Gasification is a highly effective technology for converting biomass into fuel gas or syngas.While various gas-ifiers have been commercialized for fuel gas production,mitigating tar formation in gasifiers remains chal...Gasification is a highly effective technology for converting biomass into fuel gas or syngas.While various gas-ifiers have been commercialized for fuel gas production,mitigating tar formation in gasifiers remains chal-lenging.This review is devoted to summarizing the general strategies adopted in various gasifiers to reduce tar formation for high-efficiency clean gasification.For single-bed and staged-gasification processes,their low-tar strategies are typically different.In the single-bed processes,the low-tar strategies involve in-bed intensifica-tion achieved by controlling flow directions of gas and particles inside the gasifier.During the gasification,these two components often have different temperatures to facilitate thermochemical interactions between them.Meanwhile,the two-stage gasifiers are generally designed to decouple pyrolysis,gasification and tar cracking reactions for maximizing the benefits(such as yield and efficiency)realized from the interactions among these reactions.In addition to minimizing tar formation,the approach of reaction decoupling can also raise the calorific value of product gas,even without use of oxygen,and/or improve the adaptability of gasification technology to the feedstocks with various moisture contents and particle sizes.The reanalysis based on those essential low-tar strategies is expected to gain alternative insights into the reaction principles implicated in most advanced biomass gasification technologies.展开更多
Carbon materials are widely recognized as highly promising electrode materials for various energy storage system applications.Coal tar residues(CTR),as a type of carbon-rich solid waste with high value-added utilizati...Carbon materials are widely recognized as highly promising electrode materials for various energy storage system applications.Coal tar residues(CTR),as a type of carbon-rich solid waste with high value-added utilization,are crucially important for the development of a more sustainable world.In this study,we employed a straightforward direct carbonization method within the temperature range of 700-1000℃to convert the worthless solid waste CTR into economically valuable carbon materials as anodes for potassium-ion batteries(PIBs).The effect of carbonization temperature on the microstructure and the potassium ions storage properties of CTR-derived carbons(CTRCs)were systematically explored by structural and morphological characterization,alongside electrochemical performances assessment.Based on the co-regulation between the turbine layers,crystal structure,pore structure,functional groups,and electrical conductivity of CTR-derived carbon carbonized at 900℃(CTRC-900H),the electrode material with high reversible capacity of 265.6m Ah·g^(-1)at 50 m A·g^(-1),a desirable cycling stability with 93.8%capacity retention even after 100 cycles,and the remarkable rate performance for PIBs were obtained.Furthermore,cyclic voltammetry(CV)at different scan rates and galvanostatic intermittent titration technique(GITT)have been employed to explore the potassium ions storage mechanism and electrochemical kinetics of CTRCs.Results indicate that the electrode behavior is predominantly governed by surface-induced capacitive processes,particularly under high current densities,with the potassium storage mechanism characterized by an“adsorption-weak intercalation”mechanism.This work highlights the potential of CTR-based carbon as a promising electrode material category suitable for high-performance PIBs electrodes,while also provides valuable insights into the new avenues for the high value-added utilization of CTR.展开更多
The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves t...The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves the muscles of the upper and/or lower extremities,and the muscles of the bulbar and/or respiratory regions.However,as the disease progresses,it affects the adjacent body regions,leading to generalized muscle weakness,occasionally along with memory,cognitive,behavioral,and language impairments;respiratory dysfunction occurs at the final stage of the disease.The disease has a complicated pathophysiology and currently,only riluzole,edaravone,and phenylbutyrate/taurursodiol are licensed to treat amyotrophic lateral sclerosis in many industrialized countries.The TAR DNA-binding protein 43 inclusions are observed in 97%of those diagnosed with amyotrophic lateral sclerosis.This review provides a preliminary overview of the potential effects of TAR DNAbinding protein 43 in the pathogenesis of amyotrophic lateral sclerosis,including the abnormalities in nucleoplasmic transport,RNA function,post-translational modification,liquid-liquid phase separation,stress granules,mitochondrial dysfunction,oxidative stress,axonal transport,protein quality control system,and non-cellular autonomous functions(e.g.,glial cell functions and prion-like propagation).展开更多
Ethylene tar is a prospective precursor for preparing carbonaceous materials,which is regarded as a representative soft carbon material after carbonization.However,the introduction of oxygen can influence the morpholo...Ethylene tar is a prospective precursor for preparing carbonaceous materials,which is regarded as a representative soft carbon material after carbonization.However,the introduction of oxygen can influence the morphology of the final carbonaceous materials.For the introduction of oxygen,dealkylation and dehydrogenation will be promoted and the molecules can be linked more effectively.For the subsequent carbonization,the biphenyl structures caused by the deoxygenation via the elimination of CO_(2),as well as the reserved aromatic ether bonds,can facilitate the strong cross-linking,which will restrain the movement of the carbon layers and the formation of the graphitic structures.After the graphitization treatment at 2800℃,the oxidized pitch can lead to short-range ordered and long-range unordered structures,while the sample without oxidation can result in long-range ordered graphitic structures.It can be proved that a simple oxidation-carbonization treatment can transform ethylene tar into hard carbon structures.展开更多
An efficient utilization strategy of ethylene tar(ET),the main by-product of the ethylene cracking unit,is urgently required to meet demands for modern petrochemical industry.On the other hand,condensed polynuclear ar...An efficient utilization strategy of ethylene tar(ET),the main by-product of the ethylene cracking unit,is urgently required to meet demands for modern petrochemical industry.On the other hand,condensed polynuclear aromatic resin of moderate condensation degree(B-COPNA)is a widely used carbon material due to its superb processability,the production of which is,however,seriously limited by the high cost of raw materials.Under such context,an interesting strategy was proposed in this study for producing B-COPNA resin using crosslinked light fractions of ethylene tar(ETLF,boiling point<260℃)facilitated by molecular simulation.1,4-Benzenedimethanol(PXG)was first selected as the crosslinking agent according to the findings of molecular simulation.The effects of operating conditions,including reactions temperature,crosslinking agent,and catalyst content on the softening point and yield of B-COPNA resin products were then investigated to optimize the process.The reaction mechanism of resin production was studied by analyzing the molecular structure and transition state of ETLF and crosslinking agents.It was shown that PXG exhibited a superior capacity of withdrawing electrons and a higher electrophilic reactivity than other crosslinking agents.In addition to the highest yield and greatest heat properties,PXG-prepared resin contained the most condensed aromatics.The corresponding optimized conditions of resin preparation were 180℃,1:1.9(PXG:ETLF),and 3%(mass)of catalyst content with a resin yield of 78.57%.It was the electrophilic substitution reaction that occurred between the ETLF and crosslinking agent molecules that were responsible for the resin formation,according to the experimental characterization and molecular simulation.Hence,it was confirmed that the proposed strategy and demonstrated process can achieve a clean and high value-added utilization of ETLF via B-COPNA resin preparation,bringing huge economic value to the current petrochemical industry.展开更多
Hydroconversion of coal tar to produce aromatic hydrocarbons(BTX)represents a crucial strategy for the highvalue hierarchical utilization of coal.This study focused on the hydrocracking of hydrorefined products derive...Hydroconversion of coal tar to produce aromatic hydrocarbons(BTX)represents a crucial strategy for the highvalue hierarchical utilization of coal.This study focused on the hydrocracking of hydrorefined products derived from coal tar to enhance the production of benzene,toluene,and xylene(BTX).Various reaction conditions,including reaction temperature,hydrogen pressure,space velocity,and hydrogen-to-oil volume ratio,were systematically explored to optimize BTX yields while also considering the process’s economic feasibility.The results indicate that increasing the reaction temperature from 360℃ to 390℃ significantly favors the production of BTX,with yields increasing from 21.42%to 41.14%.Similarly,an increase in hydrogen pressure from 4 MPa to 6 MPa boosts BTX production,with yields rising from 36.31%to 41.14%.Reducing the space velocity from 2 h^(-1) to 0.5 h^(-1) also favors the BTX production process,with yields increasing from 37.96%to 45.13%.Furthermore,raising the hydrogen-to-oil volume ratio from 750 to 1500 improves BTX yields from 41.61%to 45.44%.Through economic analysis,the optimal conditions for BTX production were identified as a reaction temperature of 390℃,hydrogen pressure of 5-6 MPa,space velocity of 1 h^(-1),and hydrogen-to-oil volume ratio of 1000,achieving a BTX yield of 43.73%.This investigation highlights the importance of a holistic evaluation of hydrocracking conditions to optimize BTX production.Furthermore,the findings offer valuable insights for the design and operation of industrial hydrocracking processes aimed at efficiently converting coal tar-derived hydrorefined feedstock into BTX.展开更多
In order to study the combustion characteristics of tar in biomass gasifier inner wall and gasification gas,“tobacco stem semi-tar inside furnace”,“tobacco stem tar inside furnace”and“tobacco stem tar out-of-furn...In order to study the combustion characteristics of tar in biomass gasifier inner wall and gasification gas,“tobacco stem semi-tar inside furnace”,“tobacco stem tar inside furnace”and“tobacco stem tar out-of-furnace”were subjected to thermogravimetric experiments,and the combustion characteristics and kinetic characteristics were analyzed.The result shows that“tobacco stem semi-tar inside furnace”has the highest value and“tobacco stem tar out-of-furnace”is has the lowest value on ignition characteristics,combustion characteristics and combustible stability;“tobacco stem semi-tar inside furnace”has the lowest value and“tobacco stem tar outside furnace”has the highest value on burnout characteristics;“tobacco stem tar outside furnace”has the highest value and“tobacco stem tar inside furnace”has the lowest value on integrated combustion characteristics.展开更多
Coal pyrolysis integrated with dry reforming of low-carbon alkane(CP-DRA)is an effective way to improve tar yield.Ni/La_(2)O_(3)-ZrO_(2) with a La/Zr ratio of 4 was a good catalyst for DRA to inhibit carbon deposition...Coal pyrolysis integrated with dry reforming of low-carbon alkane(CP-DRA)is an effective way to improve tar yield.Ni/La_(2)O_(3)-ZrO_(2) with a La/Zr ratio of 4 was a good catalyst for DRA to inhibit carbon deposition and obtain high tar yield in CP-DRA.In this study,the fraction distribution and component of tars from CP-DRA and coal pyrolysis in N_(2) atmosphere(CP-N_(2))were characterized by using several methods to understand the effect of DRA on coal pyrolysis.The isotope trace method was also used to discuss the role of low-carbon alkane in CP-DRA.The results showed that the tar from CP-N_(2)is mainly composed of aliphatic compounds with more C_(al),H_(al) and CH+CH_(2),and the tar from CP-DRA contains more Car,Har,and CH_(3),and has lower weight-average molecular weight and more light tar content than CP-N_(2).A small amount of C_(2)H_(6) addition in CP-DRA will raise the ratio of H_(β) and CH+CH_(2).Electron paramagnetic resonance(EPR)analysis shows that the tar from CP-DRA has a higher radical concentration while the corresponding char has a lower radical concentration.The isotope trace experiment showed that alkanes provide·H,·CH_(3),etc.to stabilize the radicals from coal pyrolysis and result in more alkyl aromatic compounds during CP-DRA.展开更多
Biomass,heralded as sustainable“green coal”,plays a crucial role in energy conservation and achieving“dual carbon”objectives through clean conversion.This paper reviews advancements in biomass catalytic gasificati...Biomass,heralded as sustainable“green coal”,plays a crucial role in energy conservation and achieving“dual carbon”objectives through clean conversion.This paper reviews advancements in biomass catalytic gasification,a technology pivotal for converting biomass to hydrogen-rich fuel and syngas.It highlights the efficiency gains afforded by various catalysts,including natural minerals,alkali metals,nickel-based compounds,zeolites,and rare earth-modified composites.The focus is on their influence on hydrogen output,syngas quality,and tar reduction.The synthesis of these insights paves the way for novel catalyst development and optimized gasification processes,hence advancing catalytic gasification technology toward more sustainable energy solutions.展开更多
对三角形面积表示法(Triangle Area Representation,TAR)描述图形进行讨论,分析TAR-AVG(TAR Average Filtering)和TAR-MED(TAR Median Filtering)的原理.用TAR-AVG衡量图形的外凸与内凹特性,用TAR-MED获得边界曲率信息.结合两种方法的...对三角形面积表示法(Triangle Area Representation,TAR)描述图形进行讨论,分析TAR-AVG(TAR Average Filtering)和TAR-MED(TAR Median Filtering)的原理.用TAR-AVG衡量图形的外凸与内凹特性,用TAR-MED获得边界曲率信息.结合两种方法的滤波特性,提出TAR-MAMF(TAR Median Average Mixed Filtering)方法,对滤波结果用直方图表示,从直方图输出结果中提取有效的特征参数,确定图形中凹点和凸点的数量以及所在边界的位置,实现图形拐点识别.实验证明,TAR-MAMF方法对图形拐点的定位准确、有效.展开更多
The capillary electrophoretic separation of Fe 2+ , Co 2+ , Zn 2+ and Ni 2+ in a phosphate buffer solution by complexing with 4 (2 thiazolylazo)resorcinol was investigated. The influences of some crucial parameters th...The capillary electrophoretic separation of Fe 2+ , Co 2+ , Zn 2+ and Ni 2+ in a phosphate buffer solution by complexing with 4 (2 thiazolylazo)resorcinol was investigated. The influences of some crucial parameters that included chelating ligand in the electrophoretic running buffer and sample solution, pH value and concentration of buffer were examined. Under optimum conditions (10mmol·l -1 NaH 2PO 4 Na 2HPO 4 buffer containing 1×10 -4 mol·l -1 TAR, pH 7 5), a baseline separation of these metals was accomplished within 3 min. The detection limits (S/N=3) ranged from 0 013—0 14 μg·ml -1 . The method was applied to analyze trace metal ions in the environmental samples.展开更多
基金supported by Youth Fund of National Natural Science Foundation of China(NO.22108175)Basic scientific research Project of colleges and universities of Liaoning Provincial Department of Educa-tion(No.LJKMZ20220798)+1 种基金National Natural Science Foundation of China(No.U1903130)Natural Science Foundation of Liaoning province(No.2021-NLTS-12-09),China,and JST Grant Number JPMJPF2104,Japan.
文摘Gasification is a highly effective technology for converting biomass into fuel gas or syngas.While various gas-ifiers have been commercialized for fuel gas production,mitigating tar formation in gasifiers remains chal-lenging.This review is devoted to summarizing the general strategies adopted in various gasifiers to reduce tar formation for high-efficiency clean gasification.For single-bed and staged-gasification processes,their low-tar strategies are typically different.In the single-bed processes,the low-tar strategies involve in-bed intensifica-tion achieved by controlling flow directions of gas and particles inside the gasifier.During the gasification,these two components often have different temperatures to facilitate thermochemical interactions between them.Meanwhile,the two-stage gasifiers are generally designed to decouple pyrolysis,gasification and tar cracking reactions for maximizing the benefits(such as yield and efficiency)realized from the interactions among these reactions.In addition to minimizing tar formation,the approach of reaction decoupling can also raise the calorific value of product gas,even without use of oxygen,and/or improve the adaptability of gasification technology to the feedstocks with various moisture contents and particle sizes.The reanalysis based on those essential low-tar strategies is expected to gain alternative insights into the reaction principles implicated in most advanced biomass gasification technologies.
基金financially supported by the Research Project Supported by Shanxi Scholarship Council of China(No.2022-049)the Natural Science Foundation of Shanxi Province,China(No.20210302123167)。
文摘Carbon materials are widely recognized as highly promising electrode materials for various energy storage system applications.Coal tar residues(CTR),as a type of carbon-rich solid waste with high value-added utilization,are crucially important for the development of a more sustainable world.In this study,we employed a straightforward direct carbonization method within the temperature range of 700-1000℃to convert the worthless solid waste CTR into economically valuable carbon materials as anodes for potassium-ion batteries(PIBs).The effect of carbonization temperature on the microstructure and the potassium ions storage properties of CTR-derived carbons(CTRCs)were systematically explored by structural and morphological characterization,alongside electrochemical performances assessment.Based on the co-regulation between the turbine layers,crystal structure,pore structure,functional groups,and electrical conductivity of CTR-derived carbon carbonized at 900℃(CTRC-900H),the electrode material with high reversible capacity of 265.6m Ah·g^(-1)at 50 m A·g^(-1),a desirable cycling stability with 93.8%capacity retention even after 100 cycles,and the remarkable rate performance for PIBs were obtained.Furthermore,cyclic voltammetry(CV)at different scan rates and galvanostatic intermittent titration technique(GITT)have been employed to explore the potassium ions storage mechanism and electrochemical kinetics of CTRCs.Results indicate that the electrode behavior is predominantly governed by surface-induced capacitive processes,particularly under high current densities,with the potassium storage mechanism characterized by an“adsorption-weak intercalation”mechanism.This work highlights the potential of CTR-based carbon as a promising electrode material category suitable for high-performance PIBs electrodes,while also provides valuable insights into the new avenues for the high value-added utilization of CTR.
基金in part supported by the National Natural Science Foundation of China,Nos.30560042,81160161,81360198,and 82160255Education Department of Jiangxi Province,Nos.GJJ13198 and GJJ170021+1 种基金Jiangxi Provincial Department of Science and Technology,No.20192BAB205043Health and Family Planning Commission of Jiangxi Province,Nos.20181019 and 202210002(all to RX)。
文摘The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves the muscles of the upper and/or lower extremities,and the muscles of the bulbar and/or respiratory regions.However,as the disease progresses,it affects the adjacent body regions,leading to generalized muscle weakness,occasionally along with memory,cognitive,behavioral,and language impairments;respiratory dysfunction occurs at the final stage of the disease.The disease has a complicated pathophysiology and currently,only riluzole,edaravone,and phenylbutyrate/taurursodiol are licensed to treat amyotrophic lateral sclerosis in many industrialized countries.The TAR DNA-binding protein 43 inclusions are observed in 97%of those diagnosed with amyotrophic lateral sclerosis.This review provides a preliminary overview of the potential effects of TAR DNAbinding protein 43 in the pathogenesis of amyotrophic lateral sclerosis,including the abnormalities in nucleoplasmic transport,RNA function,post-translational modification,liquid-liquid phase separation,stress granules,mitochondrial dysfunction,oxidative stress,axonal transport,protein quality control system,and non-cellular autonomous functions(e.g.,glial cell functions and prion-like propagation).
基金financially supported by the National Natural Science Foundation of China(22075081,52372045 and U1710252)the Fundamental Research Funds for the Central Universities(JKD01231701)+1 种基金China Postdoctoral Science Foundation(2023M731084)Shanghai Sailing Program of China(23YF1408900).
文摘Ethylene tar is a prospective precursor for preparing carbonaceous materials,which is regarded as a representative soft carbon material after carbonization.However,the introduction of oxygen can influence the morphology of the final carbonaceous materials.For the introduction of oxygen,dealkylation and dehydrogenation will be promoted and the molecules can be linked more effectively.For the subsequent carbonization,the biphenyl structures caused by the deoxygenation via the elimination of CO_(2),as well as the reserved aromatic ether bonds,can facilitate the strong cross-linking,which will restrain the movement of the carbon layers and the formation of the graphitic structures.After the graphitization treatment at 2800℃,the oxidized pitch can lead to short-range ordered and long-range unordered structures,while the sample without oxidation can result in long-range ordered graphitic structures.It can be proved that a simple oxidation-carbonization treatment can transform ethylene tar into hard carbon structures.
基金support of National Natural Science Foundation of P.R.China(22308104).
文摘An efficient utilization strategy of ethylene tar(ET),the main by-product of the ethylene cracking unit,is urgently required to meet demands for modern petrochemical industry.On the other hand,condensed polynuclear aromatic resin of moderate condensation degree(B-COPNA)is a widely used carbon material due to its superb processability,the production of which is,however,seriously limited by the high cost of raw materials.Under such context,an interesting strategy was proposed in this study for producing B-COPNA resin using crosslinked light fractions of ethylene tar(ETLF,boiling point<260℃)facilitated by molecular simulation.1,4-Benzenedimethanol(PXG)was first selected as the crosslinking agent according to the findings of molecular simulation.The effects of operating conditions,including reactions temperature,crosslinking agent,and catalyst content on the softening point and yield of B-COPNA resin products were then investigated to optimize the process.The reaction mechanism of resin production was studied by analyzing the molecular structure and transition state of ETLF and crosslinking agents.It was shown that PXG exhibited a superior capacity of withdrawing electrons and a higher electrophilic reactivity than other crosslinking agents.In addition to the highest yield and greatest heat properties,PXG-prepared resin contained the most condensed aromatics.The corresponding optimized conditions of resin preparation were 180℃,1:1.9(PXG:ETLF),and 3%(mass)of catalyst content with a resin yield of 78.57%.It was the electrophilic substitution reaction that occurred between the ETLF and crosslinking agent molecules that were responsible for the resin formation,according to the experimental characterization and molecular simulation.Hence,it was confirmed that the proposed strategy and demonstrated process can achieve a clean and high value-added utilization of ETLF via B-COPNA resin preparation,bringing huge economic value to the current petrochemical industry.
文摘Hydroconversion of coal tar to produce aromatic hydrocarbons(BTX)represents a crucial strategy for the highvalue hierarchical utilization of coal.This study focused on the hydrocracking of hydrorefined products derived from coal tar to enhance the production of benzene,toluene,and xylene(BTX).Various reaction conditions,including reaction temperature,hydrogen pressure,space velocity,and hydrogen-to-oil volume ratio,were systematically explored to optimize BTX yields while also considering the process’s economic feasibility.The results indicate that increasing the reaction temperature from 360℃ to 390℃ significantly favors the production of BTX,with yields increasing from 21.42%to 41.14%.Similarly,an increase in hydrogen pressure from 4 MPa to 6 MPa boosts BTX production,with yields rising from 36.31%to 41.14%.Reducing the space velocity from 2 h^(-1) to 0.5 h^(-1) also favors the BTX production process,with yields increasing from 37.96%to 45.13%.Furthermore,raising the hydrogen-to-oil volume ratio from 750 to 1500 improves BTX yields from 41.61%to 45.44%.Through economic analysis,the optimal conditions for BTX production were identified as a reaction temperature of 390℃,hydrogen pressure of 5-6 MPa,space velocity of 1 h^(-1),and hydrogen-to-oil volume ratio of 1000,achieving a BTX yield of 43.73%.This investigation highlights the importance of a holistic evaluation of hydrocracking conditions to optimize BTX production.Furthermore,the findings offer valuable insights for the design and operation of industrial hydrocracking processes aimed at efficiently converting coal tar-derived hydrorefined feedstock into BTX.
基金the Financial Supported by Hunan Provincial Natural Science Foundation of China(No.2023JJ50224)2021–2022 Hunan Province Enterprise Science and Technology Commissioner Program Project(No.2021GK5046)+1 种基金Hunan Provincial Natural Science Foundation of China(No.2022JJ50013)Hunan Provincial Natural Science Foundation of China(No.2022JJ50041).
文摘In order to study the combustion characteristics of tar in biomass gasifier inner wall and gasification gas,“tobacco stem semi-tar inside furnace”,“tobacco stem tar inside furnace”and“tobacco stem tar out-of-furnace”were subjected to thermogravimetric experiments,and the combustion characteristics and kinetic characteristics were analyzed.The result shows that“tobacco stem semi-tar inside furnace”has the highest value and“tobacco stem tar out-of-furnace”is has the lowest value on ignition characteristics,combustion characteristics and combustible stability;“tobacco stem semi-tar inside furnace”has the lowest value and“tobacco stem tar outside furnace”has the highest value on burnout characteristics;“tobacco stem tar outside furnace”has the highest value and“tobacco stem tar inside furnace”has the lowest value on integrated combustion characteristics.
基金supported by the National Natural Science Foundation of China(21576046)the Innovation Team Support Program in Key Areas of the Dalian Science and Technology Bureau(2019RT10).
文摘Coal pyrolysis integrated with dry reforming of low-carbon alkane(CP-DRA)is an effective way to improve tar yield.Ni/La_(2)O_(3)-ZrO_(2) with a La/Zr ratio of 4 was a good catalyst for DRA to inhibit carbon deposition and obtain high tar yield in CP-DRA.In this study,the fraction distribution and component of tars from CP-DRA and coal pyrolysis in N_(2) atmosphere(CP-N_(2))were characterized by using several methods to understand the effect of DRA on coal pyrolysis.The isotope trace method was also used to discuss the role of low-carbon alkane in CP-DRA.The results showed that the tar from CP-N_(2)is mainly composed of aliphatic compounds with more C_(al),H_(al) and CH+CH_(2),and the tar from CP-DRA contains more Car,Har,and CH_(3),and has lower weight-average molecular weight and more light tar content than CP-N_(2).A small amount of C_(2)H_(6) addition in CP-DRA will raise the ratio of H_(β) and CH+CH_(2).Electron paramagnetic resonance(EPR)analysis shows that the tar from CP-DRA has a higher radical concentration while the corresponding char has a lower radical concentration.The isotope trace experiment showed that alkanes provide·H,·CH_(3),etc.to stabilize the radicals from coal pyrolysis and result in more alkyl aromatic compounds during CP-DRA.
基金supported by the National Natural Science Foundation of China(52160013,51768054)Inner Mongolia Autonomous Region"Grassland Talent"Science Fund Program(CYY012057)+2 种基金Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT22062)Inner Mongolia Natural Science Foundation(2021LHMS05026)Inner Mongolia University Research Program(2023RCTD018,2023YXXS023,2024YXXS047).
文摘Biomass,heralded as sustainable“green coal”,plays a crucial role in energy conservation and achieving“dual carbon”objectives through clean conversion.This paper reviews advancements in biomass catalytic gasification,a technology pivotal for converting biomass to hydrogen-rich fuel and syngas.It highlights the efficiency gains afforded by various catalysts,including natural minerals,alkali metals,nickel-based compounds,zeolites,and rare earth-modified composites.The focus is on their influence on hydrogen output,syngas quality,and tar reduction.The synthesis of these insights paves the way for novel catalyst development and optimized gasification processes,hence advancing catalytic gasification technology toward more sustainable energy solutions.
文摘对三角形面积表示法(Triangle Area Representation,TAR)描述图形进行讨论,分析TAR-AVG(TAR Average Filtering)和TAR-MED(TAR Median Filtering)的原理.用TAR-AVG衡量图形的外凸与内凹特性,用TAR-MED获得边界曲率信息.结合两种方法的滤波特性,提出TAR-MAMF(TAR Median Average Mixed Filtering)方法,对滤波结果用直方图表示,从直方图输出结果中提取有效的特征参数,确定图形中凹点和凸点的数量以及所在边界的位置,实现图形拐点识别.实验证明,TAR-MAMF方法对图形拐点的定位准确、有效.
文摘The capillary electrophoretic separation of Fe 2+ , Co 2+ , Zn 2+ and Ni 2+ in a phosphate buffer solution by complexing with 4 (2 thiazolylazo)resorcinol was investigated. The influences of some crucial parameters that included chelating ligand in the electrophoretic running buffer and sample solution, pH value and concentration of buffer were examined. Under optimum conditions (10mmol·l -1 NaH 2PO 4 Na 2HPO 4 buffer containing 1×10 -4 mol·l -1 TAR, pH 7 5), a baseline separation of these metals was accomplished within 3 min. The detection limits (S/N=3) ranged from 0 013—0 14 μg·ml -1 . The method was applied to analyze trace metal ions in the environmental samples.