Taste buds relay taste sensory information to the primary taste neurons but depend on those same neurons for essential components to maintain function.While denervation-induced taste bud degeneration and subsequent re...Taste buds relay taste sensory information to the primary taste neurons but depend on those same neurons for essential components to maintain function.While denervation-induced taste bud degeneration and subsequent regeneration were discovered decades ago,the mechanisms underlying these phenomena(e.g.,heterogenous cellular responses to nerve injury and the signaling pathways involved)remain poorly understood.Here,using mouse genetics,nerve injury models,pharmacologic manipulation,and taste bud organoid models,we identify a specific subpopulation of taste cells,predominantly c-Kit-expressing sweet cells,that exhibit superior resistance to nerve injury.We found the c-Kit inhibitor imatinib selectively reduced the number of residual c-Kit-expressing sweet cells at post-operation week 2,subsequently attenuating the re-emergence of other type II cells by post-operation week 4.In taste bud organoids,c-Kit-expressing cells were resistant to R-spondin withdrawal but susceptible to imatinib,while other taste cell types showed the opposite behavior.We also observed a distinct population of residual taste cells that acquired stem-like properties,generating clonal descendent cells among suprabasal keratinocytes independent of c-Kit signaling.Together,our findings reveal that c-Kit signaling confers resilience on c-Kit-expressing sweet cells and supports the broader reconstruction of taste buds during the later regenerative stage following nerve injury.展开更多
The utilization of Lactobacillus plantarum(LP)in chili sauce production is well-known for its capacity to enhance product quality and sensory attributes.However,there is still limited knowledge regarding the taste-act...The utilization of Lactobacillus plantarum(LP)in chili sauce production is well-known for its capacity to enhance product quality and sensory attributes.However,there is still limited knowledge regarding the taste-active metabolites in the sauce.To bridge this gap,our study employed metabolomics and webbased computational tools to investigate the dynamic changes of taste-active metabolites during chili sauce fermentation.By leveraging the advantages of the feature-based molecular network(FBMN),we conducted a rapid annotation of metabolites,successfully identifying 205 metabolites,a considerable portion of which were previously unreported.Through the utilization of the Virtual Taste tool,we identified dihydrosphingosine,lactic acid,isoleucine,phytosphingosine,and gluconic acid as potential taste indicators for quality control.Pathway enrichment analysis further supported their primary involvement in key biochemical pathways,including amino acid t RNA biosynthesis,phenylalanine,tyrosine,tryptophan biosynthesis,and sphingolipid metabolism.This investigation provides valuable insights into the underlying mechanisms contributing to the distinctive flavor profile of chili sauce.展开更多
γ-Glutamyl peptides can enhance basic taste sensations such as saltiness,sweetness,and umaminess,while the molecular mechanism and the difference in taste enhancement remain elusive.Thus,two complex conformations:tas...γ-Glutamyl peptides can enhance basic taste sensations such as saltiness,sweetness,and umaminess,while the molecular mechanism and the difference in taste enhancement remain elusive.Thus,two complex conformations:taste type 1 receptor 1(T1 R1)-MSG and taste type 1 receptor 2(T1 R2)-sucrose were constructed to form binding receptors.These peptides showed affinity for the two receptors,but a higher affi nity scores and more binding amino acid residues for the T1 R1-MSG receptor,implying that they may exhibit a higher umami-enhancing effect.Thereinto,γ-glutamyl alanine(γ-EA)displayed the highest affi nity for the two receptors through mobilizing multiple amino acid residues to form hydrophobic and hydrogen bonds,indicating it had the highest enhancement for umaminess and sweetness among these peptides.Sensory evaluation demonstrated the enhancement ofγ-EA on umaminess was superior to that of sweetness.Generally,γ-glutamyl peptides could enhance basic taste sensation via activating taste receptor,and exhibited a highest umami-enhancing effect.展开更多
In this study,umami taste intensity(UTI)and umami taste components in chicken breast(CB)and chickenspices blends were characterized using sensory and instrumental analysis.Our main objective was to assess the aroma-um...In this study,umami taste intensity(UTI)and umami taste components in chicken breast(CB)and chickenspices blends were characterized using sensory and instrumental analysis.Our main objective was to assess the aroma-umami taste interactions in different food matrices and reconcile the aroma-taste perception to assist future product development.The impact of key aroma,including vegetable-note"2-pentylfuran",meaty"methional",green"hexanal",and spicy-note-estragole and caryophyllene"on UTI was evaluated in monosodium glutamate and chicken extract.We found that spices significantly decreased UTI and umami taste components in CB.Interestingly,the perceptually similar odorants and tastants exhibited the potential to enhance UTI in food matrices.Methional was able to increase the UTI,whereas spicy and green-note components could reduce the UTI significantly.This information would be valuable to food engineers and formulators in aroma selection to control the UTI perceived by consumers,thus,improving the quality and acceptability of the chicken products.展开更多
AIM: To investigate the relationship between salt intake and salty taste and risk of gastric cancer. METHODS: A 1:2 matched hospital based case-control study including 300 patients with gastric cancer and 600 cancer-f...AIM: To investigate the relationship between salt intake and salty taste and risk of gastric cancer. METHODS: A 1:2 matched hospital based case-control study including 300 patients with gastric cancer and 600 cancer-free subjects as controls. Subjects were interviewed with a structured questionnaire containing 80 items, which elicited information on dietary, lifestyle habits, smoking and drinking histories. Subjects were tested for salt taste sensitivity threshold (STST) usingconcentrated saline solutions (0.22-58.4 g/L). Conditional logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (95% CI). RESULTS: Alcohol and tobacco consumption increased the risk of gastric cancer [OR (95% CI) was 2.27 (1.27-4.04) for alcohol and 2.41 (1.51-3.87) for tobacco]. A protective effect was observed in frequent consumption of fresh vegetable and fruit [OR (95% CI) was 0.92 (0.58-0.98) for fresh vegetable and 0.87 (0.67-0.93) for fruit]. Strong association was found between STST ≥ 5 and gastric cancer [OR = 5.71 (3.18-6.72)]. Increased STST score was significantly associated with salted food intake and salty taste preference (P < 0.05). CONCLUSION: A high STST score is strongly associated with gastric cancer risk. STST can be used to evaluate an inherited characteristic of salt preference, and it is a simple index to verify the salt intake in clinic.展开更多
Objective To investigate the changes of neuronal activation in taste related nuclei following intraoral taste stimulation with binary taste mixtures of sucrose and NaCl. Methods Neuronal activation in response to...Objective To investigate the changes of neuronal activation in taste related nuclei following intraoral taste stimulation with binary taste mixtures of sucrose and NaCl. Methods Neuronal activation in response to intraoral taste stimulation with 0.5 mol·L -1 sucrose, 0.3 mol·L -1 NaCl, sucrose+NaCl mixture and distilled water was evaluated in taste related nuclei by using c Fos like immunoreactivity in the rats deprived of water overnight. Results The consumption of sucrose+NaCl mixture was lower than that of sucrose solution. Intraoral sucrose or NaCl stimulation induced more c FLI than distilled water in the external lateral subnucleus of the rostral parabrachial nucleus (PBN), but the c FLI induced by intraoral sucrose+NaCl mixture stimulation was less than that induced by sucrose solution in this subnucleus. Compared with distilled water, the intraoral sucrose or sucrose+NaCl mixture stimulation induced more c FLI in the central amygdala. ConclusionThese results suggest that salty taste has a suppressive effect on the neuronal activations induced by sweet taste in the external lateral subnucleus of rostral PBN in rats.展开更多
Dietary protein(P)and carbohydrate(C)have a major impact on the sweet taste sensation.However,it remains unclear whether the balance of P and C influences the sweet taste sensitivity.Here,we use the nutritional geomet...Dietary protein(P)and carbohydrate(C)have a major impact on the sweet taste sensation.However,it remains unclear whether the balance of P and C influences the sweet taste sensitivity.Here,we use the nutritional geometry framework(NGF)to address the interaction of protein and carbohydrates on sweet taste using Drosophila as a model.Our results reveal that high-protein,low-carbohydrate(HPLC)diets sensitize to sweet taste and low-protein,high-carbohydrate(LPHC)diets desensitize sweet taste in both male and female flies.We further investigate the underlying mechanisms of the effects of two diets on sweet taste using RNA sequencing.When compared to the LPHC diet,the m RNA expression of genes involved in the metabolism of glycine,serine,and threonine is significantly upregulated in the HPLC diet group,suggesting these amino acids may mediate sweet taste perception.We further find that sweet sensitization occurs in flies fed with the LPHC diet supplemented with serine and threonine.Our study demonstrates that sucrose taste sensitivity is affected by the balance of dietary protein and carbohydrates possibly through changes in serine and threonine.展开更多
Background:Bitter taste receptors(Tas2rs)are generally considered to sense various bitter compounds to escape the intake of toxic substances.Bitter taste receptors have been found to widely express in extraoral tissue...Background:Bitter taste receptors(Tas2rs)are generally considered to sense various bitter compounds to escape the intake of toxic substances.Bitter taste receptors have been found to widely express in extraoral tissues and have important physiological functions outside the gustatory system in vivo.Methods:To investigate the physiological functions of the bitter taste receptor cluster Tas2r106/Tas2r104/Tas2r105/Tas2r114 in lingual and extraoral tissues,multiple Tas2rs mutant mice and Gnat3 were produced using CRISPR/Cas9 gene-editing technique.A mixture containing Cas9 and sgRNA mRNAs for Tas2rs and Gnat3 gene was microinjected into the cytoplasm of the zygotes.Then,T7EN1 assays and sequencing were used to screen genetic mutation at the target sites in founder mice.Quantitative real-time polymerase chain reaction(qRT-PCR)and immunostaining were used to study the expression level of taste signaling cascade and bitter taste receptor in taste buds.Perception to taste substance was also studied using twobottle preference tests.Results:We successfully produced several Tas2rs and Gnat3 mutant mice using the CRISPR/Cas9 technique.Immunostaining results showed that the expression of GNAT3 and PLCB2 was not altered in Tas2rs mutant mice.But qRT-PCR results revealed the changed expression profile of m Tas2rs gene in taste buds of these mutant mice.With two-bottle preference tests,these mutant mice eliminate responses to cycloheximide due to genetic mutation of Tas2r105.In addition,these mutant mice showed a loss of taste perception to quinine dihydrochloride,denatonium benzoate,and cucurbitacin B(CuB).Gnat3-mediated taste receptor and its signal pathway contribute to CuB perception.Conclusions:These findings implied that these mutant mice would be a valuable means to understand the biological functions of TAS2Rs in extraoral tissues and investigate bitter compound-induced responses mediated by these TAS2Rs in many extraoral tissues.展开更多
Objective:Currently,electrocautery devices have frequently been used in penile surgical procedures.We hypothesized that electrocautery using during penile surgical procedures may harm the taste rosea and the dorsal ne...Objective:Currently,electrocautery devices have frequently been used in penile surgical procedures.We hypothesized that electrocautery using during penile surgical procedures may harm the taste rosea and the dorsal nerve of the penis or clitoris.Methods:Eighteen young age male New Zealand rabbits were studied:five in the control(Group I,n=5),five in the penile surgery without using electrocautery(sham group,Group II,n=5),eight in the monopolar cautery(study group,Group III,n=8)groups under general anesthesia.The animals were followed for 3 weeks and sacrificed.Penile tissue—pudendal nerve root complexes and dorsal root ganglion of sacral 3 level were examined using stereological methods.The results were compared statistically.Results:The live and degenerated taste bud-like structures and degenerated neuron densities of pudendal ganglia(mean±standard deviation,n/mm^(3))were estimated as 198±24/mm^(3),4±1/mm^(3),and 5±1/mm^(3) in Group I;8±3/mm^(3),174±21/mm^(3),and 24±7/mm^(3) in Group II;and 21±5/mm^(3),137±14/mm^(3),and 95±12/mm^(3) in Group III,respectively.Neurodegeneration of taste buds and pudendal ganglia was significantly different between groups.Conclusion:Intact spinal cord and normal parasympathetic and thoracolumbar sympathetic networks are crucial for human sexual function.The present study indicates that the glans penis injury by using electrocautery may lead to pudendal ganglia degeneration.Iatrogenic damage to taste rosea and retrograde degeneration of the pudendal nerve may be the cause of sexual dysfunction responsible mechanism.展开更多
Communal eating reportedly induces changes in food-related behaviors such as increased consumption and alleviation of indefinite complaints. Here, we examined the influence of intimacy with co-eaters on the palatabili...Communal eating reportedly induces changes in food-related behaviors such as increased consumption and alleviation of indefinite complaints. Here, we examined the influence of intimacy with co-eaters on the palatability of the food and the physiological taste thresholds. The study was a single-blind crossover trial with 16 healthy women aged 18 - 19 years (two close friends × 8) as participants. We examined the effect of four preset conditions with regard to taste (condition 1 = tasting alone;condition 2 = tasting with a friend;condition 3 = tasting with three unfamiliar individuals;condition 4 = tasting with a friend and two unfamiliar individuals). Electrical taste thresholds were measured pre-and post-eating. The subjective evaluation of taste did not show any significant difference between the four conditions (p > 0.05). However, the electrical taste threshold significantly decreased when eating with close friends (p < 0.05). As a factor associated with the meal environment, co-eating with family or friends appears to influence tastiness;however, in the present study, it showed no effect on the perception of taste. Nevertheless, eating with friends significantly decreased the electrical taste threshold and enhanced the perception of taste. Decrease in the electrical taste threshold was observed only when eating with a close friend;it was not observed when eating with other people and showed no association with the total number of individuals co-eating.展开更多
This study examines a common phenomenon that is greatly ignored by the clinical community for numerous reasons. Many people for a multitude of reasons experience taste alterations. The supertaster phenomenon is an alt...This study examines a common phenomenon that is greatly ignored by the clinical community for numerous reasons. Many people for a multitude of reasons experience taste alterations. The supertaster phenomenon is an alteration of taste that requires more investigation. In this study, a proband was examined for subjective reports of a taste alteration to determine its nature through a medical history examination and interview as well as any recollections of the taste disorder in her life. Through this examination, it was found that medical history examination and interview of the proband that many members of her nuclear family showed traits of the same taste disorder or in the case of one family member being a suspect for the taste alteration and one member not showing any signs because of genetic diversity as a half-sibling. Taste disorders are heritable, have multiple health and mental health consequences, influence life choices including mate choice, avoidance behaviors, social choices, alcohol use/abuse, smoking, food choices, and more. More awareness is needed in the research and clinical community into taste alterations as well as calls for future research from neuroscience, biomedical science, life science, and allied science community to investigate taste alterations.展开更多
Problems due to the taste and odor in drinking water are common in treatment facilities around the world. Taste and odor are perceived by the public as the primary indicators of the safely and acceptability of drinkin...Problems due to the taste and odor in drinking water are common in treatment facilities around the world. Taste and odor are perceived by the public as the primary indicators of the safely and acceptability of drinking water and are mainly caused by the presence of two semi-volatile compounds - 2-methyl isobomeol (MIB) and geosmin. A review of these two taste and odor causing compounds in drinking water is presented. The sources for the formation of these compounds in water are discussed alongwith the health and regulatory implications. The recent developments in the analysis of MIB/geosmin in water which have allowed for rapid measurements in the nanogram per liter concentrations are also discussed. This review focuses on the relevant treatment alternatives, that are described in detail with emphasis on their respective advantages and problems associated with their implementation in a full- scale facility. Conventional treatment processes in water treatment plants, such as coagulation, sedimentation and chlorination have been found to be ineffective for removal of M1B/geosmin. Studies have shown powdered activated carbon, ozonation and biofiltration to be effective in treatment of these two compounds. Although some of these technologies are more effective and show more promise than the others, much work remains to be done to optimize these technologies so that they can be retrofitted or installed with minimal impact on the overall operation and effectiveness of the treatment system.展开更多
Taste and odor (T&O) problems in drinking water frequently occur because of many compounds present in the water, of which trans-1,10-dimethyl-trans-9-decalol (geosrnin) and 2-methylisoborneol (MIB) are well-kno...Taste and odor (T&O) problems in drinking water frequently occur because of many compounds present in the water, of which trans-1,10-dimethyl-trans-9-decalol (geosrnin) and 2-methylisoborneol (MIB) are well-known. In this study, a fast and effective method was established for simultaneous determination of 10 T&O compounds, including geosmin, MIB, 2,4,6-trichloroanisole (TCA), 2-methylbenzofuran, 2-isopropyl-3-methoxypyrazine (IPMP), 2-isobutyl-3-methoxypyrazine (IBMP), cis-3-hexenyl acetate, trans,trans-2,4-heptadienal, trans, cis-2,6-nonadienal, and trans-2-decenal in water samples by headspace solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry. An orthogonal array experimental design was used to optimize the effects of SPME fiber, extraction temperature, stirring rate, NaC1 content, extraction time, and desorption time. The limits of detection ranged from 0.1 to 73 ng/L were lower than or close to the odor threshold concentrations (OTCs). All the 10 T&O compounds were detected in the 14 water samples including surface water, treatment process water and tap water, taken from a waterworks in Lianyungang City, China. MIB and geosmin were detected in most samples at low concentration. Six T&O compounds (IPMP, IBMP, trans,cis-2,6-nonadienal, 2-methylbenzofuran, trans-2-decenal, and TCA) were effectively decreased in water treatment process (sedimentation and filtration) that is different from cis-3-hexenyl acetate, MIB and geosmin. It is noted that the TCA concentrations at 15.9-122.3 ng/L and the trans,cis-2,6-nonadienal concentrations at 79.9-190.1 ng/L were over 10 times higher than their OTCs in tap water. The variation of the analytes in the all water samples, especially distribution system indicated that distribution system cannot be ignored as a T&O compounds source.展开更多
Roasting is a common manufacture technology for processing various teas.It is not only used in decreasing the water content of finished tea,but also improving the flavor of teas.In the present study,the roasted and no...Roasting is a common manufacture technology for processing various teas.It is not only used in decreasing the water content of finished tea,but also improving the flavor of teas.In the present study,the roasted and non-roasted teas were compared by liquid-chromatography mass spectrometry and sensory evaluation.The roasted tea tasted less bitter and astringent.The content of main galloylated and simple catechins,caffeine and theobromine in roasted were significantly lower than non-roasted teas.Targeted taste-compounds metabolomics revealed that(-)-epigallocatechin gallate,kaempferol-glucose-rhamnose-glucose and(-)-epicatechin gallate were main contributors tightly correlated to astringent intensity.Flavonol glycosides including kaempferol-glucose,quercetin-glucose,kaempferol-glucose-rhamnose-glucose,and quercetin-glucose-rhamnose-glucose in roasted teas were also significantly less than non-roasted teas.To study the chemical changes during roasting,tea with a strong astringency was roasted under 80,100,120,140,and 160°C.With the increase of roasting temperature,the bitter and astringent intensity of tea was gradually decreased,but the main astringent compounds including(-)-epigallocatechin,(-)-epigallocatechin gallate and kaempferol/quercetin glycosides were irregularly varied with temperature.The Pearson correlation coefficient analysis suggested procyanidin B2,coumaroylquinic acids and gallotannins were tightly correlated to the astringent and bitter perceptions,while N-ethyl-2-pyrrolidonesubstituted flavan-3-ols were negatively correlated.展开更多
Modern-day human life is absolutely dependent upon the food that we derive from our crop plants. We eat grains, fruits, roots, tubers and other structures, all of which are constructed via coordinated organ growth. Wh...Modern-day human life is absolutely dependent upon the food that we derive from our crop plants. We eat grains, fruits, roots, tubers and other structures, all of which are constructed via coordinated organ growth. Whilst plant organ identity is first established in apical meristems (vegetative and floral shoot meristems and root meristems), and in other meristematic regions, the final size and shape of organs are defined by subsequent coordination of organ expansion in longitudinal and transverse axes.展开更多
Wild edible Termitomyces mushrooms are popular in Southwest China and umami is important flavor qualities of edible mushrooms.This study aimed to understand the umami taste of Termitomyces intermedius and Termitomyces...Wild edible Termitomyces mushrooms are popular in Southwest China and umami is important flavor qualities of edible mushrooms.This study aimed to understand the umami taste of Termitomyces intermedius and Termitomyces aff.bulborhizus.Ten umami peptides from aqueous extracts were separated using a Sephadex G-15 gel filtration chromatography.The intense umami fraction was evaluated by both sensory evaluation and electronic tongue.They were identified as KLNDAQAPK,DSTDEKFLR,VGKGAHLSGEH,MLKKKKLA,SLGFGGPPGY,TVATFSSSTKPDD,AMDDDEADLLLLAM,VEDEDEKPKEK,SPEEKKEEET and PEGADKPNK.Seven peptides,except VEDEDEKPKEK,SPEEKKEEET and PEGADKPNK were selectively synthesized to verify their taste characteristics.All these 10 peptides had umami or salt taste.The 10 peptides were conducted by molecular docking to study their interaction with identified peptides and the umami taste receptor T1R1/T1R3.All these 10 peptides perfectly docked the active residues in the T1R3 subunit.Our results provide theoretical basis for the umami taste and address the umami mechanism of two wild edible Termitomyces mushrooms.展开更多
基金supported by a National Research Foundation of Korea(NRF)grant funded by the Korean Government(Ministry of Science and ICT,RS-2023-00208193 to Y.T.J.)by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI)funded by the Ministry of Health&Welfare(RS-2024-00403511 to D.-H.K.)by a Korea University grant(K2117151 to Y.T.J.)。
文摘Taste buds relay taste sensory information to the primary taste neurons but depend on those same neurons for essential components to maintain function.While denervation-induced taste bud degeneration and subsequent regeneration were discovered decades ago,the mechanisms underlying these phenomena(e.g.,heterogenous cellular responses to nerve injury and the signaling pathways involved)remain poorly understood.Here,using mouse genetics,nerve injury models,pharmacologic manipulation,and taste bud organoid models,we identify a specific subpopulation of taste cells,predominantly c-Kit-expressing sweet cells,that exhibit superior resistance to nerve injury.We found the c-Kit inhibitor imatinib selectively reduced the number of residual c-Kit-expressing sweet cells at post-operation week 2,subsequently attenuating the re-emergence of other type II cells by post-operation week 4.In taste bud organoids,c-Kit-expressing cells were resistant to R-spondin withdrawal but susceptible to imatinib,while other taste cell types showed the opposite behavior.We also observed a distinct population of residual taste cells that acquired stem-like properties,generating clonal descendent cells among suprabasal keratinocytes independent of c-Kit signaling.Together,our findings reveal that c-Kit signaling confers resilience on c-Kit-expressing sweet cells and supports the broader reconstruction of taste buds during the later regenerative stage following nerve injury.
基金the financial support from Sichuan Technology Development Program,China(2020YFN0056,2021ZHCG0051,2020YFN0094,2021YFN0048,2020YFN0151)the Natural Science Foundation of Sichuan Province(2022NSFSC0105)Pidu 100 Innovative Talents Program(2022)。
文摘The utilization of Lactobacillus plantarum(LP)in chili sauce production is well-known for its capacity to enhance product quality and sensory attributes.However,there is still limited knowledge regarding the taste-active metabolites in the sauce.To bridge this gap,our study employed metabolomics and webbased computational tools to investigate the dynamic changes of taste-active metabolites during chili sauce fermentation.By leveraging the advantages of the feature-based molecular network(FBMN),we conducted a rapid annotation of metabolites,successfully identifying 205 metabolites,a considerable portion of which were previously unreported.Through the utilization of the Virtual Taste tool,we identified dihydrosphingosine,lactic acid,isoleucine,phytosphingosine,and gluconic acid as potential taste indicators for quality control.Pathway enrichment analysis further supported their primary involvement in key biochemical pathways,including amino acid t RNA biosynthesis,phenylalanine,tyrosine,tryptophan biosynthesis,and sphingolipid metabolism.This investigation provides valuable insights into the underlying mechanisms contributing to the distinctive flavor profile of chili sauce.
基金financial support by the National Natural Science Foundation of China(31901814)Guangzhou Science and Technology program key project(202104020028)the Major State Basic Reasearch Development Program Of China(2018YFD0901003)。
文摘γ-Glutamyl peptides can enhance basic taste sensations such as saltiness,sweetness,and umaminess,while the molecular mechanism and the difference in taste enhancement remain elusive.Thus,two complex conformations:taste type 1 receptor 1(T1 R1)-MSG and taste type 1 receptor 2(T1 R2)-sucrose were constructed to form binding receptors.These peptides showed affinity for the two receptors,but a higher affi nity scores and more binding amino acid residues for the T1 R1-MSG receptor,implying that they may exhibit a higher umami-enhancing effect.Thereinto,γ-glutamyl alanine(γ-EA)displayed the highest affi nity for the two receptors through mobilizing multiple amino acid residues to form hydrophobic and hydrogen bonds,indicating it had the highest enhancement for umaminess and sweetness among these peptides.Sensory evaluation demonstrated the enhancement ofγ-EA on umaminess was superior to that of sweetness.Generally,γ-glutamyl peptides could enhance basic taste sensation via activating taste receptor,and exhibited a highest umami-enhancing effect.
基金supported by the National Natural Science Foundation of China (31622042)。
文摘In this study,umami taste intensity(UTI)and umami taste components in chicken breast(CB)and chickenspices blends were characterized using sensory and instrumental analysis.Our main objective was to assess the aroma-umami taste interactions in different food matrices and reconcile the aroma-taste perception to assist future product development.The impact of key aroma,including vegetable-note"2-pentylfuran",meaty"methional",green"hexanal",and spicy-note-estragole and caryophyllene"on UTI was evaluated in monosodium glutamate and chicken extract.We found that spices significantly decreased UTI and umami taste components in CB.Interestingly,the perceptually similar odorants and tastants exhibited the potential to enhance UTI in food matrices.Methional was able to increase the UTI,whereas spicy and green-note components could reduce the UTI significantly.This information would be valuable to food engineers and formulators in aroma selection to control the UTI perceived by consumers,thus,improving the quality and acceptability of the chicken products.
文摘AIM: To investigate the relationship between salt intake and salty taste and risk of gastric cancer. METHODS: A 1:2 matched hospital based case-control study including 300 patients with gastric cancer and 600 cancer-free subjects as controls. Subjects were interviewed with a structured questionnaire containing 80 items, which elicited information on dietary, lifestyle habits, smoking and drinking histories. Subjects were tested for salt taste sensitivity threshold (STST) usingconcentrated saline solutions (0.22-58.4 g/L). Conditional logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (95% CI). RESULTS: Alcohol and tobacco consumption increased the risk of gastric cancer [OR (95% CI) was 2.27 (1.27-4.04) for alcohol and 2.41 (1.51-3.87) for tobacco]. A protective effect was observed in frequent consumption of fresh vegetable and fruit [OR (95% CI) was 0.92 (0.58-0.98) for fresh vegetable and 0.87 (0.67-0.93) for fruit]. Strong association was found between STST ≥ 5 and gastric cancer [OR = 5.71 (3.18-6.72)]. Increased STST score was significantly associated with salted food intake and salty taste preference (P < 0.05). CONCLUSION: A high STST score is strongly associated with gastric cancer risk. STST can be used to evaluate an inherited characteristic of salt preference, and it is a simple index to verify the salt intake in clinic.
基金ThisworkwassupportedbytheNationalNaturalScienceFoundationofChina (No .30270454)andtheScienceandTechnologyResearchDevelopmentProjectofShaanxiProvince (No .2 0 0 2K1 0 G7 0 1 )
文摘Objective To investigate the changes of neuronal activation in taste related nuclei following intraoral taste stimulation with binary taste mixtures of sucrose and NaCl. Methods Neuronal activation in response to intraoral taste stimulation with 0.5 mol·L -1 sucrose, 0.3 mol·L -1 NaCl, sucrose+NaCl mixture and distilled water was evaluated in taste related nuclei by using c Fos like immunoreactivity in the rats deprived of water overnight. Results The consumption of sucrose+NaCl mixture was lower than that of sucrose solution. Intraoral sucrose or NaCl stimulation induced more c FLI than distilled water in the external lateral subnucleus of the rostral parabrachial nucleus (PBN), but the c FLI induced by intraoral sucrose+NaCl mixture stimulation was less than that induced by sucrose solution in this subnucleus. Compared with distilled water, the intraoral sucrose or sucrose+NaCl mixture stimulation induced more c FLI in the central amygdala. ConclusionThese results suggest that salty taste has a suppressive effect on the neuronal activations induced by sweet taste in the external lateral subnucleus of rostral PBN in rats.
基金funded by the National Natural Science Foundation of China(31800993,31970934)Natural Science of Foundation of Guangdong,China(2018B030306002)Science and Technology Innovation Committee of Shenzhen,China(201908073000449)to Q.P.W。
文摘Dietary protein(P)and carbohydrate(C)have a major impact on the sweet taste sensation.However,it remains unclear whether the balance of P and C influences the sweet taste sensitivity.Here,we use the nutritional geometry framework(NGF)to address the interaction of protein and carbohydrates on sweet taste using Drosophila as a model.Our results reveal that high-protein,low-carbohydrate(HPLC)diets sensitize to sweet taste and low-protein,high-carbohydrate(LPHC)diets desensitize sweet taste in both male and female flies.We further investigate the underlying mechanisms of the effects of two diets on sweet taste using RNA sequencing.When compared to the LPHC diet,the m RNA expression of genes involved in the metabolism of glycine,serine,and threonine is significantly upregulated in the HPLC diet group,suggesting these amino acids may mediate sweet taste perception.We further find that sweet sensitization occurs in flies fed with the LPHC diet supplemented with serine and threonine.Our study demonstrates that sucrose taste sensitivity is affected by the balance of dietary protein and carbohydrates possibly through changes in serine and threonine.
基金Shanghai Science and Technology Commission“R&D Public Service Platform and Institutional Capacity Improvement Project”,Grant/Award Number:21DZ2291300National Science and Technology Major Project,Grant/Award Number:2017ZX10304402-001-006 and 2017ZX10304402-001-012Start-on Funding from Shanghai Public Health Clinical Center,Grant/Award Number:KY-GW-2019-11,KYGW-2019-19 and KY-GW-2021-39。
文摘Background:Bitter taste receptors(Tas2rs)are generally considered to sense various bitter compounds to escape the intake of toxic substances.Bitter taste receptors have been found to widely express in extraoral tissues and have important physiological functions outside the gustatory system in vivo.Methods:To investigate the physiological functions of the bitter taste receptor cluster Tas2r106/Tas2r104/Tas2r105/Tas2r114 in lingual and extraoral tissues,multiple Tas2rs mutant mice and Gnat3 were produced using CRISPR/Cas9 gene-editing technique.A mixture containing Cas9 and sgRNA mRNAs for Tas2rs and Gnat3 gene was microinjected into the cytoplasm of the zygotes.Then,T7EN1 assays and sequencing were used to screen genetic mutation at the target sites in founder mice.Quantitative real-time polymerase chain reaction(qRT-PCR)and immunostaining were used to study the expression level of taste signaling cascade and bitter taste receptor in taste buds.Perception to taste substance was also studied using twobottle preference tests.Results:We successfully produced several Tas2rs and Gnat3 mutant mice using the CRISPR/Cas9 technique.Immunostaining results showed that the expression of GNAT3 and PLCB2 was not altered in Tas2rs mutant mice.But qRT-PCR results revealed the changed expression profile of m Tas2rs gene in taste buds of these mutant mice.With two-bottle preference tests,these mutant mice eliminate responses to cycloheximide due to genetic mutation of Tas2r105.In addition,these mutant mice showed a loss of taste perception to quinine dihydrochloride,denatonium benzoate,and cucurbitacin B(CuB).Gnat3-mediated taste receptor and its signal pathway contribute to CuB perception.Conclusions:These findings implied that these mutant mice would be a valuable means to understand the biological functions of TAS2Rs in extraoral tissues and investigate bitter compound-induced responses mediated by these TAS2Rs in many extraoral tissues.
文摘Objective:Currently,electrocautery devices have frequently been used in penile surgical procedures.We hypothesized that electrocautery using during penile surgical procedures may harm the taste rosea and the dorsal nerve of the penis or clitoris.Methods:Eighteen young age male New Zealand rabbits were studied:five in the control(Group I,n=5),five in the penile surgery without using electrocautery(sham group,Group II,n=5),eight in the monopolar cautery(study group,Group III,n=8)groups under general anesthesia.The animals were followed for 3 weeks and sacrificed.Penile tissue—pudendal nerve root complexes and dorsal root ganglion of sacral 3 level were examined using stereological methods.The results were compared statistically.Results:The live and degenerated taste bud-like structures and degenerated neuron densities of pudendal ganglia(mean±standard deviation,n/mm^(3))were estimated as 198±24/mm^(3),4±1/mm^(3),and 5±1/mm^(3) in Group I;8±3/mm^(3),174±21/mm^(3),and 24±7/mm^(3) in Group II;and 21±5/mm^(3),137±14/mm^(3),and 95±12/mm^(3) in Group III,respectively.Neurodegeneration of taste buds and pudendal ganglia was significantly different between groups.Conclusion:Intact spinal cord and normal parasympathetic and thoracolumbar sympathetic networks are crucial for human sexual function.The present study indicates that the glans penis injury by using electrocautery may lead to pudendal ganglia degeneration.Iatrogenic damage to taste rosea and retrograde degeneration of the pudendal nerve may be the cause of sexual dysfunction responsible mechanism.
文摘Communal eating reportedly induces changes in food-related behaviors such as increased consumption and alleviation of indefinite complaints. Here, we examined the influence of intimacy with co-eaters on the palatability of the food and the physiological taste thresholds. The study was a single-blind crossover trial with 16 healthy women aged 18 - 19 years (two close friends × 8) as participants. We examined the effect of four preset conditions with regard to taste (condition 1 = tasting alone;condition 2 = tasting with a friend;condition 3 = tasting with three unfamiliar individuals;condition 4 = tasting with a friend and two unfamiliar individuals). Electrical taste thresholds were measured pre-and post-eating. The subjective evaluation of taste did not show any significant difference between the four conditions (p > 0.05). However, the electrical taste threshold significantly decreased when eating with close friends (p < 0.05). As a factor associated with the meal environment, co-eating with family or friends appears to influence tastiness;however, in the present study, it showed no effect on the perception of taste. Nevertheless, eating with friends significantly decreased the electrical taste threshold and enhanced the perception of taste. Decrease in the electrical taste threshold was observed only when eating with a close friend;it was not observed when eating with other people and showed no association with the total number of individuals co-eating.
文摘This study examines a common phenomenon that is greatly ignored by the clinical community for numerous reasons. Many people for a multitude of reasons experience taste alterations. The supertaster phenomenon is an alteration of taste that requires more investigation. In this study, a proband was examined for subjective reports of a taste alteration to determine its nature through a medical history examination and interview as well as any recollections of the taste disorder in her life. Through this examination, it was found that medical history examination and interview of the proband that many members of her nuclear family showed traits of the same taste disorder or in the case of one family member being a suspect for the taste alteration and one member not showing any signs because of genetic diversity as a half-sibling. Taste disorders are heritable, have multiple health and mental health consequences, influence life choices including mate choice, avoidance behaviors, social choices, alcohol use/abuse, smoking, food choices, and more. More awareness is needed in the research and clinical community into taste alterations as well as calls for future research from neuroscience, biomedical science, life science, and allied science community to investigate taste alterations.
文摘Problems due to the taste and odor in drinking water are common in treatment facilities around the world. Taste and odor are perceived by the public as the primary indicators of the safely and acceptability of drinking water and are mainly caused by the presence of two semi-volatile compounds - 2-methyl isobomeol (MIB) and geosmin. A review of these two taste and odor causing compounds in drinking water is presented. The sources for the formation of these compounds in water are discussed alongwith the health and regulatory implications. The recent developments in the analysis of MIB/geosmin in water which have allowed for rapid measurements in the nanogram per liter concentrations are also discussed. This review focuses on the relevant treatment alternatives, that are described in detail with emphasis on their respective advantages and problems associated with their implementation in a full- scale facility. Conventional treatment processes in water treatment plants, such as coagulation, sedimentation and chlorination have been found to be ineffective for removal of M1B/geosmin. Studies have shown powdered activated carbon, ozonation and biofiltration to be effective in treatment of these two compounds. Although some of these technologies are more effective and show more promise than the others, much work remains to be done to optimize these technologies so that they can be retrofitted or installed with minimal impact on the overall operation and effectiveness of the treatment system.
基金supported by the National Natural Science Foundation of China(No.21007077,51290283)the Ministry of Water Resources’ Special Funds for Scientific Research on Public Causes(No.201201032)
文摘Taste and odor (T&O) problems in drinking water frequently occur because of many compounds present in the water, of which trans-1,10-dimethyl-trans-9-decalol (geosrnin) and 2-methylisoborneol (MIB) are well-known. In this study, a fast and effective method was established for simultaneous determination of 10 T&O compounds, including geosmin, MIB, 2,4,6-trichloroanisole (TCA), 2-methylbenzofuran, 2-isopropyl-3-methoxypyrazine (IPMP), 2-isobutyl-3-methoxypyrazine (IBMP), cis-3-hexenyl acetate, trans,trans-2,4-heptadienal, trans, cis-2,6-nonadienal, and trans-2-decenal in water samples by headspace solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry. An orthogonal array experimental design was used to optimize the effects of SPME fiber, extraction temperature, stirring rate, NaC1 content, extraction time, and desorption time. The limits of detection ranged from 0.1 to 73 ng/L were lower than or close to the odor threshold concentrations (OTCs). All the 10 T&O compounds were detected in the 14 water samples including surface water, treatment process water and tap water, taken from a waterworks in Lianyungang City, China. MIB and geosmin were detected in most samples at low concentration. Six T&O compounds (IPMP, IBMP, trans,cis-2,6-nonadienal, 2-methylbenzofuran, trans-2-decenal, and TCA) were effectively decreased in water treatment process (sedimentation and filtration) that is different from cis-3-hexenyl acetate, MIB and geosmin. It is noted that the TCA concentrations at 15.9-122.3 ng/L and the trans,cis-2,6-nonadienal concentrations at 79.9-190.1 ng/L were over 10 times higher than their OTCs in tap water. The variation of the analytes in the all water samples, especially distribution system indicated that distribution system cannot be ignored as a T&O compounds source.
基金supported by Natural Science Foundation of China(32072633,32072634,31201335)earmarked fund for China Agriculture Research System(CARS-19)+1 种基金Anhui Key research and development plan(1804b06020367,202004b11020004)Young Elite Scientist Sponsorship Program by National CAST(2016QNRC001)。
文摘Roasting is a common manufacture technology for processing various teas.It is not only used in decreasing the water content of finished tea,but also improving the flavor of teas.In the present study,the roasted and non-roasted teas were compared by liquid-chromatography mass spectrometry and sensory evaluation.The roasted tea tasted less bitter and astringent.The content of main galloylated and simple catechins,caffeine and theobromine in roasted were significantly lower than non-roasted teas.Targeted taste-compounds metabolomics revealed that(-)-epigallocatechin gallate,kaempferol-glucose-rhamnose-glucose and(-)-epicatechin gallate were main contributors tightly correlated to astringent intensity.Flavonol glycosides including kaempferol-glucose,quercetin-glucose,kaempferol-glucose-rhamnose-glucose,and quercetin-glucose-rhamnose-glucose in roasted teas were also significantly less than non-roasted teas.To study the chemical changes during roasting,tea with a strong astringency was roasted under 80,100,120,140,and 160°C.With the increase of roasting temperature,the bitter and astringent intensity of tea was gradually decreased,but the main astringent compounds including(-)-epigallocatechin,(-)-epigallocatechin gallate and kaempferol/quercetin glycosides were irregularly varied with temperature.The Pearson correlation coefficient analysis suggested procyanidin B2,coumaroylquinic acids and gallotannins were tightly correlated to the astringent and bitter perceptions,while N-ethyl-2-pyrrolidonesubstituted flavan-3-ols were negatively correlated.
文摘Modern-day human life is absolutely dependent upon the food that we derive from our crop plants. We eat grains, fruits, roots, tubers and other structures, all of which are constructed via coordinated organ growth. Whilst plant organ identity is first established in apical meristems (vegetative and floral shoot meristems and root meristems), and in other meristematic regions, the final size and shape of organs are defined by subsequent coordination of organ expansion in longitudinal and transverse axes.
基金supported by the Yunnan Key Project of Science and Technology(202202AE090001)Postdoctoral Directional Training Foundation of Yunnan Province(E23174K2)Postdoctoral Research Funding Projects of Yunnan Province,China(E2313442)。
文摘Wild edible Termitomyces mushrooms are popular in Southwest China and umami is important flavor qualities of edible mushrooms.This study aimed to understand the umami taste of Termitomyces intermedius and Termitomyces aff.bulborhizus.Ten umami peptides from aqueous extracts were separated using a Sephadex G-15 gel filtration chromatography.The intense umami fraction was evaluated by both sensory evaluation and electronic tongue.They were identified as KLNDAQAPK,DSTDEKFLR,VGKGAHLSGEH,MLKKKKLA,SLGFGGPPGY,TVATFSSSTKPDD,AMDDDEADLLLLAM,VEDEDEKPKEK,SPEEKKEEET and PEGADKPNK.Seven peptides,except VEDEDEKPKEK,SPEEKKEEET and PEGADKPNK were selectively synthesized to verify their taste characteristics.All these 10 peptides had umami or salt taste.The 10 peptides were conducted by molecular docking to study their interaction with identified peptides and the umami taste receptor T1R1/T1R3.All these 10 peptides perfectly docked the active residues in the T1R3 subunit.Our results provide theoretical basis for the umami taste and address the umami mechanism of two wild edible Termitomyces mushrooms.