期刊文献+
共找到5,941篇文章
< 1 2 250 >
每页显示 20 50 100
Nucleic acid delivery by lipid nanoparticles for organ targeting
1
作者 Jialin Guo Mingrui Gu +6 位作者 Yahui Chen Tao Xiong Yiyang Zhang Simin Chen Mingle Li Xiaoqiang Chen Xiaojun Peng 《Chinese Chemical Letters》 2025年第11期121-131,共11页
The potential of messenger RNA(m RNA)as a therapeutic tool for treating diseases has garnered considerable interest,especially in the wake of the successful creation of m RNA vaccines to counter corona virus disease 2... The potential of messenger RNA(m RNA)as a therapeutic tool for treating diseases has garnered considerable interest,especially in the wake of the successful creation of m RNA vaccines to counter corona virus disease 2019(COVID-19).Nucleic acid-based drug gene therapies have emerged as exceptionally promising avenues for combating disease.Furthermore,lipid nanoparticles(LNPs)are ideal carriers for nucleic acid delivery owing to their ionic nature,which enables nucleic acids to electrostatically interact with intracellular membranes,thereby promoting efficient intracellular nucleic acid release.Unfortunately,the effectiveness of LNPs in targeting organs beyond the liver is relatively poor.Thus,enhanced extrahepatic targeting is another important property that would lead to improved in vivo delivery by LNPs.This review focuses on the fundamental characteristics and functions of LNPs developed to facilitate cellular uptake and ensure effective intracellular release of m RNAs.Promising applications,possible advantages and potential challenges associated with use of LNPs in organ specific delivery and release of m RNAs are summarized.Furthermore,the need for future research to address limitations of currently developed LNPs for clinical applications of the m RNA technology is emphasized. 展开更多
关键词 Lipid nanoparticles(LNP) Nucleic acid delivery Organ targeting Liver targeting Non-liver organ targeting
原文传递
Different strategies for cancer treatment:Targeting cancer cells or their neighbors? 被引量:1
2
作者 Hengrui Liu James P.Dilger 《Chinese Journal of Cancer Research》 2025年第2期289-292,共4页
Peripheral immunity forms the foundation of tumor immunity,while tumor immunity represents a more refined adaptation of peripheral immune responses.The tumor microenvironment(TME),a localized niche surrounding tumor c... Peripheral immunity forms the foundation of tumor immunity,while tumor immunity represents a more refined adaptation of peripheral immune responses.The tumor microenvironment(TME),a localized niche surrounding tumor cells,is inherently immunosuppressive(1,2).Effective tumor therapy necessitates the dismantling of this microenvironment,aiming to eradicate tumors from the host system. 展开更多
关键词 cancer treatment dismantling microenvironmentaiming immunosuppressive effective tumor therapy targeting cancer cells tumor microenvironment tme peripheral immune targeting cancer neighbors peripheral immunity
暂未订购
A mitochondria targeting Ir(Ⅲ)complex triggers ferroptosis and autophagy for cancer therapy:A case of aggregation enhanced PDT strategy for metal complexes 被引量:1
3
作者 Panpan Wang Hongbao Fang +5 位作者 Mengmeng Wang Guandong Zhang Na Xu Yan Su Hongke Liu Zhi Su 《Chinese Chemical Letters》 2025年第1期374-380,共7页
Metal complexes hold significant promise in tumor diagnosis and treatment.However,their potential applications in photodynamic therapy(PDT)are hindered by issues such as poor photostability,low yield of reactive oxyge... Metal complexes hold significant promise in tumor diagnosis and treatment.However,their potential applications in photodynamic therapy(PDT)are hindered by issues such as poor photostability,low yield of reactive oxygen species(ROS),and aggregation-induced ROS quenching.To address these challenges,we present a molecular self-assembly strategy utilizing aggregation-induced emission(AIE)conjugates for metal complexes.As a proof of concept,we synthesized a mitochondrial-targeting cyclometalated Ir(Ⅲ)photosensitizer Ir-TPE.This approach significantly enhances the photodynamic effect while mitigating the dark toxicity associated with AIE groups.Ir-TPE readily self-assembles into nanoaggregates in aqueous solution,leading to a significant production of ROS upon light irradiation.Photoirradiated Ir-TPE triggers multiple modes of death by excessively accumulating ROS in the mitochondria,resulting in mitochondrial DNA damage.This damage can lead to ferroptosis and autophagy,two forms of cell death that are highly cytotoxic to cancer cells.The aggregation-enhanced photodynamic effect of Ir-TPE significantly enhances the production of ROS,leading to a more pronounced cytotoxic effect.In vitro and in vivo experiments demonstrate this aggregation-enhanced PDT approach achieves effective in situ tumor eradication.This study not only addresses the limitations of metal complexes in terms of low ROS production due to aggregation but also highlights the potential of this strategy for enhancing ROS production in PDT. 展开更多
关键词 Metal complex AIEgens Mitochondria targeting Enhanced photodynamic therapy Anticancer agent
原文传递
Fusion of Dual-targeting Peptides with MAP30 Promotes the Apoptosis of MDA-MB-231 Breast Cancer Cells
4
作者 YANG Yi-Xuan WANG Xin-Yi +5 位作者 CHEN Wei-Wei GAN Li SUN Yu LIN Tong ZHAO Wei-Chun ZHU Zhen-Hong 《中国生物化学与分子生物学报》 北大核心 2025年第2期260-272,共13页
Momordica antiviral protein 30 kD(MAP30)is a type I ribosome-inactivating protein(RIP)with antibacterial,anti-HIV and antitumor activities but lacks the ability to target tumor cells.To increase its tumor-targeting ab... Momordica antiviral protein 30 kD(MAP30)is a type I ribosome-inactivating protein(RIP)with antibacterial,anti-HIV and antitumor activities but lacks the ability to target tumor cells.To increase its tumor-targeting ability,the arginine-glycine-aspartic(RGD)peptide and the epidermal growth factor receptor interference(EGFRi)peptide were fused with MAP30,which was named ELRL-MAP30.The efficiency of targeted therapy for triple-negative breast cancer(TNBC)MDA-MB-231 cells,which lack the expression of estrogen receptor(ER),Progesterone receptor(PgR)and human epidermal growth factor receptor-2(HER2),is limited.In this study,we focus on exploring the effect and mechanism of ELRL-MAP30 on TNBC MDA-MB-231 cells.First,we discovered that ELRL-MAP30 significantly inhibited the migration and invasion of MDA-MB-231 cells and induced MDA-MB-231 cell apoptosis.Moreover,ELRL-MAP30 treatment resulted in a significant increase in Bax expression and a decrease in Bcl-2 expression.Furthermore,ELRL-MAP30 triggered apoptosis via the Fak/EGFR/Erk and Ilk/Akt signaling pathways.In addition,recombinant ELRL-MAP30 can inhibit chicken embryonic angiogenesis,and also inhibit the tube formation ability of human umbilical vein endothelial cells(HUVECs),indicating its potential therapeutic effects on tumor angiogenesis.Collectively,these results indicate that ELRL-MAP30 has significant tumor-targeting properties in MDA-MB-231 cancer cells and reveals potential therapeutic effects on angiogenesis.These findings indicate the potential role of ELRL-MAP30 in the targeted treatment of the TNBC cell line MDA-MB-231. 展开更多
关键词 arginine-glycine-aspartic peptide(RGD) epidermal growth factor receptor interference peptide(EGFRi) momordica antiviral protein(MAP30) MDA-MB-231 cell tumor targeting APOPTOSIS
原文传递
Retraction:Swainsonine inhibits invasion and the EMT process in esophageal carcinoma cells by targeting twist1
5
作者 《Oncology Research》 2025年第5期1253-1253,共1页
The published article titled“Swainsonine inhibits invasion and the EMT process in esophageal carcinoma cells by targeting twist1”has been retracted from Oncology Research,Vol.26,No.8,2018,pp.1207–1213.
关键词 SWAINSONINE EMT TWIST targeting twist INVASION esophageal carcinoma esophageal carcinoma cells emt process
暂未订购
Mandimycin:A phospholipid-targeting natural polyene macrolideovercoming multidrug resistance in invasive fungal infections
6
作者 Gizachew Mulugeta Manahelohe Xin-Ying Zhao +5 位作者 Jie Gao Zhaoxia Chen Bing Jin Qiang Sha Yu-Cheng Gu Ming-Zhi Zhang 《Advanced Agrochem》 2025年第3期169-172,共4页
Developing novel anti-infective drugs is essential to combat antimicrobial resistance,address emerging pathogens,and safeguard global health against evolving infectious threats.A recent publication in the esteemed jou... Developing novel anti-infective drugs is essential to combat antimicrobial resistance,address emerging pathogens,and safeguard global health against evolving infectious threats.A recent publication in the esteemed journal Nature by Qisen Deng et al.reported on the comprehensive evaluation of the therapeutic efficacy of mandimycin against multidrug-resistant(MDR)fungal pathogens.The polyene macrolide antifungal antibiotic,mandimycin,was discovered using a phylogeny-guided natural-product discovery platform.Authors utilized various in vivo mouse models such as systemic and soft-tissue infections to assess the antifungal activity of mandimycin.The efficacy was measured by quantifying the fungal burden in major organs and assessing survival rates.In systemic infections,mandimycin demonstrated significant dose-dependent antifungal efficacy,as compared to amphotericin B,particularly in cases where the latter was ineffective against MDR C.auris.Furthermore,mandimycin showed a favorable safety profile,with low toxicity and no observed side effects at effective doses.The study's findings contribute valuable insights into the potential of mandimycin as a novel antifungal agent,offering hope for improved treatment options against challenging fungal infections.The results pave the way for further research and clinical applications in the fight against antifungal resistance. 展开更多
关键词 Multidrug resistance Mandimycin Phospholipid targeting Phylogeny-guided discovery Candida auris
暂未订购
Recombinant PASylated nanobody probes with improved blood circulation and tumor targeting
7
作者 Yicheng Yang Lingyue Jin +4 位作者 You Zhang Siyu Zhou Weijun Wei Gang Huang Changfeng Wu 《Journal of Innovative Optical Health Sciences》 2025年第3期119-130,共12页
Nanobodies have been extensively demonstrated in biomedical imaging and therapy. However, nanobody probes often suffer from rapid renal clearance due to its small size. Herein, we reported a recombinant nanobody with ... Nanobodies have been extensively demonstrated in biomedical imaging and therapy. However, nanobody probes often suffer from rapid renal clearance due to its small size. Herein, we reported a recombinant nanobody with a 200 amino-acid polypeptide chain consisting of Pro, Ala, and Ser (PAS) at the C-terminal, which can be easily expressed in Escherichia coli with a high yield. The PASylated nanobody was functionalized with a fluorescent dye and the cell labeling properties were characterized by flow cytometry and confocal microscopy. In vivo fluorescence imaging indicated that the PASylated nanobody showed comparable blood circulation time, but ∼1.5 times higher tumor targeting ability as compared to the PEGylated nanobody of comparable molecular weight. Our findings demonstrate that nanobody PASylation is a promising approach to produce long-circulating nanobody probes for imaging and therapeutic applications. 展开更多
关键词 NANOBODY PASylation FLUORESCENCE tumor targeting
原文传递
Dual-responsive nanogels with high drug loading for enhanced tumor targeting and treatment
8
作者 Haotian Shi Yuchao Luo +8 位作者 Song Zhang Meijun Zhao Chaoyong Liu Qing Pei Helei Wang Qiong Dai Zhigang Xie Bin Xu Wenjing Tian 《Chinese Chemical Letters》 2025年第10期401-405,共5页
Nanomedicine holds considerable promise for advancing cancer therapy,however,effective delivery of drugs to solid tumors remains a challenge due to rapid systemic clearance and inefficient cellular uptake.Herein,we ha... Nanomedicine holds considerable promise for advancing cancer therapy,however,effective delivery of drugs to solid tumors remains a challenge due to rapid systemic clearance and inefficient cellular uptake.Herein,we have developed a novel charge-reversible nanogel to deliver paclitaxel(PTX)dimers(DPP)with enhanced stability and targeting precision.The nanogels exhibit a dynamic charge-reversal mechanism responsive to the acidic tumor microenvironment(TME),optimizing the cellular uptake of prodrugs.In the high glutathione(GSH)conditions within cancer cells,the disulfide bonds in the DPP are cleaved,resulting in the intracellular release of active PTX and reduced drug toxicity to normal cells.In vivo pharmacokinetic studies revealed an extended plasma elimination half-life for the charge-reversible nanocarriers,and antitumor efficacy studies demonstrated superior tumor suppression with minimal systemic toxicity.This research underscores the potential of integrating charge-reversal and responsive release mechanisms into one nanocarrier system,balancing the long circulation and high tumor cell internalization capacity of the nanocarrier,and providing a promising strategy for targeted delivery of nanomedicine. 展开更多
关键词 Drug delivery NANOGEL Charge-reversal Dimeric prodrug Tumor targeting
原文传递
Systemically intravenous siRNA delivery into brain with a targeting and efficient polypeptide carrier and its evaluation on anti-glioma efficacy
9
作者 Liqing Chen Zheming Zhang +6 位作者 Yanhong Liu Chenfei Liu Congcong Xiao Liming Gong Mingji Jin Zhonggao Gao Wei Huang 《Chinese Chemical Letters》 2025年第3期396-401,共6页
Gliomas are the most common intracranial tumors with poor survival and high mortality.Furthermore,the clinical efficacy of current drugs is still not ideal;despite the development of several therapeutic drugs over the... Gliomas are the most common intracranial tumors with poor survival and high mortality.Furthermore,the clinical efficacy of current drugs is still not ideal;despite the development of several therapeutic drugs over the past decades and tumor progression or recurrence is inevitable in many patients.RNAibased therapy presents a novel disease-related gene targeting therapy,including otherwise undruggable genes,and generates therapeutic options.However,the therapeutic effect of siRNA is hindered by multiple biological barriers,primarily the blood-brain barrier(BBB).A glycoprotein-derived peptide-mediated delivery system is the preferred option to resolve this phenomenon.RDP,a polypeptide composed of 15 amino acids derived from rabies virus glycoprotein(RVG),possesses an N-type acetylcholine receptor(nAChR)-binding efficiency similar to that of RVG29.Given its lower cost and small particle size when used as a ligand,RDP should be extensively evaluated.First,we verified the brain-targeting efficacyy of RDP at the cellular and animal levels and further explored the possibility of using the RDP-oligoarginine peptide(designated RDP-5R)as a bio-safe vehicle to deliver therapeutic siRNA into glioma cells in vitro and in vivo.The polypeptide carrier possesses a diblock design composed of oligoarginine for binding siRNA through electrostatic interactions and RDP for cascade BBB-and glioma cell-targeting.The results indicated that RDP-R5/siRNA nanoparticles exhibited stable and suitable physicochemical properties for in vivo application,desirable glioma-targeting effects,and therapeutic efficiency.As a novel and efficient polypeptide carrier,RDP-based polypeptides hold great promise as a noninvasive,safe,and efficient treatment for various brain diseases. 展开更多
关键词 15-Amino-acid peptide GLIOMA Brain targeting Gene silencing Transvascular delivery
原文传递
Self-assembled and intestine-targeting florfenicol nano-micelles effectively inhibit drug-resistant Salmonella typhimurium,eradicate biofilm,and maintain intestinal homeostasis
10
作者 Runan Zuo Linran Fu +6 位作者 Wanjun Pang Lingqing Kong Liangyun Weng Zeyuan Sun Ruichao Li Shaoqi Qu Lin Li 《Journal of Pharmaceutical Analysis》 2025年第7期1585-1605,共21页
Antimicrobial resistance(AMR)is a growing public health crisis that requires innovative solutions.Emerging multidrug resistant(MDR)Salmonella typhimurium has raised concern for its effect on pathogenic infection and m... Antimicrobial resistance(AMR)is a growing public health crisis that requires innovative solutions.Emerging multidrug resistant(MDR)Salmonella typhimurium has raised concern for its effect on pathogenic infection and mortality in humans caused by enteric diseases.To combat these MDR Salmonella typhimurium pathogens,highly effective and broad-spectrum antibiotics such as flufenicol(FFC)need to be evaluated for their potent antibacterial activity against Salmonella typhimurium.However,the low solubility and low oral bioavailability of flufenicol need to be addressed to better combat AMR.In this work,we develop a novel nano-formulation,flufenicol nano-micelles(FTPPM),which are based on d-α-tocopherol polyethylene glycol 1,000 succinate(TPGS)/poloxamer 188(P188),for the targeted treatment of biofilms formed by drug-resistant Salmonella typhimurium in the intestine.Herein,FTPPM were prepared via a thin film hydration method.The preparation process for the mixed micelles is simple and convenient compared with other existing nanodrug delivery systems,which can further decrease production costs.The optimized FTPPM demonstrated outstanding stability and sustained release.An evaluation of the in vivo anti-drug-resistant Salmonella typhimurium efficacy demonstrated that FTPPM showed a stronger efficacy(68.17%)than did florfenicol-loaded TPGS polymer micelles(FTPM),flufenicol active pharmaceutical ingredients(FFC-API),and flufenicol commercially available medicine(FFC-CAM),and also exhibited outstanding biocompatibility.Notably,FTPPM also inhibited drug-resistant Salmonella typhimurium from forming biofilms.More importantly,FTPPM effectively restored intestinal flora disorders induced by drug-resistant Salmonella typhimurium in mice.In summary,FTPPM significantly improved the solubility and oral bioavailability of florfenicol,enhancing its efficacy against drug-resistant Salmonella typhimurium both in vitro and in vivo.FTPPM represent a promising drug-resistant Salmonella typhimurium treatment for curbing bacterial resistance via oral administration. 展开更多
关键词 Self-assembly Intestine targeting nano-micelles FLORFENICOL Drug-resistant Salmonella typhimurium Biofilm eradication Intestinal homeostatic maintenance
暂未订购
Synergistic inhibition of colorectal cancer progression by silencing Aurora A and the targeting protein for Xklp2
11
作者 Gui-Xian Sheng Yu-Jia Zhang Tao Shang 《World Journal of Gastrointestinal Surgery》 2025年第1期217-233,共17页
BACKGROUND Unraveling the pathogenesis of colorectal cancer(CRC)can aid in developing prevention and treatment strategies.Aurora kinase A(AURKA)is a key participant in mitotic control and interacts with its co-activat... BACKGROUND Unraveling the pathogenesis of colorectal cancer(CRC)can aid in developing prevention and treatment strategies.Aurora kinase A(AURKA)is a key participant in mitotic control and interacts with its co-activator,the targeting protein for Xklp2(TPX2)microtubule nucleation factor.AURKA is associated with poor clinical outcomes and high risks of CRC recurrence.AURKA/TPX2 co-overexpression in cancer may contribute to tumorigenesis.Despite its pivotal role in CRC development and progression,the action mechanism of AURKA remains unclear.Further research is needed to explore the complex interplay between AURKA and TPX2 and to develop effective targeted treatments for patients with CRC.AIM To compare effects of AURKA and TPX2 and their combined knockdown on CRC cells.METHODS We evaluated three CRC gene datasets about CRC(GSE32323,GSE25071,and GSE21510).Potential hub genes associated with CRC onset were identified using the Venn,search tool for the retrieval of interacting genes,and KOBAS platforms,with AURKA and TPX2 emerging as significant factors.Subsequently,cell models with knockdown of AURKA,TPX2,or both were constructed using SW480 and LOVO cells.Quantitative real-time polymerase chain reaction,western blotting,cell counting kit-8,cell cloning assays,flow cytometry,and Transwell assays were used.RESULTS Forty-three highly expressed genes and 39 poorly expressed genes overlapped in cancer tissues compared to controls from three datasets.In the protein-protein interaction network of highly expressed genes,AURKA was one of key genes.Its combined score with TPX2 was 0.999,and their co-expression score was 0.846.In CRC cells,knockdown of AURKA,TPX2,or both reduced cell viability and colony number,while blocking G0/G1 phase and enhancing cell apoptosis.Additionally,they were weakened cell proliferation and migration abilities.Furthermore,the expression levels of B-cell lymphoma-2-Associated X,caspase 3,and tumor protein P53,and E-cadherin increased with a decrease in B-cell lymphoma-2,N-cadherin,and vimentin proteins.These effects were amplified when both AURKA and TPX2 were concurrently downregulated.CONCLUSION Combined knockdown of AURKA and TPX2 was effective in suppressing the malignant phenotype in CRC.Coinhibition of gene expression is a potential developmental direction for CRC treatment. 展开更多
关键词 Aurora kinase A targeting protein for Xklp2 Microtubule nucleation factor Colorectal cancer Proliferation Migration INVASION
暂未订购
Retraction:MicroRNA-98-5p Inhibits Cell Proliferation and Induces Cell Apoptosis in Hepatocellular Carcinoma via Targeting IGF2BP1
12
作者 Oncology Research Editorial Office 《Oncology Research》 2025年第10期3155-3155,共1页
The published article titled“MicroRNA-98-5p Inhibits Cell Proliferation and Induces Cell Apoptosis in Hepatocellular Carcinoma via Targeting IGF2BP1”has been retracted from Oncology Research,Vol.25,No.7,2017,pp.1117... The published article titled“MicroRNA-98-5p Inhibits Cell Proliferation and Induces Cell Apoptosis in Hepatocellular Carcinoma via Targeting IGF2BP1”has been retracted from Oncology Research,Vol.25,No.7,2017,pp.1117–1127. 展开更多
关键词 induces cell apoptosis microrna p igf bp targeting igf bp cell proliferation hepatocellular carcinoma cell apoptosis
暂未订购
Lepodisiran:From genetic targeting to cardiovascular promise:A detailed narrative review of the literature
13
作者 Affan Faisal Abdul Basit +3 位作者 Abdullah Iftikhar Muneeb Saifullah M Khalil ur Rehmaan Abdul M Basil 《World Journal of Cardiology》 2025年第8期66-71,共6页
Elevated lipoprotein(a)[Lp(a)]is a major independent risk factor for atheroscle-rotic cardiovascular disease(ASCVD),with limited response to traditional lipid-lowering therapies.Lepodisiran,a novel N-acetylgalactosami... Elevated lipoprotein(a)[Lp(a)]is a major independent risk factor for atheroscle-rotic cardiovascular disease(ASCVD),with limited response to traditional lipid-lowering therapies.Lepodisiran,a novel N-acetylgalactosamine-conjugated small interfering RNA,targets hepatic LPA message RNA to reduce apolipoprotein(a)production.Early-phase trials demonstrated>90%sustained Lp(a)reduction with excellent safety and tolerability.The phase 2 ALPACA trial confirmed dura-ble effects lasting up to one year after biannual dosing.Compared to other thera-pies,lepodisiran offers longer duration,high efficacy,and minimal side effects.Ongoing phase 3 studies aim to determine its impact on cardiovascular outcomes,potentially establishing a new standard in precise ASCVD risk management. 展开更多
关键词 Lepodisiran Gene targeting Atherosclerotic cardiovascular disease Lipid lowering agents Cardiovascular medicine
暂未订购
Unlocking the potential of tumor-targeting peptides in precision oncology
14
作者 HAFIZ MUHAMMAD REHMAN SIDRA AHMAD +1 位作者 AZEEM SARWAR HAMID BASHIR 《Oncology Research》 2025年第7期1547-1570,共24页
Targeted cancer therapy has emerged as a promising alternative to conventional chemotherapy,which is often plagued by poor selectivity,off-target effects,and drug resistance.Among the various targeting agents in devel... Targeted cancer therapy has emerged as a promising alternative to conventional chemotherapy,which is often plagued by poor selectivity,off-target effects,and drug resistance.Among the various targeting agents in development,peptides stand out for their unique advantages,including minimal immunogenicity,high tissue penetration,and ease of modification.Their small size,specificity,and flexibility allow them to target cancer cells while minimizing damage to healthy tissue selectively.Peptide-based therapies have shown great potential in enhancing the efficacy of drug delivery,improving tumor imaging,and reducing adverse effects.With cancer responsible for millions of deaths worldwide,the development of peptide-based therapeutics offers new hope in addressing the limitations of current treatments.As detailed studies on different aspects of targeting peptides are crucial for optimizing drug development,this review provides a comprehensive overview of the literature on tumor-targeting peptides,including their structure,sources,modes of action,and their application in cancer therapy—both as standalone agents and in fusion drugs.Additionally,various computational tools for peptide-based tumor-targeting drug design and validation are explored.The promising results from these studies highlight peptides as ideal candidates for targeted cancer therapies,offering valuable insights for researchers and accelerating the discovery of novel anti-tumor peptide base drug candidates. 展开更多
关键词 targeting peptides Peptide therapeutics Anti-cancer peptide sources Cancer cell mechanism Cancer informatics
暂未订购
Targeting mitochondrial dysfunction to intervene in liver cancer
15
作者 Maomao Li Siyao Liang +7 位作者 Le Chang Bingyan Lu Jiahua Cheng Tian Yang Ying Wu Yuhong Lyu Xiaochan He Changwu Yue 《Cancer Biology & Medicine》 2025年第10期1181-1209,共29页
The occurrence and progression of liver cancer are closely associated with mitochondrial dysfunction.Mitochondria exhibit characteristics,such as decreased oxidative phosphorylation efficiency,abnormal accumulation of... The occurrence and progression of liver cancer are closely associated with mitochondrial dysfunction.Mitochondria exhibit characteristics,such as decreased oxidative phosphorylation efficiency,abnormal accumulation of reactive oxygen species in liver cancer and promoting tumor proliferation and drug resistance through the Warburg effect,as the core of energy metabolism and apoptosis regulation.Mutations in mitochondrial DNA(mtDNA)and dysregulation of mitochondrial autophagy(mitophagy)further enhance the invasive and metastatic capabilities of liver cancer.Current targeted therapeutic strategies focus on modulating the activity of respiratory chain complexes,regulating calcium homeostasis,repairing mtDNA,and activating mitochondrial apoptotic pathways.Although these approaches have shown therapeutic effects,challenges persist,such as tumor heterogeneity,insufficient drug specificity,and drug resistance.Future research needs to integrate the concept of precision medicine by focusing on breakthroughs in the molecular mechanisms underlying mitochondrial dysfunction,development of targeted delivery systems,optimization of combination therapy regimens,and screening of biomarkers to provide new pathways for individualized treatment.With advances in technology,targeting mitochondrial dysfunction is expected to become an important breakthrough for improving the prognosis of liver cancer. 展开更多
关键词 Mitochondrial targeting liver cancer therapy mtDNA mutations reactive oxygen species mitochondrial metabolic reprogramming clinical translation
暂未订购
Nanomedicine-based targeting delivery systems for peritoneal cavity localized therapy:A promising treatment of ovarian cancer and its peritoneal metastasis
16
作者 Boyuan Liu Zixu Liu +5 位作者 Ping Wang Yu Zhang Haibing He Tian Yin Jingxin Gou Xing Tang 《Chinese Chemical Letters》 2025年第6期48-58,共11页
As one of the most common gynecological malignancies,peritoneal metastasis is a common feature and cause of high mortality in ovarian cancer(OC).Currently,the standard treatment for OC and its peritoneal metastasis is... As one of the most common gynecological malignancies,peritoneal metastasis is a common feature and cause of high mortality in ovarian cancer(OC).Currently,the standard treatment for OC and its peritoneal metastasis is maximal cytoreductive surgery(CRS)combined with platinum-based chemotherapy.Compared with intravenous chemotherapy,traditional intraperitoneal(IP)chemotherapy exhibits obvious pharmacokinetic(PK)advantages and systemic safety and has shown significant survival benefits in several clinical studies of OC patients.However,there remain several challenges in traditional IP chemotherapy,such as insufficient drug retention,a lack of tumor targeting,inadequate drug penetration,gastrointestinal toxicity,and limited inhibition of tumor metastasis and chemoresistance.Nanomedicine-based IP targeting delivery systems,through specific drug carrier design with tumor cells and tumor environment(TME)targeting,make it possible to overcome these challenges and maximize local therapy efficacy while reducing side effects.In this review article,the rationale and challenges of nanomedicine-based IP chemotherapies,as well as their in vivo fate after IP administration,which are crucial for their rational design and clinical translation,are firstly discussed.Then,current strategies for nanomedicine-based targeting delivery systems and the relevant clinical trials in IP chemotherapy are summarized.Finally,the future directions of the nanomedicine-based IP targeting delivery system for OC and its peritoneal metastasis are proposed,expecting to improve the clinical development of IP chemotherapy. 展开更多
关键词 Ovarian cancer Peritoneal metastasis Intraperitoneal chemotherapy Nanomedicine-based intraperitoneal targeting delivery system Tumor microenvironment In vivo fate
原文传递
Facile GSH responsive glycyrrhetinic acid conjunction for liver targeting therapy
17
作者 Xinran Xi Xiyu Wang +4 位作者 Ziyue Xi Chuanyong Fan Yingying Jiang Zhenhua Li Lu Xu 《Chinese Chemical Letters》 2025年第10期391-396,共6页
Glycyrrhetinic acid(GA)sheds new light on liver-targeted therapy due to high-specific accumulation to GA receptors in liver,however,the limitation of commonly used macromolecular GA modification approaches as well as ... Glycyrrhetinic acid(GA)sheds new light on liver-targeted therapy due to high-specific accumulation to GA receptors in liver,however,the limitation of commonly used macromolecular GA modification approaches as well as the application gap across various vector have constrained its use.In this study,we proposed a novel perspective to break out,disulfide bonds(SS)were employed as linkage to facilitate GA modification,which allowed further connections with various carriers,while provided additional glutathione(GSH)-responsive property.The superiority of GA-disulfide conjunction was validated using mesoporous silica nanoparticles(MSN)as model carriers,chemotherapeutic drug(doxorubicin)and photosensitizer(indocyanine green)were loaded into MSN-SS-GA to further achieve chemo-photothermal synergistic anti-tumor therapy.Based on results from multiple evaluations,the GA-disulfide drafted MSN(DI/MSN-SS-GA)demonstrated expected liver tumor targeting effect and exhibited GSH-stimuli release property to reduce preleakage.Taken together,this study presents an effective chemo-photothermal therapy for liver cancer(88.26%),offers a potential,robust and straightforward strategy on GA application for enhancing liver targeting therapy. 展开更多
关键词 Glycyrrhetinic acid Glutathione response Liver targeting therapy Mesoporous silica nanoparticles Chemo-photothermal therapy
原文传递
Dermal Targeting of Stevioside-Photoglycoside Liquid Crystal Creams
18
作者 Lei Shufan Wang Yan +3 位作者 Wen Junxiong Song Chunjing Zhang Xiujun Wang Lifeng 《China Detergent & Cosmetics》 2025年第4期30-38,共9页
Using the back skin of the mice as the test object,UPLC was used to determine the retention rate of Glabridin(GLA)in the skin and subcutaneous fat pf mice with different dosage forms and different administration times... Using the back skin of the mice as the test object,UPLC was used to determine the retention rate of Glabridin(GLA)in the skin and subcutaneous fat pf mice with different dosage forms and different administration times,and to investigate the transdermal absorption effect of liquid crystal cream.The experimental results showed that the 0.5,1,2,4,6 and 8h skin retention rates of GLA in the liquid crystal cream group were 1.67,0.79,1.73,1.47,1.17 and 1.15 times higher than those of the ordinary cream group under the same dosage of administration,respectively.The 0.5,1,2,4,6 and 8 h fat retention rates of GLA in the normal cream group were 0.86,1.87,1.37,1.20,1.35 and 1.19 times higher than those in the liquid crystal group,respectively.Liquid crystal cream can significantly improve the skin retention of GLA,with certain slow and controlled release,and possesses certain skin targeting properties. 展开更多
关键词 liquid crystal cream GLABRIDIN STEVIOSIDE skin targeting properties
在线阅读 下载PDF
DB-1310,a HER3-targeting antibody-drug conjugate,has synergistic anti-tumor activity with trastuzumab in HER2-and HER3-expressing breast cancer
19
作者 Xi Li Liwen Liang +2 位作者 Zhongyuan Zhu Haiqing Hua Yang Qiu 《Cancer Biology & Medicine》 2025年第3期231-236,共6页
DB-1310 and trastuzumab synergistically inhibit breast cancer(BC)cell proliferation in vitro.HER3 overexpression has been described in patients with HER2-positive BC1.We determined the levels of HER2 and HER3 expressi... DB-1310 and trastuzumab synergistically inhibit breast cancer(BC)cell proliferation in vitro.HER3 overexpression has been described in patients with HER2-positive BC1.We determined the levels of HER2 and HER3 expression in BC using RNA-seq data from 1,082 BC patient samples in the TCGA dataset and 67 BC cell lines in the CCLE database(Supplementary material 1). 展开更多
关键词 synergistic anti tumor activity her targeting antibody drug conjugate tcga dataset TRASTUZUMAB DB her her expressing breast cancer her her expression
暂未订购
Strategy for cysteine-targeting covalent inhibitors screening using in-house database based LC-MS/MS and drug repurposing
20
作者 Xiaolan Hu Jian-Lin Wu +2 位作者 Quan He Zhi-Qi Xiong Na Li 《Journal of Pharmaceutical Analysis》 2025年第3期637-650,共14页
Targeted covalent inhibitors,primarily targeting cysteine residues,have attracted great attention as potential drug candidates due to good potency and prolonged duration of action.However,their discovery is challengin... Targeted covalent inhibitors,primarily targeting cysteine residues,have attracted great attention as potential drug candidates due to good potency and prolonged duration of action.However,their discovery is challenging.In this research,a database-assisted liquid chromatography-tandem mass spectrometry(LC-MS/MS)strategy was developed to quickly discover potential cysteine-targeting compounds.First,compounds with potential reactive groups were selected and incubated with N-acetyl-cysteine in microsomes.And the precursor ions of possible cysteine-adducts were predicted based on covalent binding mechanisms to establish in-house database.Second,substrate-independent product ions produced from N-acetyl-cysteine moiety were selected.Third,multiple reaction monitoring scan was conducted to achieve sensitive screening for cysteine-targeting compounds.This strategy showed broad applicability,and covalent compounds with diverse structures were screened out,offering structural resources for covalent inhibitors development.Moreover,the screened compounds,norketamine and hydroxynorketamine,could modify synaptic transmission-related proteins in vivo,indicating their potential as covalent inhibitors.This experimental-based screening strategy provides a quick and reliable guidance for the design and discovery of covalent inhibitors. 展开更多
关键词 Cysteine-targeting inhibitors screening Drug repurposing Metabolites LC-MS/MS Protein targets
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部