期刊文献+
共找到1,128篇文章
< 1 2 57 >
每页显示 20 50 100
An Integrated Approach to Condition-Based Maintenance Decision-Making of Planetary Gearboxes: Combining Temporal Convolutional Network Auto Encoders with Wiener Process
1
作者 Bo Zhu Enzhi Dong +3 位作者 Zhonghua Cheng Xianbiao Zhan Kexin Jiang Rongcai Wang 《Computers, Materials & Continua》 2026年第1期661-686,共26页
With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance s... With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes. 展开更多
关键词 temporal convolutional network autoencoder full lifecycle degradation experiment nonlinear Wiener process condition-based maintenance decision-making fault monitoring
在线阅读 下载PDF
Deep Learning Framework for Predicting Essential Proteins with Temporal Convolutional Networks
2
作者 LU Pengli YANG Peishi LIAO Yonggang 《Journal of Shanghai Jiaotong university(Science)》 2025年第3期510-520,共11页
Essential proteins are an indispensable part of cells and play an extremely significant role in genetic disease diagnosis and drug development.Therefore,the prediction of essential proteins has received extensive atte... Essential proteins are an indispensable part of cells and play an extremely significant role in genetic disease diagnosis and drug development.Therefore,the prediction of essential proteins has received extensive attention from researchers.Many centrality methods and machine learning algorithms have been proposed to predict essential proteins.Nevertheless,the topological characteristics learned by the centrality method are not comprehensive enough,resulting in low accuracy.In addition,machine learning algorithms need sufficient prior knowledge to select features,and the ability to solve imbalanced classification problems needs to be further strengthened.These two factors greatly affect the performance of predicting essential proteins.In this paper,we propose a deep learning framework based on temporal convolutional networks to predict essential proteins by integrating gene expression data and protein-protein interaction(PPI)network.We make use of the method of network embedding to automatically learn more abundant features of proteins in the PPI network.For gene expression data,we treat it as sequence data,and use temporal convolutional networks to extract sequence features.Finally,the two types of features are integrated and put into the multi-layer neural network to complete the final classification task.The performance of our method is evaluated by comparing with seven centrality methods,six machine learning algorithms,and two deep learning models.The results of the experiment show that our method is more effective than the comparison methods for predicting essential proteins. 展开更多
关键词 temporal convolutional networks node2vec protein-protein interaction(PPI)network essential proteins gene expression data
原文传递
一种融合MSC和时空双重注意力的TCN航迹预测方法
3
作者 焦卫东 杨蓓 《北京航空航天大学学报》 北大核心 2026年第1期15-27,共13页
针对现有航迹预测模型难以有效提取多尺度时空特征,导致预测精度受限的问题,提出一种融合多尺度卷积(MSC)网络和时空双重注意力(STDA)的时间卷积网络(TCN)航迹预测方法MDAT-Net。MDAT-Net模型包含MSAT、MTAT航迹预测模块及投票模块。在... 针对现有航迹预测模型难以有效提取多尺度时空特征,导致预测精度受限的问题,提出一种融合多尺度卷积(MSC)网络和时空双重注意力(STDA)的时间卷积网络(TCN)航迹预测方法MDAT-Net。MDAT-Net模型包含MSAT、MTAT航迹预测模块及投票模块。在航迹预测模块中,为优化传统时间卷积网络中卷积核大小固定的问题,搭建由不同尺度卷积核组成的多尺度卷积架构,以更好地提取不同尺度的时空特征;为动态挖掘隐藏特征与目标特征之间的潜在相关性,引入空间注意力机制及时间注意力机制来自适应地关注重要信息,跳过次要信息。在投票模块中,决定各维度使用合适模块进行预测,以融合MSAT、MTAT航迹预测模块的优点,实现高精度的航迹预测。实验结果表明:MDAT-Net模型的均方根误差(RMSE)的改进率最高可达83.33%,平均绝对误差(MAE)的改进率最高可达85.85%,具有较高的准确性和鲁棒性。 展开更多
关键词 航迹预测 多尺度卷积 时间卷积网络 注意力机制 时空特征
原文传递
Spectrum Sensing via Temporal Convolutional Network 被引量:8
4
作者 Tao Ni Xiaojin Ding +3 位作者 Yunfeng Wang Jun Shen Lifeng Jiang Gengxin Zhang 《China Communications》 SCIE CSCD 2021年第9期37-47,共11页
In this paper,we investigate a spectrumsensing system in the presence of a satellite,where the satellite works as a sensing node.Considering the conventional energy detection method is sensitive to the noise uncertain... In this paper,we investigate a spectrumsensing system in the presence of a satellite,where the satellite works as a sensing node.Considering the conventional energy detection method is sensitive to the noise uncertainty,thus,a temporal convolutional network(TCN)based spectrum-sensing method is designed to eliminate the effect of the noise uncertainty and improve the performance of spectrum sensing,relying on the offline training and the online detection stages.Specifically,in the offline training stage,spectrum data captured by the satellite is sent to the TCN deployed on the gateway for training purpose.Moreover,in the online detection stage,the well trained TCN is utilized to perform real-time spectrum sensing,which can upgrade spectrum-sensing performance by exploiting the temporal features.Additionally,simulation results demonstrate that the proposed method achieves a higher probability of detection than that of the conventional energy detection(ED),the convolutional neural network(CNN),and deep neural network(DNN).Furthermore,the proposed method outperforms the CNN and the DNN in terms of a lower computational complexity. 展开更多
关键词 cognitive radio spectrum sensing deep learning temporal convolutional network satellite communication
在线阅读 下载PDF
Occluded Gait Emotion Recognition Based on Multi-Scale Suppression Graph Convolutional Network
5
作者 Yuxiang Zou Ning He +2 位作者 Jiwu Sun Xunrui Huang Wenhua Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期1255-1276,共22页
In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accurac... In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods. 展开更多
关键词 KNN interpolation multi-scale temporal convolution suppression graph convolutional network gait emotion recognition human skeleton
在线阅读 下载PDF
A production prediction method of single well in water flooding oilfield based on integrated temporal convolutional network model 被引量:4
6
作者 ZHANG Lei DOU Hongen +6 位作者 WANG Tianzhi WANG Hongliang PENG Yi ZHANG Jifeng LIU Zongshang MI Lan JIANG Liwei 《Petroleum Exploration and Development》 CSCD 2022年第5期1150-1160,共11页
Since the oil production of single well in water flooding reservoir varies greatly and is hard to predict, an oil production prediction method of single well based on temporal convolutional network(TCN) is proposed an... Since the oil production of single well in water flooding reservoir varies greatly and is hard to predict, an oil production prediction method of single well based on temporal convolutional network(TCN) is proposed and verified. This method is started from data processing, the correspondence between water injectors and oil producers is determined according to the influence radius of the water injectors, the influence degree of a water injector on an oil producer in the month concerned is added as a model feature, and a Random Forest(RF) model is built to fill the dynamic data of water flooding. The single well history is divided into 4 stages according to its water cut, that is, low water cut, middle water cut, high water cut and extra-high water cut stages. In each stage, a TCN based prediction model is established, hyperparameters of the model are optimized by the Sparrow Search Algorithm(SSA). Finally, the models of the 4 stages are integrated into one whole-life model of the well for production prediction. The application of this method in Daqing Oilfield, NE China shows that:(1) Compared with conventional data processing methods, the data obtained by this processing method are more close to the actual production, and the data set obtained is more authentic and complete.(2) The TCN model has higher prediction accuracy than other 11 models such as Long Short Term Memory(LSTM).(3) Compared with the conventional full-life-cycle models, the model of integrated stages can significantly reduce the error of production prediction. 展开更多
关键词 single well production prediction temporal convolutional network time series prediction water flooding reservoir
在线阅读 下载PDF
Using BlazePose on Spatial Temporal Graph Convolutional Networks for Action Recognition 被引量:2
7
作者 Motasem S.Alsawadi El-Sayed M.El-kenawy Miguel Rio 《Computers, Materials & Continua》 SCIE EI 2023年第1期19-36,共18页
The ever-growing available visual data(i.e.,uploaded videos and pictures by internet users)has attracted the research community’s attention in the computer vision field.Therefore,finding efficient solutions to extrac... The ever-growing available visual data(i.e.,uploaded videos and pictures by internet users)has attracted the research community’s attention in the computer vision field.Therefore,finding efficient solutions to extract knowledge from these sources is imperative.Recently,the BlazePose system has been released for skeleton extraction from images oriented to mobile devices.With this skeleton graph representation in place,a Spatial-Temporal Graph Convolutional Network can be implemented to predict the action.We hypothesize that just by changing the skeleton input data for a different set of joints that offers more information about the action of interest,it is possible to increase the performance of the Spatial-Temporal Graph Convolutional Network for HAR tasks.Hence,in this study,we present the first implementation of the BlazePose skeleton topology upon this architecture for action recognition.Moreover,we propose the Enhanced-BlazePose topology that can achieve better results than its predecessor.Additionally,we propose different skeleton detection thresholds that can improve the accuracy performance even further.We reached a top-1 accuracy performance of 40.1%on the Kinetics dataset.For the NTU-RGB+D dataset,we achieved 87.59%and 92.1%accuracy for Cross-Subject and Cross-View evaluation criteria,respectively. 展开更多
关键词 Action recognition BlazePose graph neural network OpenPose SKELETON spatial temporal graph convolution network
在线阅读 下载PDF
基于TCN-MDN和概率潮流的电力系统灵活性量化分析方法
8
作者 高天宇 徐天奇 李琰 《现代电子技术》 北大核心 2026年第2期133-141,共9页
高比例可再生能源的接入使电力系统的潮流具有波动性和随机性,也为电力系统的灵活运行带来了挑战。为了应对挑战,首要策略是建立一种灵活性量化和分析方法,用来表征灵活性资源供需平衡与系统运行之间的关系,为此,提出一种基于神经网络... 高比例可再生能源的接入使电力系统的潮流具有波动性和随机性,也为电力系统的灵活运行带来了挑战。为了应对挑战,首要策略是建立一种灵活性量化和分析方法,用来表征灵活性资源供需平衡与系统运行之间的关系,为此,提出一种基于神经网络和概率潮流的电力系统灵活性量化和分析方法。首先,构建神经网络对可再生能源的出力进行多时间尺度的概率预测;其次,引入考虑静态特性的潮流模型,通过系统频率来反映电力系统有功灵活性的供需平衡;然后,改进半不变量法,结合Gram-Charlier级数展开得到系统频率和线路潮流的概率密度函数,以此量化电力系统灵活性;最后,基于修改后的IEEE-30节点系统,通过与蒙特卡洛法对比来验证所提方法的准确性。实验结果表明,所提方法能够在概率框架下量化电力系统的灵活性,具有较高的运算精度和较快的速度。 展开更多
关键词 时序混合密度网络 tcn 概率预测 线性潮流模型 半不变量法 灵活性量化 Gram-Charlier级数
在线阅读 下载PDF
A Lightweight Temporal Convolutional Network for Human Motion Prediction 被引量:1
9
作者 WANG You QIAO Bing 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第S01期150-157,共8页
A lightweight multi-layer residual temporal convolutional network model(RTCN)is proposed to target the highly complex kinematics and temporal correlation of human motion.RTCN uses 1-D convolution to efficiently obtain... A lightweight multi-layer residual temporal convolutional network model(RTCN)is proposed to target the highly complex kinematics and temporal correlation of human motion.RTCN uses 1-D convolution to efficiently obtain the spatial structure information of human motion and extract the correlation in the time series of human motion.The residual structure is applied to the proposed network model to alleviate the problem of gradient disappearance in the deep network.Experiments on the Human 3.6M dataset demonstrate that the proposed method effectively reduces the errors of motion prediction compared with previous methods,especially of long-term prediction. 展开更多
关键词 human motion prediction temporal convolutional network short-term prediction long-term prediction deep neural network
在线阅读 下载PDF
Training-based symbol detection with temporal convolutional neural network in single-polarized optical communication system 被引量:1
10
作者 Yingzhe Luo Jianhao Hu 《Digital Communications and Networks》 SCIE CSCD 2023年第4期920-930,共11页
In order to reduce the physical impairment caused by signal distortion,in this paper,we investigate symbol detection with Deep Learning(DL)methods to improve bit-error performance in the optical communication system.M... In order to reduce the physical impairment caused by signal distortion,in this paper,we investigate symbol detection with Deep Learning(DL)methods to improve bit-error performance in the optical communication system.Many DL-based methods have been applied to such systems to improve bit-error performance.Referring to the speech-to-text method of automatic speech recognition,this paper proposes a signal-to-symbol method based on DL and designs a receiver for symbol detection on single-polarized optical communications modes.To realize this detection method,we propose a non-causal temporal convolutional network-assisted receiver to detect symbols directly from the baseband signal,which specifically integrates most modules of the receiver.Meanwhile,we adopt three training approaches for different signal-to-noise ratios.We also apply a parametric rectified linear unit to enhance the noise robustness of the proposed network.According to the simulation experiments,the biterror-rate performance of the proposed method is close to or even superior to that of the conventional receiver and better than the recurrent neural network-based receiver. 展开更多
关键词 Deep learning Optical communications Symbol detection temporal convolutional network
在线阅读 下载PDF
TSCND:Temporal Subsequence-Based Convolutional Network with Difference for Time Series Forecasting
11
作者 Haoran Huang Weiting Chen Zheming Fan 《Computers, Materials & Continua》 SCIE EI 2024年第3期3665-3681,共17页
Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in t... Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in time series forecasting. However, two problems weaken the performance of TCNs. One is that in dilated casual convolution, causal convolution leads to the receptive fields of outputs being concentrated in the earlier part of the input sequence, whereas the recent input information will be severely lost. The other is that the distribution shift problem in time series has not been adequately solved. To address the first problem, we propose a subsequence-based dilated convolution method (SDC). By using multiple convolutional filters to convolve elements of neighboring subsequences, the method extracts temporal features from a growing receptive field via a growing subsequence rather than a single element. Ultimately, the receptive field of each output element can cover the whole input sequence. To address the second problem, we propose a difference and compensation method (DCM). The method reduces the discrepancies between and within the input sequences by difference operations and then compensates the outputs for the information lost due to difference operations. Based on SDC and DCM, we further construct a temporal subsequence-based convolutional network with difference (TSCND) for time series forecasting. The experimental results show that TSCND can reduce prediction mean squared error by 7.3% and save runtime, compared with state-of-the-art models and vanilla TCN. 展开更多
关键词 DIFFERENCE data prediction time series temporal convolutional network dilated convolution
在线阅读 下载PDF
Blood Glucose Prediction Model Based on Prophet and Temporal Convolutional Networks
12
作者 Rong Xiao Jing Chen +1 位作者 Lei Wang Wei Liu 《Journal of Beijing Institute of Technology》 EI CAS 2022年第4期413-421,共9页
Diabetes,as a chronic disease,is caused by the increase of blood glucose concentration due to pancreatic insulin production failure or insulin resistance in the body.Predicting the change trend of blood glucose level ... Diabetes,as a chronic disease,is caused by the increase of blood glucose concentration due to pancreatic insulin production failure or insulin resistance in the body.Predicting the change trend of blood glucose level in advance brings convenience for prompt treatment,so as to maintain blood glucose level within the recommended levels.Based on the flash glucose monitoring data,we propose a method that combines prophet with temporal convolutional networks(TCN)to achieve good experimental results in predicting patient blood glucose.The proposed model achieves high accuracy in the long-term and short-term prediction of blood glucose,and outperforms other models on the adaptability to non-stationary and detection capability of periodic changes. 展开更多
关键词 blood glucose temporal convolutional networks(tcn) seasonal decomposition
暂未订购
Aeroengine thrust estimation and embedded verification based on improved temporal convolutional network
13
作者 Wanzhi MENG Zhuorui PAN +2 位作者 Sixin WEN Pan QIN Ximing SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期106-117,共12页
Thrust estimation is a significant part of aeroengine thrust control systems.The traditional estimation methods are either low in accuracy or large in computation.To further improve the estimation effect,a thrust esti... Thrust estimation is a significant part of aeroengine thrust control systems.The traditional estimation methods are either low in accuracy or large in computation.To further improve the estimation effect,a thrust estimator based on Multi-layer Residual Temporal Convolutional Network(M-RTCN)is proposed.To solve the problem of dead Rectified Linear Unit(ReLU),the proposed method uses the Gaussian Error Linear Unit(GELU)activation function instead of ReLU in residual block.Then the overall architecture of the multi-layer convolutional network is adjusted by using residual connections,so that the network thrust estimation effect and memory consumption are further improved.Moreover,the comparison with seven other methods shows that the proposed method has the advantages of higher estimation accuracy and faster convergence speed.Furthermore,six neural network models are deployed in the embedded controller of the micro-turbojet engine.The Hardware-in-the-Loop(HIL)testing results demonstrate the superiority of M-RTCN in terms of estimation accuracy,memory occupation and running time.Finally,an ignition verification is conducted to confirm the expected thrust estimation and real-time performance. 展开更多
关键词 Thrust estimation temporal convolutional network Embedded deployment Hardware-in-the-loop testing Ignition verification
原文传递
Temporal Convolutional Network for Speech Bandwidth Extension
14
作者 Chundong Xu Cheng Zhu +1 位作者 Xianpeng Ling Dongwen Ying 《China Communications》 SCIE CSCD 2023年第11期142-150,共9页
In the field of speech bandwidth exten-sion,it is difficult to achieve high speech quality based on the shallow statistical model method.Although the application of deep learning has greatly improved the extended spee... In the field of speech bandwidth exten-sion,it is difficult to achieve high speech quality based on the shallow statistical model method.Although the application of deep learning has greatly improved the extended speech quality,the high model complex-ity makes it infeasible to run on the client.In order to tackle these issues,this paper proposes an end-to-end speech bandwidth extension method based on a temporal convolutional neural network,which greatly reduces the complexity of the model.In addition,a new time-frequency loss function is designed to en-able narrowband speech to acquire a more accurate wideband mapping in the time domain and the fre-quency domain.The experimental results show that the reconstructed wideband speech generated by the proposed method is superior to the traditional heuris-tic rule based approaches and the conventional neu-ral network methods for both subjective and objective evaluation. 展开更多
关键词 speech bandwidth extension temporal convolutional networks time-frequency loss
在线阅读 下载PDF
Local-global dynamic correlations based spatial-temporal convolutional network for traffic flow forecasting
15
作者 ZHANG Hong GONG Lei +2 位作者 ZHAO Tianxin ZHANG Xijun WANG Hongyan 《High Technology Letters》 EI CAS 2024年第4期370-379,共10页
Traffic flow forecasting plays a crucial role and is the key technology to realize dynamic traffic guidance and active traffic control in intelligent traffic systems(ITS).Aiming at the complex local and global spatial... Traffic flow forecasting plays a crucial role and is the key technology to realize dynamic traffic guidance and active traffic control in intelligent traffic systems(ITS).Aiming at the complex local and global spatial-temporal dynamic characteristics of traffic flow,this paper proposes a new traffic flow forecasting model spatial-temporal attention graph neural network(STA-GNN)by combining at-tention mechanism(AM)and spatial-temporal convolutional network.The model learns the hidden dynamic local spatial correlations of the traffic network by combining the dynamic adjacency matrix constructed by the graph learning layer with the graph convolutional network(GCN).The local tem-poral correlations of traffic flow at different scales are extracted by stacking multiple convolutional kernels in temporal convolutional network(TCN).And the global spatial-temporal dependencies of long-time sequences of traffic flow are captured by the spatial-temporal attention mechanism(STAtt),which enhances the global spatial-temporal modeling and the representational ability of model.The experimental results on two datasets,METR-LA and PEMS-BAY,show the proposed STA-GNN model outperforms the common baseline models in forecasting accuracy. 展开更多
关键词 traffic flow forecasting graph convolutional network(GCN) temporal convolu-tional network(tcn) attention mechanism(AM)
在线阅读 下载PDF
基于TCN-LSTM模型的深基坑变形预测研究
16
作者 叶剑锋 《广州建筑》 2026年第1期72-77,共6页
由于深基坑变形发展趋势受复杂地质条件及动态施工环境影响,为保障基坑安全而对深基坑变形开展精准预测,是亟待突破的工程难题。为实现高精度与强鲁棒性的变形预测,该研究提出一种融合时序卷积网络(TCN)与长短期记忆网络(LSTM)的混合深... 由于深基坑变形发展趋势受复杂地质条件及动态施工环境影响,为保障基坑安全而对深基坑变形开展精准预测,是亟待突破的工程难题。为实现高精度与强鲁棒性的变形预测,该研究提出一种融合时序卷积网络(TCN)与长短期记忆网络(LSTM)的混合深度学习模型(TCN-LSTM)。该模型通过TCN中的扩张因果卷积操作提取多尺度时序特征,并利用LSTM的门控机制建模长期依赖与非线性的动态演化过程。TCN与LSTM的跨模态集成有效增强了模型的特征表达与泛化能力。基于广州某医院深基坑工程的实测数据开展对比实验,结果表明:所提出的TCN-LSTM模型在拟合优度(R^(2))、均方误差(MSE)与平均绝对误差(MAE)三项指标上均显著优于传统RNN、LSTM及CNNLSTM模型,其R^(2)分别提升97.43%、80.59%及11.38%,MSE分别降低33.01%、23.66%与10.13%,MAE分别降低57.81%、49.00%与35.46%,同时表现出优异的噪声鲁棒性。该研究为深基坑变形预测提供了一种可靠的解决方案,对工程风险的智能感知与主动防控具有重要理论价值与工程应用前景。 展开更多
关键词 深基坑 变形预测 时间卷积网络(tcn) 长短期记忆神经网络(LSTM) 混合深度学习模型(tcn-LSTM) 鲁棒性
在线阅读 下载PDF
融合残差与VMD-TCN-BiLSTM混合网络的鄱阳湖总氮预测 被引量:1
17
作者 黄学平 辛攀 +3 位作者 吴永明 吴留兴 邓觅 姚忠 《长江科学院院报》 北大核心 2025年第3期59-67,75,共10页
对湖泊水质进行准确、高效的预测,对于保护水资源、维护生态平衡以及促进经济发展等方面都具有重要意义。为此提出了一种基于模态分解、多维特征选择、时间卷积网络(TCN)、自注意力机制、双向长短期神经网络(BiLSTM)和双向门控循环单元(... 对湖泊水质进行准确、高效的预测,对于保护水资源、维护生态平衡以及促进经济发展等方面都具有重要意义。为此提出了一种基于模态分解、多维特征选择、时间卷积网络(TCN)、自注意力机制、双向长短期神经网络(BiLSTM)和双向门控循环单元(BiGRU)的湖泊总氮(TN)组合预测模型。首先,采用变分模态分解将TN原始序列分解成不同频率的本征模态函数(IMF),以降低原始序列的复杂度和非平稳性;随后,通过随机森林算法为每个IMF选择相关性强的特征,将筛选出的特征矩阵输入到添加自注意力机制的TCN-BiLSTM混合网络中进行建模,充分提取数据中隐藏的关键时序信息;最后,为进一步提升模型预测精度,采用BiGRU网络学习残差序列的细节特征,将残差与模型预测结果融合得到最终的预测值。以鄱阳湖都昌监测站的水质数据为例进行试验分析,结果表明本文模型相比于其他模型对TN浓度预测效果提升明显,其平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R^(2))分别为0.03 mg/L、0.049 mg/L、0.992。 展开更多
关键词 水质预测 总氮 变分模态分解 时间卷积网络 集成预测
在线阅读 下载PDF
改进黏菌算法优化TCN−LSTM−MHSA的巷道锚杆(索)应力预测模型 被引量:1
18
作者 齐俊艳 车玉浩 +1 位作者 王磊 袁瑞甫 《工矿自动化》 北大核心 2025年第5期129-139,共11页
锚杆(索)应力的变化过程呈现明显的短期突变与长期时序依赖特征,而传统单一预测模型对长期趋势建模能力有限且对局部突变敏感性不足,往往难以全面捕捉上述复杂特征。针对该问题,提出一种基于改进黏菌算法(ISMA)优化时间卷积网络(TCN)−... 锚杆(索)应力的变化过程呈现明显的短期突变与长期时序依赖特征,而传统单一预测模型对长期趋势建模能力有限且对局部突变敏感性不足,往往难以全面捕捉上述复杂特征。针对该问题,提出一种基于改进黏菌算法(ISMA)优化时间卷积网络(TCN)−长短期记忆网络(LSTM)−多头自注意力机制(MHSA)的锚杆(索)应力预测模型。在煤矿巷道锚杆(索)应力预测问题中,模型训练过程通常涉及超参数调整、学习率选择等复杂优化任务,为提升模型的训练效率与预测精度,提出ISMA,引入邻域搜索与动态步长因子增强局部搜索能力,融合人工蜂群搜索机制提升全局搜索效率,有效增强模型跳出局部最优解的能力。TCN−LSTM−MHSA模型采用TCN提取局部时序特征,利用LSTM学习数据的长期依赖关系,通过MHSA强化对全局时序依赖的建模,从而提高模型对锚杆(索)应力的预测能力。在TCN−LSTM−MHSA模型的训练中利用ISMA对学习率进行迭代寻优,以提高模型的预测精度和速度。实验结果表明:①与黏菌算法(SMA)、遗传算法(GA)、粒子群算法(PSO)、麻雀搜索算法(SSA)相比,ISMA优化策略在多个基准函数测试中表现出更优的收敛速度与寻优能力。②在应力预测实验中,通过消融实验验证了TCN,LSTM,MHSA模块的必要性。③ISMA优化TCN−LSTM−MHSA模型在MAE,RMSE及R 2等指标上均优于BP,GRU等主流预测模型,具有更高的预测精度和稳定性。 展开更多
关键词 锚杆(索)支护 锚杆(索)应力预测 黏菌算法 时间卷积网络 长短期记忆网络 多头自注意力机制
在线阅读 下载PDF
基于BWO优化VMD和TCN-BiGRU的短期风电功率预测 被引量:1
19
作者 逯静 张燕茹 王瑞 《工程科学与技术》 北大核心 2025年第3期31-41,共11页
针对风力发电过程中出现的不平稳、波动性大等特点,为了更好地提高风力发电的预测精度,提出一种基于白鲸优化算法(BWO)的变分模态分解(VMD)和时序卷积网络(TCN)-双向门控循环单元(BiGRU)联合构建的短期风力发电功率预测模型。首先,由于... 针对风力发电过程中出现的不平稳、波动性大等特点,为了更好地提高风力发电的预测精度,提出一种基于白鲸优化算法(BWO)的变分模态分解(VMD)和时序卷积网络(TCN)-双向门控循环单元(BiGRU)联合构建的短期风力发电功率预测模型。首先,由于风电功率受多方面气象因素的共同影响,采用随机森林(RF)方法来确定气象因素特征的重要性,对特征进行排序并提取出最优的特征。其次,利用VMD将原始功率数据由不平稳序列分解成较平稳的子序列,为解决VMD的两个参数即模态数和惩罚因子难以人工确定的问题,使用BWO对VMD的参数进行寻优,利用优化后的VMD对非平稳电力信号进行有效分解。然后,将分解后的各平稳子序列加上提取出的最优特征进行TCN-BiGRU组合模型预测。最后,将各子序列的预测值进行叠加得到最终的结果。以中国的某风电场的实际数据为例,通过多种单一模型与组合模型对所提出的预测模型进行了仿真对比。仿真结果表明,所提出的基于BWO优化VMD和TCN-BiGRU联合预测方法具有较高的预测精度,其均方根误差、平均绝对误差及平均百分比误差的指标精度均比其他模型有所提高。本文方法在风电功率预测中具有显著优势。 展开更多
关键词 短期风功率预测 变分模态分解 随机森林 时序卷积网络 双向门控循环单元 白鲸优化算法
在线阅读 下载PDF
基于融合聚类和BKA-VMD-TCN-BiLSTM的短期光伏功率预测 被引量:1
20
作者 王瑞 李哲 逯静 《电子科技大学学报》 北大核心 2025年第4期592-603,共12页
针对光伏系统功率输出因天气条件波动大且随机性强的特点,提出了一种基于融合聚类的短期光伏功率组合预测模型。首先通过改进的Kmeans聚类算法(GMKmeans)将原始光伏数据集分为晴天、阴天和雨天3种天气模式。在此基础上,为解决变分模态分... 针对光伏系统功率输出因天气条件波动大且随机性强的特点,提出了一种基于融合聚类的短期光伏功率组合预测模型。首先通过改进的Kmeans聚类算法(GMKmeans)将原始光伏数据集分为晴天、阴天和雨天3种天气模式。在此基础上,为解决变分模态分解(VMD)分解数量和惩罚因子难以人工确定的问题,引入黑翅鸢优化算法(BKA)实现VMD参数的自适应优化。随后利用优化后的VMD将光伏功率时间序列数据分解成多个本征模态函数(Intrinsic Mode Functions,IMF),确保模型能够更深入地理解和模拟光伏功率随时间演变的复杂模式。最后,针对各IMF分量分别构建时序卷积网络(TCN)-双向长短期记忆网络(BiLSTM)组合预测模型,并将预测结果叠加重构,实现对整体光伏功率输出的高精度预测。实验结果表明,该预测模型提升了光伏功率预测的准确性和有效性。 展开更多
关键词 短期光伏功率预测 变分模态分解 黑翅鸢优化算法 时序卷积网络 双向长短期记忆网络
在线阅读 下载PDF
上一页 1 2 57 下一页 到第
使用帮助 返回顶部