One-dimensional perovskites possess unique photoelectric properties that distinguish them from other perovskitetypes, making them a focal point in photoelectric research. In recent years, there has been a significant ...One-dimensional perovskites possess unique photoelectric properties that distinguish them from other perovskitetypes, making them a focal point in photoelectric research. In recent years, there has been a significant surge ininterest surrounding the synthesis and application of one-dimensional anisotropic perovskites, spurred by ad-vancementsin synthesis techniques and notable breakthroughs in novel methodologies and application proper-ties.This article provides a comprehensive review of the progress made in research on one-dimensionalanisotropic perovskites, detailing the synthesis mechanisms and potential pathways for performance enhance-mentin various applications. We highlight the crucial role of controllable synthesis and heterogeneous effect intailoring perovskite properties to boost application efficacy. Initially, this review examines the primary synthesismethods and mechanisms for creating heterogeneously induced one-dimensional anisotropic perovskites, cate-gorizingthem into two main approaches: the classical wet chemical synthesis, which utilizes selective ligands, andthe ligand-free, substrate-assisted method. The precision in controllable synthesis is essential for fabricatingheterogeneous structures, where the synthesized precursor, shape, and surface ligand significantly influence theinterfacial strength of the heterogenic interface. We also discuss the key features that must be improved for high-performanceapplications, exploring how heterogeneous effects can enhance performance and drive the devel-opmentof heterogeneous devices in various applications, such as photodetectors, solar cells, light-emitting di-odes,and photocatalysis. Conclusively, by highlighting the emerging potential and promising opportunitiesoffered by strategic heterogeneous construction, we forecast a dynamic and transformative future for their pro-ductionand application landscapes.展开更多
The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended ...The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended operating periods. In this study, we developed a composite anode(A/IF) by coating iron foam with cellulose-based aerogel. The concentration of Fe ions in the anode solution of A/IF anode reaches 0.280 μg/mL(Fe^(2+) vs. Fe^(3+) = 61%:39%) after 720 h of aseptic primary cell operation. This value was significantly higher than that(0.198 μg/mL, Fe^(2+) vs. Fe^(3+) = 92%:8%) on uncoated iron foam(IF), indicating a continuous release of Fe ions over long-term operation. Notably, the resulting MFCs hybrid cell exhibited a 23% reduction in Fe ion concentration(compared to a 47% reduction for the IF anode) during the sixth testing cycle(600-720 h). It achieved a high-power density of 301 ± 55 mW/m^(2) at 720 h, which was 2.62 times higher than that of the IF anode during the same period. Furthermore, a sedimentary microbial fuel cell(SMFCs) was constructed in a marine environment, and the A/IF anode demonstrated a power density of 103 ± 3 mW/m^(2) at 3240 h, representing a 75% improvement over the IF anode. These findings elucidate the significant enhancement in long-term power production performance of MFCs achieved through effective tailoring of Fe ions release during operation.展开更多
Sodium-ion batteries stand a chance of enabling fast charging ability and long lifespan while operating at low temperature(low-T).However,sluggish kinetics and aggravated dendrites present two major challenges for ano...Sodium-ion batteries stand a chance of enabling fast charging ability and long lifespan while operating at low temperature(low-T).However,sluggish kinetics and aggravated dendrites present two major challenges for anodes to achieve the goal at low-T.Herein,we propose an interlayer confined strategy for tailoring nitrogen terminals on Ti_(3)C_(2) MXene(Ti_(3)C_(2)-N_(funct)) to address these issues.The introduction of nitrogen terminals endows Ti_(3)C_(2)-N_(funct) with large interlayer space and charge redistribution,improved conductivity and sufficient adsorption sites for Na^(+),which improves the possibility of Ti_(3)C_(2) for accommodating more Na atoms,further enhancing the Na^(+) storage capability of Ti_(3)C_(2).As revealed,Ti_(3)C_(2)-N_(funct) not only possesses a lower Na-ion diffusion energy barrier and charge trans-fer activation energy,but also exhibits Na^(+)-solvent co-intercalation behavior to circumvent a high de-solvation energy barrier at low-T.Besides,the solid electrolyte interface dominated by inorganic com-pounds is more beneficial for the Na^(+)transfer at the electrode/electrolyte interface.Compared with of the unmodified sample,Ti_(3)C_(2)-Nfunct exhibits a twofold capacity(201 mAh g^(-1)),fast-charging ability(18 min at 80% capacity retention),and great superiority in cycle life(80.9%@5000 cycles)at -25℃.When coupling with Na_(3)V_(2)(PO_(4))_(2)F_(3) cathode,the Ti_(3)C_(2)-N_(funct)//NVPF exhibits high energy density and cycle stability at -25℃.展开更多
The structural,morphological and optical properties of single-phase polycrystalline La2-xSrxNiMnO6(x=0,0.3 and 0.5),synthesized by solid state reaction were investigated.The samples were characterized by X-ray diffrac...The structural,morphological and optical properties of single-phase polycrystalline La2-xSrxNiMnO6(x=0,0.3 and 0.5),synthesized by solid state reaction were investigated.The samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM)/energy dispersive analysis of X-rays(EDAX),Raman spectroscopy and diffuse reflectance spectroscopy(DRS)to elucidate the role of A-site Sr-doping in double perovskite La2 NiMnO6.Rietveld analysis of XRD patterns revealed that all the samples have monoclinic structure with space group P21/n.Positive gradient in the Williamson Hall plots revealed the presence of tensile strain in all the samples.The morphological studies revealed that average grain size increases along with appreciable decrease in porosity with Sr doping.The Ni/Mn antisite disorder was introduced in the La2 NiMnO6 by Sr-doping confirmed by an increase in the full width at half maximum(FWHM)and decrease in intensity of the Raman modes at around 540 and 665 cm-1 which correspond to the antisymmetric stretching and symmetric stretching modes,respectively.DRS results reveal that the band gap in La2 NiMnO6 can be tuned down by Sr-doping to a value of1.37 eV(very close to 1.40 eV,considered as optimum value for better efficiency of a solar cell).Thus,Sr-doped La2 NiMnO6 may be of prime importance for applications in solar cells.展开更多
The modification of nanostructured materials is of great interest due to controllable and unusual inherent properties in such materials. Single phase Fe doped Zn O nanostructures have been fabricated through simple, v...The modification of nanostructured materials is of great interest due to controllable and unusual inherent properties in such materials. Single phase Fe doped Zn O nanostructures have been fabricated through simple, versatile and quick low temperature solution route with reproducible results. The amount of Fe dopant is found to play a significant role for the growth of crystal dimension. The effect of changes in the morphology can be obviously observed in the structural and micro-structural investigations, which may be due to a driving force induced by dipole-dipole interaction. The band gap of Zn O nanostructures is highly shifted towards the visible range with increase of Fe contents, while ferromagnetic properties have been significantly improved.The prepared nanostructures have been found to be nontoxic to SH-SY5 Y Cells. The present study clearly indicates that the Fe doping provides an effective way of tailoring the crystal dimension, optical band-gap and ferromagnetic properties of Zn O nanostructure-materials with nontoxic nature, which make them potential for visible light activated photocatalyst to overcome environmental pollution, fabricate spintronics devices and biosafe drug delivery agent.展开更多
Conventional wrought Mg alloys,such as AZ31 and ZK60 rolled plates,usually exhibit significantly low tensile yield strength in the thickness direction.This can be attributed to the high activity of{10-12}tension twinn...Conventional wrought Mg alloys,such as AZ31 and ZK60 rolled plates,usually exhibit significantly low tensile yield strength in the thickness direction.This can be attributed to the high activity of{10-12}tension twinning due to the strong basal texture(<0001>//ND,normal direction).In this work,the tensile yield strength in the ND of the as-rolled(AR)AZ31 plate increased from 50 to 150 MPa(increased by 200%)via simple processing,i.e.,pre-tension and rolling-annealing(PTRA)treatment.The strong basal texture(<0001>//ND)of the AR plate was changed into a weakened fiber texture(<0001>⊥ND).The evolution of microstructures during PTRA treatment and the activated deformation modes during uniaxial tension were studied quantitatively and statistically by the means of intergranular misorientation(IM)and in-grain misorientation axes(IGMA)analysis.The results indicate that various twin variants,as well as{10-12}-{10-12}secondary twins,were activated during pre-tension and rolling,and most residual matrix was consumed by twins after annealing.The dominated deformation modes in tension changed from{10-12}tension twinning(the AR sample)to prismatic slip(the PTRA sample)in the early tensile deformation.The underlying formation mechanism of the fiber texture and corresponding strengthening mechanism were discussed.展开更多
Defect engineering presents great promise in addressing lower specific capacity,sluggish diffusion kinetics and poor cycling life issues in energy storage devices.Herein,multidimensional(0D/2D/3D) structural defects a...Defect engineering presents great promise in addressing lower specific capacity,sluggish diffusion kinetics and poor cycling life issues in energy storage devices.Herein,multidimensional(0D/2D/3D) structural defects are constructed in WO_(3)/MoO_(2) simultaneously via competing for and sharing with O atoms during simple hydrothermal process.OD and 2D defects tailor local electron,activating more sites and generating built-in electric fields to yield ion reservoir,meanwhile,3D defect owning lower anisotropic property tailors Mg^(2+) diffusion channels to fully exploit Mg^(2+) adsorbed sites induced by OD and 2D defects,enhance the kinetics and maintain structural stability.Benefitted from synergistic effect of 0D/2D/3D structural defects,the designed WO_(3)/MoO_(2) shows the higher specific capacity(112.8 mA h g^(-1) at 50 mA g^(-1) with average attenuation rate per cycle of 0.068%),superior rate capability and excellent cycling stability(specific capacity retention of 80% after 1500 cycles at 1000 mA g^(-1)).This strategy provides design ideas of introducing multidimensional structural defects for tailoring local electron and microstructure to improve energy storage property.展开更多
Poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)receives increasing attention in membrane separation field based on its advantages such as high mechanical strength,thermal and chemical stability.However,cont...Poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)receives increasing attention in membrane separation field based on its advantages such as high mechanical strength,thermal and chemical stability.However,controlling the microporous structure is still challenging.In this work,we attempted to tailor the morphology of PVDF-HFP membrane via a one-step reactive vapor induced phase separation method.Namely,PVDF-HFP was dissolved in a volatile solvent and then was cast in an ammonia water vapor atmosphere.After complete evaporation of solvent,membranes with adjustable porous structure were prepared,and the microstructures of the membranes were analyzed by scanning electron microscopy,Fourier transform infrared spectroscopy,X-ray photoelectron spectroscopy and X-ray diffraction characterizations.Based on the results,a mechanism of dehydrofluorination induced cross-linking of PVDF-HFP has been suggested to understand the morphology tailoring.To our knowledge,this is the first report of one-step reactive vapor induced phase separation strategy to tailor morphology of PVDF-HFP membrane.In addition,the membranes prepared in the ammonia water vapor exhibited enhanced mechanical strength and achieved satisfactory separation efficiency for water-in-oil emulsions,suggesting promising potential.展开更多
Achieving high-quality perovskite crystal films is a critical prerequisite in boosting solar cell efficiency and improving the device stability,but the delicate control of nucleation and growth of the perovskite film ...Achieving high-quality perovskite crystal films is a critical prerequisite in boosting solar cell efficiency and improving the device stability,but the delicate control of nucleation and growth of the perovskite film remains limited success.Herein,a facile but effective strategy has been developed to finely tailor the crystallization of thermally stable cesium/formamidinium(Cs/FA)based perovskite via partially replacing PbI2 with PbCl2 in the precursor solution.The incorporation of chlorine into the perovskite crystal lattice derived from PbCl2 changes the crystallization process and improves the crystal quality,which further results in the formation of larger crystal grains compared to the control sample.The larger crystal grains with high crystallinity lead to reduced grain boundaries,suppressed non-radiative recombination,and enhanced photoluminescence lifetime.Under the optimized conditions,the methylammonium free perovskite solar cells(PSCs)delivers a champion power conversion efficiency(PCE)of 21.30%with an open-circuit voltage as high as 1.18 V,which is one of the highest efficiencies for Cs/FA based PSCs up to now.Importantly,the unencapsulated PSC devices retain more than 95%and 81%of their original PCEs even after long-term(over one year)storage under ambient conditions or 2000 h’s thermal aging at 850C in a nitrogen atmosphere,respectively.展开更多
Metals have been mankind’s most essential materials for thousands of years.In recent years,however,innovation-driven development of major national security strategy and core areas of the national economy is highly im...Metals have been mankind’s most essential materials for thousands of years.In recent years,however,innovation-driven development of major national security strategy and core areas of the national economy is highly impeded by a shortage of advanced higher-strength-toughness metals.One of the main reasons is that metals inherently exhibit the inverted-relationship of strength-toughness.The emergence of two types of disordered metals:amorphous alloys and high entropy alloys,provides a fully-fresh strategy for strength-toughening by tailoring the topological and/or chemical disorder.In this paper,we first briefly review the history of strength-toughening of metals,and summarize the development route-map.We then introduce amorphous alloys and high entropy alloys,as well as some case studies in tailoring disorder to successfully achieve coexisting high strength and high ductility/toughness.Relevant challenges that await further research are summarized in concluding remarks.展开更多
Regulating dielectric genes of hollow metal-organic frameworks is a milestone project for microwave absorption(MA).However,there is still a bottleneck in deciphering the contribution of various dielectric genes,making...Regulating dielectric genes of hollow metal-organic frameworks is a milestone project for microwave absorption(MA).However,there is still a bottleneck in deciphering the contribution of various dielectric genes,making it hard to expand the MA potential from selective encoding gene sequences.Herein,a custom-made proton tailoring strategy is used to build a controllable cavity,and meticulously designed thermodynamic regulation promotes the rearrangement of carbon atoms from disorder to order,thus enhancing the characteristics of charge transfer.Meanwhile,the defect-configuration transformation from heteroatom to vacancy and geometric configuration of hollow structure increase the polarization-related dielectric genes.Therefore,MA performance is enhanced towards broadband absorption(6.6 GHz,1.78 mm)and high-efficiency loss(-62.5 dB),making samples suitable for complex open electromagnetic environments.This work realizes the tradeoff between dielectric gene sequences and provides a profound insight into the functions and sources of various microwave loss mechanisms.展开更多
The electronic transport properties of a molecular junction based on doping tailoring armchair-type graphene nanoribbons(AGNRs)with different widths are investigated by applying the non-equilibrium Green's function...The electronic transport properties of a molecular junction based on doping tailoring armchair-type graphene nanoribbons(AGNRs)with different widths are investigated by applying the non-equilibrium Green's function formalism combined with first-principles density functional theory.The calculated results show that the width and doping play significant roles in the electronic transport properties of the molecular junction.A higher current can be obtained for the molecular junctions with the tailoring AGNRs with W=11.Furthermore,the current of boron-doped tailoring AGNRs with widths W=7 is nearly four times larger than that of the undoped one,which can be potentially useful for the design of high performance electronic devices.展开更多
A new material tailoring method for spherical and cylindrical vessels made of functionally graded materials (FGMs) is presented.It is assumed that the FG material is composed of an A1-SiC metallic-matrix composite.A u...A new material tailoring method for spherical and cylindrical vessels made of functionally graded materials (FGMs) is presented.It is assumed that the FG material is composed of an A1-SiC metallic-matrix composite.A uniform ratio of inplane shear stress to yield strength [φ(r)] is used as the design criterion to utilize the maximum capacity of the vessel.The aim is to find a distribution of SiC particles in the radial direction,i.e.,f(r),that achieves a uniform index φ(r) =const,through the wall thickness of the internally pressurized spherical or cylindrical vessel.Both the Mori-Tanaka and rule-of-mixtures homogenization schemes are used to express the effective elastic module and Poisson's ratio.Moreover,the strength of the composite is expressed based on the rule of mixtures.Besides,finite element simulation is carried out to verify the accuracy of the analytical solution.The effects of input parameters such as the internal pressure,strength of the SiC particles,ratio of in-plane shear stress to effective yield strength,and choice of homogenization scheme on the tailored distribution of the SiC volume fraction in the radial direction are also investigated.展开更多
Using ab initio density functional theory calculations, we explore the three most stable structural phases, namely, α,β, and cubic(c) phases, of two-dimensional(2D) antimonene, as well as its isoelectronic counterpa...Using ab initio density functional theory calculations, we explore the three most stable structural phases, namely, α,β, and cubic(c) phases, of two-dimensional(2D) antimonene, as well as its isoelectronic counterparts SnTe and InI. We find that the band gap increases monotonically from Sb to SnTe to InI along with an increase in ionicity, independent of the structural phases. The band gaps of this material family cover the entire visible-light energy spectrum, ranging from 0.26 eV to 3.37 eV, rendering them promising candidates for optoelectronic applications. Meanwhile, band-edge positions of these materials are explored and all three types of band alignments can be achieved through properly combining antimonene with its isoelectronic counterparts to form heterostructures. The richness in electronic properties for this isoelectronic material family sheds light on possibilities to tailor the fundamental band gap of antimonene via lateral alloying or forming vertical heterostructures.展开更多
This paper deals with the aeroelastic tailoring of aeronautical composite wing surfaces. The objective function is structural weight. Multi constraints, such as displacements, flutter speed and gauge requirements, are...This paper deals with the aeroelastic tailoring of aeronautical composite wing surfaces. The objective function is structural weight. Multi constraints, such as displacements, flutter speed and gauge requirements, are taken into consideration. Finite element method is used to the static analysis. Natural vibration modes are obtained by the spectral transformation Lanczos method. Subsonic doublet lattice method is used to obtain the unsteady aerodynamics.The critical flutter speed is generated by V-g method.The optimal problem is solved by the feasible direction method.The thickness of the composite wing skin is simulated by bicubic polynomials, whose coefficients combined with the cross-sectional areas or thicknesses of other finite elements are the design variables. The scale of the problem is reduced by variable linkage. Derivative analysis is performed analytically.Two composite wing boxes and a swept-back composite wing are optimized at the end of the paper.展开更多
Chronic inflammatory demyelinating polyneuropathy (CIDP) is a treatable immune-mediated disorder, which causes in its typical form, symmetric proximal and distal weakness with large fibre sensory impairment involvin...Chronic inflammatory demyelinating polyneuropathy (CIDP) is a treatable immune-mediated disorder, which causes in its typical form, symmetric proximal and distal weakness with large fibre sensory impairment involving the four limbs. There are currently three main first-line therapeutic options for CIDP. These consist of corticosteroids, immunoglobulins and plasma exchanges (PE) which have all been found effective in a number of trials conducted over the past several years (Van den Bergh and Rajabally, 2013). No immunosuppressant therapy has shown benefit in CIDP, although they are utilized by many clinicians in various circumstances despite absence of an evidence base.展开更多
Tailoring of an operating system and an in embedded real-time operating system in particular is es-sential for both, kernel and operation. But many of current embedded real-time operating systems provide somebasic tai...Tailoring of an operating system and an in embedded real-time operating system in particular is es-sential for both, kernel and operation. But many of current embedded real-time operating systems provide somebasic tailoring at the cost of depleting the flexibility of hardware, which causes the lack of flexibility, and de-grades their tailors. A layered modular tailoring model has been proposed together with some tailoring operationsto improve the flexibility of the systems, and algorithms have been proposed for verification of tailoring opera-tions with the current operating system.展开更多
Tuning the bandgap in layered transition metal dichalcogenides(TMDCs) is crucial for their versatile applications in many fields. The ternary formation is a viable method to tune the bandgap as well as other intrinsic...Tuning the bandgap in layered transition metal dichalcogenides(TMDCs) is crucial for their versatile applications in many fields. The ternary formation is a viable method to tune the bandgap as well as other intrinsic properties of TMDCs, because the multi-elemental characteristics provide additional tunability at the atomic level and advantageously alter the physical properties of TMDCs. Herein, ternary Ti_(x)Zr_(1-x)Se_(2) single crystals were synthesized using the chemical-vapor-transport method. The changes in electronic structures of ZrSe_(2) induced by Ti substitution were revealed using angle-resolved photoemission spectroscopy. Our data show that at a low level of Ti substitution, the bandgap of Ti_(x)Zr_(1-x)Se_(2) decreases monotonically, and the electronic system undergoes a transition from a semiconducting to a metallic state without a significant variation of dispersions of valence bands. Meanwhile, the size of spin-orbit splitting dominated by Se 4p orbitals decreases with the increase of Ti doping. Our work shows a convenient way to alter the bandgap and spin-orbit coupling in TMDCs at the low level of substitution of transition metals.展开更多
This paper presents experimental and numerical investigation on the parameters effecting energy absorption capability of composite tubular structures at oblique loading to improve crashworthiness performance. Various ...This paper presents experimental and numerical investigation on the parameters effecting energy absorption capability of composite tubular structures at oblique loading to improve crashworthiness performance. Various inclined angles of 5°, 10°, 20° and 30° were selected for the study of off-axis loading. The results indicate that by increasing the lateral inclination angle the mean crushing force and also energy absorption capability of all tested sections decreased. From design perspective, it is necessary to investigate the parameters effecting this phenomenon. The off-axis loading effect that causes significant reduction in energy absorption was investigated and the effected parameters were improved to increase energy absorption capability. To establish this study, 10° off-axis loading was chosen to illustrate the obtained improvement in energy absorption capability. Five cases were studied with combinations of ply-orientation and flat trimming with 45° chamfer. This method was applied to the integrated 10° off-axis loading and the final results showed significant improvement in energy absorption capability of composite absorbers. Finite element model (FEM) was developed to simulate the crushing process of axial and off-axis composite section in LS-DYNA and the results were in good agreement with the experimental data.展开更多
In Romania,CNTAC delegation had a deep understanding to this important Eastern European Country along'The Belt and Road'.The textile and garment industry is the traditional pillar industry in Romania.It takes ...In Romania,CNTAC delegation had a deep understanding to this important Eastern European Country along'The Belt and Road'.The textile and garment industry is the traditional pillar industry in Romania.It takes an important status in its national economy and foreign trade.Romania is also an important market展开更多
基金supported by the National Natural Science Foundation of China(22272065)the Natural Science Foundation of Jiangsu Province(BK20211530)+1 种基金the Fundamental Research Funds for the Central Universities(JUSRP62218)the Key Research and Development Special Project of Yi'chun City,Jiangxi Province,China(2023ZDYFZX06).
文摘One-dimensional perovskites possess unique photoelectric properties that distinguish them from other perovskitetypes, making them a focal point in photoelectric research. In recent years, there has been a significant surge ininterest surrounding the synthesis and application of one-dimensional anisotropic perovskites, spurred by ad-vancementsin synthesis techniques and notable breakthroughs in novel methodologies and application proper-ties.This article provides a comprehensive review of the progress made in research on one-dimensionalanisotropic perovskites, detailing the synthesis mechanisms and potential pathways for performance enhance-mentin various applications. We highlight the crucial role of controllable synthesis and heterogeneous effect intailoring perovskite properties to boost application efficacy. Initially, this review examines the primary synthesismethods and mechanisms for creating heterogeneously induced one-dimensional anisotropic perovskites, cate-gorizingthem into two main approaches: the classical wet chemical synthesis, which utilizes selective ligands, andthe ligand-free, substrate-assisted method. The precision in controllable synthesis is essential for fabricatingheterogeneous structures, where the synthesized precursor, shape, and surface ligand significantly influence theinterfacial strength of the heterogenic interface. We also discuss the key features that must be improved for high-performanceapplications, exploring how heterogeneous effects can enhance performance and drive the devel-opmentof heterogeneous devices in various applications, such as photodetectors, solar cells, light-emitting di-odes,and photocatalysis. Conclusively, by highlighting the emerging potential and promising opportunitiesoffered by strategic heterogeneous construction, we forecast a dynamic and transformative future for their pro-ductionand application landscapes.
基金financially supported by Joint Foundation of Ministry of Education of China(No.8091B022225)National Natural Science Foundation of China(No.52173078)。
文摘The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended operating periods. In this study, we developed a composite anode(A/IF) by coating iron foam with cellulose-based aerogel. The concentration of Fe ions in the anode solution of A/IF anode reaches 0.280 μg/mL(Fe^(2+) vs. Fe^(3+) = 61%:39%) after 720 h of aseptic primary cell operation. This value was significantly higher than that(0.198 μg/mL, Fe^(2+) vs. Fe^(3+) = 92%:8%) on uncoated iron foam(IF), indicating a continuous release of Fe ions over long-term operation. Notably, the resulting MFCs hybrid cell exhibited a 23% reduction in Fe ion concentration(compared to a 47% reduction for the IF anode) during the sixth testing cycle(600-720 h). It achieved a high-power density of 301 ± 55 mW/m^(2) at 720 h, which was 2.62 times higher than that of the IF anode during the same period. Furthermore, a sedimentary microbial fuel cell(SMFCs) was constructed in a marine environment, and the A/IF anode demonstrated a power density of 103 ± 3 mW/m^(2) at 3240 h, representing a 75% improvement over the IF anode. These findings elucidate the significant enhancement in long-term power production performance of MFCs achieved through effective tailoring of Fe ions release during operation.
基金the National Natural Sci-ence Foundation of China(Grant Nos.21673064,51902072 and 22109033)Heilongjiang Touyan Team(Grant No.HITTY-20190033)+1 种基金Fundamental Research Funds for the Central Universities(Grant Nos.HIT.NSRIF.2019040 and 2019041)State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(Grant No.2020 DX11).
文摘Sodium-ion batteries stand a chance of enabling fast charging ability and long lifespan while operating at low temperature(low-T).However,sluggish kinetics and aggravated dendrites present two major challenges for anodes to achieve the goal at low-T.Herein,we propose an interlayer confined strategy for tailoring nitrogen terminals on Ti_(3)C_(2) MXene(Ti_(3)C_(2)-N_(funct)) to address these issues.The introduction of nitrogen terminals endows Ti_(3)C_(2)-N_(funct) with large interlayer space and charge redistribution,improved conductivity and sufficient adsorption sites for Na^(+),which improves the possibility of Ti_(3)C_(2) for accommodating more Na atoms,further enhancing the Na^(+) storage capability of Ti_(3)C_(2).As revealed,Ti_(3)C_(2)-N_(funct) not only possesses a lower Na-ion diffusion energy barrier and charge trans-fer activation energy,but also exhibits Na^(+)-solvent co-intercalation behavior to circumvent a high de-solvation energy barrier at low-T.Besides,the solid electrolyte interface dominated by inorganic com-pounds is more beneficial for the Na^(+)transfer at the electrode/electrolyte interface.Compared with of the unmodified sample,Ti_(3)C_(2)-Nfunct exhibits a twofold capacity(201 mAh g^(-1)),fast-charging ability(18 min at 80% capacity retention),and great superiority in cycle life(80.9%@5000 cycles)at -25℃.When coupling with Na_(3)V_(2)(PO_(4))_(2)F_(3) cathode,the Ti_(3)C_(2)-N_(funct)//NVPF exhibits high energy density and cycle stability at -25℃.
基金the full support from our Institute, National Institute of Technology SrinagarMinistry of Human Resource Development (MHRD) India, for the financial support
文摘The structural,morphological and optical properties of single-phase polycrystalline La2-xSrxNiMnO6(x=0,0.3 and 0.5),synthesized by solid state reaction were investigated.The samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM)/energy dispersive analysis of X-rays(EDAX),Raman spectroscopy and diffuse reflectance spectroscopy(DRS)to elucidate the role of A-site Sr-doping in double perovskite La2 NiMnO6.Rietveld analysis of XRD patterns revealed that all the samples have monoclinic structure with space group P21/n.Positive gradient in the Williamson Hall plots revealed the presence of tensile strain in all the samples.The morphological studies revealed that average grain size increases along with appreciable decrease in porosity with Sr doping.The Ni/Mn antisite disorder was introduced in the La2 NiMnO6 by Sr-doping confirmed by an increase in the full width at half maximum(FWHM)and decrease in intensity of the Raman modes at around 540 and 665 cm-1 which correspond to the antisymmetric stretching and symmetric stretching modes,respectively.DRS results reveal that the band gap in La2 NiMnO6 can be tuned down by Sr-doping to a value of1.37 eV(very close to 1.40 eV,considered as optimum value for better efficiency of a solar cell).Thus,Sr-doped La2 NiMnO6 may be of prime importance for applications in solar cells.
基金supported by Higher Education Commission of Pakistan, National Basic Research Program of China (2010CB934602)National Science Foundation of China (51171007 and 51271009)
文摘The modification of nanostructured materials is of great interest due to controllable and unusual inherent properties in such materials. Single phase Fe doped Zn O nanostructures have been fabricated through simple, versatile and quick low temperature solution route with reproducible results. The amount of Fe dopant is found to play a significant role for the growth of crystal dimension. The effect of changes in the morphology can be obviously observed in the structural and micro-structural investigations, which may be due to a driving force induced by dipole-dipole interaction. The band gap of Zn O nanostructures is highly shifted towards the visible range with increase of Fe contents, while ferromagnetic properties have been significantly improved.The prepared nanostructures have been found to be nontoxic to SH-SY5 Y Cells. The present study clearly indicates that the Fe doping provides an effective way of tailoring the crystal dimension, optical band-gap and ferromagnetic properties of Zn O nanostructure-materials with nontoxic nature, which make them potential for visible light activated photocatalyst to overcome environmental pollution, fabricate spintronics devices and biosafe drug delivery agent.
基金supported by the National Natural Science Foundation of China(Nos.51575068 and 51501023)the State Key Research and Development Program of MOST,China(No.2016627 YFB0701204)+2 种基金the Fundamental Research Funds for the Central Universities(No.2020CDJDPT001)the Chongqing Natural Science Foundation(Nos.cstc2018jcyjAX0364 and cstc2021jcyj-msxmX0699)the“111”Project of the Ministry of Education(No.B16007).
文摘Conventional wrought Mg alloys,such as AZ31 and ZK60 rolled plates,usually exhibit significantly low tensile yield strength in the thickness direction.This can be attributed to the high activity of{10-12}tension twinning due to the strong basal texture(<0001>//ND,normal direction).In this work,the tensile yield strength in the ND of the as-rolled(AR)AZ31 plate increased from 50 to 150 MPa(increased by 200%)via simple processing,i.e.,pre-tension and rolling-annealing(PTRA)treatment.The strong basal texture(<0001>//ND)of the AR plate was changed into a weakened fiber texture(<0001>⊥ND).The evolution of microstructures during PTRA treatment and the activated deformation modes during uniaxial tension were studied quantitatively and statistically by the means of intergranular misorientation(IM)and in-grain misorientation axes(IGMA)analysis.The results indicate that various twin variants,as well as{10-12}-{10-12}secondary twins,were activated during pre-tension and rolling,and most residual matrix was consumed by twins after annealing.The dominated deformation modes in tension changed from{10-12}tension twinning(the AR sample)to prismatic slip(the PTRA sample)in the early tensile deformation.The underlying formation mechanism of the fiber texture and corresponding strengthening mechanism were discussed.
基金supported by the National Natural Science Foundation of China under Grant No. 52072196, 52002199, 52002200, 52102106Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant No. ZR2020ZD09+5 种基金the Natural Science Foundation of Shandong Province under Grant No. ZR2019BEM042, ZR2020QE063the Innovation and Technology Program of Shandong Province under Grant No. 2020KJA004the Taishan Scholars Program of Shandong Province under No. ts201511034Postdoctoral Program in Qingdao under No. QDBSH20220202019the innovation Capability Improvement Project of Small and Medium-sized Technological Enterprises in Shandong Province under No. 2021TSGC1156the Financial Support From the Qingdao West Coast New Area Science and Technology Project under No. 2020-104。
文摘Defect engineering presents great promise in addressing lower specific capacity,sluggish diffusion kinetics and poor cycling life issues in energy storage devices.Herein,multidimensional(0D/2D/3D) structural defects are constructed in WO_(3)/MoO_(2) simultaneously via competing for and sharing with O atoms during simple hydrothermal process.OD and 2D defects tailor local electron,activating more sites and generating built-in electric fields to yield ion reservoir,meanwhile,3D defect owning lower anisotropic property tailors Mg^(2+) diffusion channels to fully exploit Mg^(2+) adsorbed sites induced by OD and 2D defects,enhance the kinetics and maintain structural stability.Benefitted from synergistic effect of 0D/2D/3D structural defects,the designed WO_(3)/MoO_(2) shows the higher specific capacity(112.8 mA h g^(-1) at 50 mA g^(-1) with average attenuation rate per cycle of 0.068%),superior rate capability and excellent cycling stability(specific capacity retention of 80% after 1500 cycles at 1000 mA g^(-1)).This strategy provides design ideas of introducing multidimensional structural defects for tailoring local electron and microstructure to improve energy storage property.
基金supported by the Fundamental Research Funds for the Central Universities of China(No.20720200040)the National Natural Science Foundation of China(No.51273166).
文摘Poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)receives increasing attention in membrane separation field based on its advantages such as high mechanical strength,thermal and chemical stability.However,controlling the microporous structure is still challenging.In this work,we attempted to tailor the morphology of PVDF-HFP membrane via a one-step reactive vapor induced phase separation method.Namely,PVDF-HFP was dissolved in a volatile solvent and then was cast in an ammonia water vapor atmosphere.After complete evaporation of solvent,membranes with adjustable porous structure were prepared,and the microstructures of the membranes were analyzed by scanning electron microscopy,Fourier transform infrared spectroscopy,X-ray photoelectron spectroscopy and X-ray diffraction characterizations.Based on the results,a mechanism of dehydrofluorination induced cross-linking of PVDF-HFP has been suggested to understand the morphology tailoring.To our knowledge,this is the first report of one-step reactive vapor induced phase separation strategy to tailor morphology of PVDF-HFP membrane.In addition,the membranes prepared in the ammonia water vapor exhibited enhanced mechanical strength and achieved satisfactory separation efficiency for water-in-oil emulsions,suggesting promising potential.
基金support from the National Natural Science Foundation of China(Grant Nos.21773218 and 61904166)。
文摘Achieving high-quality perovskite crystal films is a critical prerequisite in boosting solar cell efficiency and improving the device stability,but the delicate control of nucleation and growth of the perovskite film remains limited success.Herein,a facile but effective strategy has been developed to finely tailor the crystallization of thermally stable cesium/formamidinium(Cs/FA)based perovskite via partially replacing PbI2 with PbCl2 in the precursor solution.The incorporation of chlorine into the perovskite crystal lattice derived from PbCl2 changes the crystallization process and improves the crystal quality,which further results in the formation of larger crystal grains compared to the control sample.The larger crystal grains with high crystallinity lead to reduced grain boundaries,suppressed non-radiative recombination,and enhanced photoluminescence lifetime.Under the optimized conditions,the methylammonium free perovskite solar cells(PSCs)delivers a champion power conversion efficiency(PCE)of 21.30%with an open-circuit voltage as high as 1.18 V,which is one of the highest efficiencies for Cs/FA based PSCs up to now.Importantly,the unencapsulated PSC devices retain more than 95%and 81%of their original PCEs even after long-term(over one year)storage under ambient conditions or 2000 h’s thermal aging at 850C in a nitrogen atmosphere,respectively.
基金This work was supported by the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(NSFC)(No.12125206)the NSFC Basic Science Center for“Multiscale Problems in Nonlinear Mechanics”(No.11988102)the NSFC(Nos.11972345 and 11790292).
文摘Metals have been mankind’s most essential materials for thousands of years.In recent years,however,innovation-driven development of major national security strategy and core areas of the national economy is highly impeded by a shortage of advanced higher-strength-toughness metals.One of the main reasons is that metals inherently exhibit the inverted-relationship of strength-toughness.The emergence of two types of disordered metals:amorphous alloys and high entropy alloys,provides a fully-fresh strategy for strength-toughening by tailoring the topological and/or chemical disorder.In this paper,we first briefly review the history of strength-toughening of metals,and summarize the development route-map.We then introduce amorphous alloys and high entropy alloys,as well as some case studies in tailoring disorder to successfully achieve coexisting high strength and high ductility/toughness.Relevant challenges that await further research are summarized in concluding remarks.
文摘Regulating dielectric genes of hollow metal-organic frameworks is a milestone project for microwave absorption(MA).However,there is still a bottleneck in deciphering the contribution of various dielectric genes,making it hard to expand the MA potential from selective encoding gene sequences.Herein,a custom-made proton tailoring strategy is used to build a controllable cavity,and meticulously designed thermodynamic regulation promotes the rearrangement of carbon atoms from disorder to order,thus enhancing the characteristics of charge transfer.Meanwhile,the defect-configuration transformation from heteroatom to vacancy and geometric configuration of hollow structure increase the polarization-related dielectric genes.Therefore,MA performance is enhanced towards broadband absorption(6.6 GHz,1.78 mm)and high-efficiency loss(-62.5 dB),making samples suitable for complex open electromagnetic environments.This work realizes the tradeoff between dielectric gene sequences and provides a profound insight into the functions and sources of various microwave loss mechanisms.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11004156 and 11547172the Science and Technology Star Project of Shaanxi Province under Grant No 2016KJXX-45
文摘The electronic transport properties of a molecular junction based on doping tailoring armchair-type graphene nanoribbons(AGNRs)with different widths are investigated by applying the non-equilibrium Green's function formalism combined with first-principles density functional theory.The calculated results show that the width and doping play significant roles in the electronic transport properties of the molecular junction.A higher current can be obtained for the molecular junctions with the tailoring AGNRs with W=11.Furthermore,the current of boron-doped tailoring AGNRs with widths W=7 is nearly four times larger than that of the undoped one,which can be potentially useful for the design of high performance electronic devices.
文摘A new material tailoring method for spherical and cylindrical vessels made of functionally graded materials (FGMs) is presented.It is assumed that the FG material is composed of an A1-SiC metallic-matrix composite.A uniform ratio of inplane shear stress to yield strength [φ(r)] is used as the design criterion to utilize the maximum capacity of the vessel.The aim is to find a distribution of SiC particles in the radial direction,i.e.,f(r),that achieves a uniform index φ(r) =const,through the wall thickness of the internally pressurized spherical or cylindrical vessel.Both the Mori-Tanaka and rule-of-mixtures homogenization schemes are used to express the effective elastic module and Poisson's ratio.Moreover,the strength of the composite is expressed based on the rule of mixtures.Besides,finite element simulation is carried out to verify the accuracy of the analytical solution.The effects of input parameters such as the internal pressure,strength of the SiC particles,ratio of in-plane shear stress to effective yield strength,and choice of homogenization scheme on the tailored distribution of the SiC volume fraction in the radial direction are also investigated.
基金Project supported by the National Natural Science Foundation of China(Grant No.51702146)the College Students’Innovation and Entrepreneurship Projects,China(Grant No.201710148000072)Liaoning Province Doctor Startup Fund,China(Grant No.201601325)。
文摘Using ab initio density functional theory calculations, we explore the three most stable structural phases, namely, α,β, and cubic(c) phases, of two-dimensional(2D) antimonene, as well as its isoelectronic counterparts SnTe and InI. We find that the band gap increases monotonically from Sb to SnTe to InI along with an increase in ionicity, independent of the structural phases. The band gaps of this material family cover the entire visible-light energy spectrum, ranging from 0.26 eV to 3.37 eV, rendering them promising candidates for optoelectronic applications. Meanwhile, band-edge positions of these materials are explored and all three types of band alignments can be achieved through properly combining antimonene with its isoelectronic counterparts to form heterostructures. The richness in electronic properties for this isoelectronic material family sheds light on possibilities to tailor the fundamental band gap of antimonene via lateral alloying or forming vertical heterostructures.
文摘This paper deals with the aeroelastic tailoring of aeronautical composite wing surfaces. The objective function is structural weight. Multi constraints, such as displacements, flutter speed and gauge requirements, are taken into consideration. Finite element method is used to the static analysis. Natural vibration modes are obtained by the spectral transformation Lanczos method. Subsonic doublet lattice method is used to obtain the unsteady aerodynamics.The critical flutter speed is generated by V-g method.The optimal problem is solved by the feasible direction method.The thickness of the composite wing skin is simulated by bicubic polynomials, whose coefficients combined with the cross-sectional areas or thicknesses of other finite elements are the design variables. The scale of the problem is reduced by variable linkage. Derivative analysis is performed analytically.Two composite wing boxes and a swept-back composite wing are optimized at the end of the paper.
文摘Chronic inflammatory demyelinating polyneuropathy (CIDP) is a treatable immune-mediated disorder, which causes in its typical form, symmetric proximal and distal weakness with large fibre sensory impairment involving the four limbs. There are currently three main first-line therapeutic options for CIDP. These consist of corticosteroids, immunoglobulins and plasma exchanges (PE) which have all been found effective in a number of trials conducted over the past several years (Van den Bergh and Rajabally, 2013). No immunosuppressant therapy has shown benefit in CIDP, although they are utilized by many clinicians in various circumstances despite absence of an evidence base.
基金Sponsored by the Research Projection of the Tenth Five-year of National Defence Department( Grant No. 417010402)
文摘Tailoring of an operating system and an in embedded real-time operating system in particular is es-sential for both, kernel and operation. But many of current embedded real-time operating systems provide somebasic tailoring at the cost of depleting the flexibility of hardware, which causes the lack of flexibility, and de-grades their tailors. A layered modular tailoring model has been proposed together with some tailoring operationsto improve the flexibility of the systems, and algorithms have been proposed for verification of tailoring opera-tions with the current operating system.
基金supported by the National Key R&D Program of China (Grant No. 2017YFA0402901)the National Natural Science Foundation of China (Grant No. U2032153)+2 种基金the International Partnership Program (Grant No. 211134KYSB20190063)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB25000000)the USTC Research Funds of the Double First-Class Initiative (Grant No. YD2310002004)。
文摘Tuning the bandgap in layered transition metal dichalcogenides(TMDCs) is crucial for their versatile applications in many fields. The ternary formation is a viable method to tune the bandgap as well as other intrinsic properties of TMDCs, because the multi-elemental characteristics provide additional tunability at the atomic level and advantageously alter the physical properties of TMDCs. Herein, ternary Ti_(x)Zr_(1-x)Se_(2) single crystals were synthesized using the chemical-vapor-transport method. The changes in electronic structures of ZrSe_(2) induced by Ti substitution were revealed using angle-resolved photoemission spectroscopy. Our data show that at a low level of Ti substitution, the bandgap of Ti_(x)Zr_(1-x)Se_(2) decreases monotonically, and the electronic system undergoes a transition from a semiconducting to a metallic state without a significant variation of dispersions of valence bands. Meanwhile, the size of spin-orbit splitting dominated by Se 4p orbitals decreases with the increase of Ti doping. Our work shows a convenient way to alter the bandgap and spin-orbit coupling in TMDCs at the low level of substitution of transition metals.
文摘This paper presents experimental and numerical investigation on the parameters effecting energy absorption capability of composite tubular structures at oblique loading to improve crashworthiness performance. Various inclined angles of 5°, 10°, 20° and 30° were selected for the study of off-axis loading. The results indicate that by increasing the lateral inclination angle the mean crushing force and also energy absorption capability of all tested sections decreased. From design perspective, it is necessary to investigate the parameters effecting this phenomenon. The off-axis loading effect that causes significant reduction in energy absorption was investigated and the effected parameters were improved to increase energy absorption capability. To establish this study, 10° off-axis loading was chosen to illustrate the obtained improvement in energy absorption capability. Five cases were studied with combinations of ply-orientation and flat trimming with 45° chamfer. This method was applied to the integrated 10° off-axis loading and the final results showed significant improvement in energy absorption capability of composite absorbers. Finite element model (FEM) was developed to simulate the crushing process of axial and off-axis composite section in LS-DYNA and the results were in good agreement with the experimental data.
文摘In Romania,CNTAC delegation had a deep understanding to this important Eastern European Country along'The Belt and Road'.The textile and garment industry is the traditional pillar industry in Romania.It takes an important status in its national economy and foreign trade.Romania is also an important market