。首先,通过中心频率法确定最佳初始分解数目,进而采用变分模态分解算法将原始负荷序列分解为多个不同频率的成分序列;其次,基于各成分序列的样本熵对多个成分序列进行K均值聚类,以获得最佳聚类数量的重组负荷序列分量;接着,将各重组分量输入所提出的负荷预测模型,获得各重组分量预测结果;最终,线性叠加各重组成分序列预测结果以获得最终负荷预测结果。算例分析表明,该方法与其他相关对比模型相比,预测均方根误差降低46.37%、模型拟合效果平均提升3.24%,表明该方法负荷预测精度高、模型拟合效果好,适用于区域级电力负荷预测。 展开更多
关键词 负荷预测 变分模态分解 样本熵 K均值聚类 时序自注意力机制 时间卷积网络 双向长短期记忆网络
在线阅读 下载PDF
基于TCN模型的软件系统老化预测框架 被引量:1
13
作者 王艳超 姚江毅 +1 位作者 李雄伟 刘林云 《计算机应用与软件》 北大核心 2025年第5期25-29,61,共6页
随着软件规模的扩大和逻辑复杂度的提高,软件老化特征表现更加隐蔽,老化参数时序信号更加复杂,针对时序预测法对序列平稳性要求高和BP神经网络收敛速度慢、易陷入局部极值的问题,提出以时域卷积网络(TCN)模型为基础的软件老化预测框架... 随着软件规模的扩大和逻辑复杂度的提高,软件老化特征表现更加隐蔽,老化参数时序信号更加复杂,针对时序预测法对序列平稳性要求高和BP神经网络收敛速度慢、易陷入局部极值的问题,提出以时域卷积网络(TCN)模型为基础的软件老化预测框架。采集可用内存数据作为框架的输入,经TCN模型进行预测,通过检查预测输出的内存与实际内存的平均误差评价模型的效率。与ARIMA模型和RNN(LSTM)模型预测结果进行对比表明,TCN模型对时间序列平稳性要求低、适应性更强,不存在梯度爆炸或消失的问题,对采集的老化数据预测效果最好。 展开更多
关键词 软件老化 时域卷积网络 老化预测框架 预测误差 差分自回归滑动平均模型 长短时记忆模型
在线阅读 下载PDF
融合多头注意力TCN网络与触地预分类模块的六足机器人步态识别模型
14
作者 陈逸阳 费世杰 +2 位作者 毕晓宇 吴狄 潘昱杉 《小型微型计算机系统》 北大核心 2025年第10期2345-2350,共6页
为提高六足机器人在多样地形下的环境感知能力,提出了一种融合了多头注意力机制的TCN网络和触地预分类模块的六足机器人步态识别网络模型,使用多头注意力机制的TCN网络有效地捕获足端力时间序列中的重要特征,并将其与六足机器人的步态... 为提高六足机器人在多样地形下的环境感知能力,提出了一种融合了多头注意力机制的TCN网络和触地预分类模块的六足机器人步态识别网络模型,使用多头注意力机制的TCN网络有效地捕获足端力时间序列中的重要特征,并将其与六足机器人的步态进行关联,通过接触预分类网络可以预先提取接触力信号初步特征,多头注意力机制在步态识别中能够帮助模型更好地关注关键信息、建模长期依赖关系、适应不同步态特征以及处理不同速度和地形条件下的步态变化,触地预分类通道可以与多头注意力的TCN网络融合预测,从而提高步态识别的准确性和鲁棒性.实验表明该模型具有良好的泛化性能,整体准确率比多头注意力TCN网络提升了0.9%,相比GRU网络和Transformer网络提升了1.6%和0.4%,并且拥有更高的抗噪声能力. 展开更多
关键词 步态识别 tcn网络 多头注意力机制 融合神经网络 六足机器人
在线阅读 下载PDF
基于GATv2-TCN联合优化的WSN数据流异常检测算法
15
作者 苏宇杭 马俊 +3 位作者 樊津瑜 陈博行 周家城 尹博然 《计算机工程与科学》 北大核心 2025年第5期843-850,共8页
在传感器网络中,通过对数据流进行异常检测能够及时发现故障并报警,以确保系统安全可靠运行。然而WSN数据流异常检测仍面临2大难题:1)不同时间序列间复杂的相关性有待深入挖掘;2)在正常/异常样本分布极度不平衡的数据集中异常样本不易... 在传感器网络中,通过对数据流进行异常检测能够及时发现故障并报警,以确保系统安全可靠运行。然而WSN数据流异常检测仍面临2大难题:1)不同时间序列间复杂的相关性有待深入挖掘;2)在正常/异常样本分布极度不平衡的数据集中异常样本不易检出。提出一种基于GATv2-TCN的异常检测算法。采用GATv2和TCN来建模特征和时间维度的复杂关系,并优化预测和重构模块。采用4个数据集对所提算法进行性能验证与分析。实验结果表明,所提算法获得了较高的F 1和AUC,特别是在不平衡的数据集中各项指标均高于基线模型,具有较好的WSN数据流异常检测效果。 展开更多
关键词 无线传感器网络 数据流异常检测 GATv2 tcn
在线阅读 下载PDF
基于混合注意力的TCN-Transformer行星齿轮箱故障诊断方法
16
作者 陈志刚 陶子纯 +1 位作者 王衍学 魏梓书 《振动与冲击》 北大核心 2025年第20期348-356,共9页
针对现有智能故障诊断模型在处理多通道信号时面临的泛化能力不足、依赖人工特征设计以及跨通道关联建模薄弱等问题,提出一种基于时间卷积网络(temporal convolutional network,TCN)-Transformer的端到端多通道信号自适应诊断模型。该... 针对现有智能故障诊断模型在处理多通道信号时面临的泛化能力不足、依赖人工特征设计以及跨通道关联建模薄弱等问题,提出一种基于时间卷积网络(temporal convolutional network,TCN)-Transformer的端到端多通道信号自适应诊断模型。该模型通过TCN与Transformer的级联架构,构建局部特征提取与全局依赖建模的协同学习机制:TCN模块利用因果卷积逐层捕获信号局部时频模式,其残差连接设计有效缓解深层网络的信息衰减;特征重组阶段提出单向补丁的序列标记方法,将多通道时序信号切割为具有位置编码的高维片段序列,避免传统分块策略的边界失真问题。在Transformer编码层中,创新性融合通道注意力与多头自注意力机制,形成同时关注通道特征和位置关系的混合注意力模块,增强不同传感器信号间的互补性表征。试验表明,该模型在行星齿轮箱多传感器诊断任务中达到98%的识别准确率。 展开更多
关键词 行星齿轮箱故障诊断 多通道信号 注意力机制 时间卷积网络(tcn) TRANSFORMER
在线阅读 下载PDF
基于GWO优化TCN-GRU模型的区块链电力调控平台负荷预测研究
17
作者 徐鹤勇 施佳锋 +2 位作者 刘一峰 于晓昆 李骞 《国外电子测量技术》 2025年第1期148-154,共7页
为提高区块链环境下电力调控平台负荷预测精度,提出了一种改进TCN-GRU模型的预测方法。首先,通过串联时间卷积网络(Temporal Convolutional Network,TCN)和门控循环单元(Gated Recurrent Unit,GRU)网络构建TCN-GRU预测模型;然后,采用灰... 为提高区块链环境下电力调控平台负荷预测精度,提出了一种改进TCN-GRU模型的预测方法。首先,通过串联时间卷积网络(Temporal Convolutional Network,TCN)和门控循环单元(Gated Recurrent Unit,GRU)网络构建TCN-GRU预测模型;然后,采用灰狼优化算法(Grey Wolf Optimizer,GWO)对TCN-GRU预测模型卷积核大小、隐藏层数、节点数进行优化改进;最后,将改进的TCN-GRU预测模型用于电力调控平台负荷预测,实现了区块链环境下的电力调控平台预测。结果表明,该方法对区块链电力调控平台负荷预测的平均绝对百分误差和均方根误差分别为1.57%和23.44 MW;相较于标准TCN-GRU、CNN、BiLSTM等预测模型,该方法具有更优异的电力调控平台负荷预测性能。由此得出,所提预测方法可行,可为区块链环境下的电力负荷调控提供参考。 展开更多
关键词 电力调控平台 负荷预测 时间卷积网络 门控循环单元网络 灰狼优化算法
原文传递
基于多头注意力机制和TCN-BiLSTM的IGBT剩余寿命预测方法
18
作者 田源 高树国 +2 位作者 邢超 朱瑞敏 姜士哲 《电气工程学报》 北大核心 2025年第3期69-77,共9页
针对电力电子设备精准运维和半导体功率器件的态势感知需求,提出一种基于多头注意力机制(Multi-head attention mechanism,MA)和时域卷积网络(Temporal convolutional network,TCN)-双向长短时记忆(Bidirectional long short-term memor... 针对电力电子设备精准运维和半导体功率器件的态势感知需求,提出一种基于多头注意力机制(Multi-head attention mechanism,MA)和时域卷积网络(Temporal convolutional network,TCN)-双向长短时记忆(Bidirectional long short-term memory,BiLSTM)网络融合的IGBT剩余寿命预测方法。首先,基于IGBT封装模块老化机理的深入分析,设计并搭建加速老化试验平台,通过控制功率循环过程中的结温波动,施加电流加速IGBT模块的老化进程,采用高精度数据采集系统获取特征参量集-射极饱和压降Vce(sat)老化数据。其次,以TCN模型为基础,引入MA和BiLSTM神经网络构建预测模型,对IGBT劣化特征序列进行预测验证。结果表明,在相同条件下,所提模型相对于传统时序预测模型,在不显著增加模型复杂度和计算负担的情况下,具有更高的精度,充分验证了该模型在工程实践中应用于IGBT剩余寿命在线预测的可行性与高效性。 展开更多
关键词 IGBT 时域卷积网络 双向长短时记忆网络 多头注意力机制 老化预测
在线阅读 下载PDF
基于RF-TCN-SSA-Informer模型的飞机状态预测方法
19
作者 樊智勇 张瑾 刘涛 《科学技术与工程》 北大核心 2025年第28期12139-12147,共9页
针对飞机状态数据向地面传输过程中出现传输异常情况而导致无法对飞机状态进行实时监控的问题,提出一种基于随机森林(random forest,RF)、时域卷积网络(temporal convolutional network,TCN)、麻雀搜索算法(sparrow search algorithm,S... 针对飞机状态数据向地面传输过程中出现传输异常情况而导致无法对飞机状态进行实时监控的问题,提出一种基于随机森林(random forest,RF)、时域卷积网络(temporal convolutional network,TCN)、麻雀搜索算法(sparrow search algorithm,SSA)、Informer模型的飞行状态预测方法。利用随机森林算法对真实飞行数据进行特征重要性分析,将筛选后的参数作为预测的输入变量;引入TCN弥补Informer模型在处理复杂飞行数据序列时信息丢失或信息模糊的问题,TCN通过其卷积结构能够有效捕捉局部时间特征和短期依赖,将TCN与Informer的特征矩阵进行融合,能够同时捕捉飞行状态序列中的局部与全局信息,从而提升预测的准确性和可靠性;并使用麻雀搜索算法对模型超参数进行优化,以获得更好的预测性能。以飞行俯仰角、滚转角、偏航率为预测对象进行实验验证,通过与其他模型进行对比分析。实验结果表明:该模型在单步预测与多步预测任务中均具有良好的预测性能,可为飞机状态预测提供参考。 展开更多
关键词 飞机状态预测 随机森林(RF) 时域卷积网络(tcn) 麻雀搜索算法(SSA) INFORMER 快速存取记录器(QAR)数据
在线阅读 下载PDF
基于持续学习的SGMD-TSNE-TCN^(re)风电功率长期预测
20
作者 杨晓华 代盛国 +1 位作者 李家浩 李佳 《节能》 2025年第1期21-25,共5页
针对风电功率的预测,提出一种基于持续学习的时间卷积网络(TCN^(re))算法,并结合辛几何模态分解(SGMD)、t-分布及随机近邻嵌入(TSNE)数据处理方法,构建预测模型SGMD-TSNE-TCN^(re)。针对持续学习方法的有效性验证,搭建基于参数冻结的持... 针对风电功率的预测,提出一种基于持续学习的时间卷积网络(TCN^(re))算法,并结合辛几何模态分解(SGMD)、t-分布及随机近邻嵌入(TSNE)数据处理方法,构建预测模型SGMD-TSNE-TCN^(re)。针对持续学习方法的有效性验证,搭建基于参数冻结的持续学习模型(TCN^(re)),并与TCN模型进行对比分析。在此基础上,考虑风电机组发电功率受多种复杂因素的影响,引入SGMD模型,以降低环境因素带来的非平稳性,并利用TSNE降低模型输入的维度;采用某风电场一年的实测数据进行验证,并与其他常见的预测模型进行对比。结果表明,SGMD-TSNE-TCN^(re)模型有效并且具有更高的精确度。 展开更多
关键词 风力发电功率预测 持续学习模型 时序卷积神经网络 模态分解 特征降维TSNE
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部