Intergrowth ferroelectric semiconductors with excellent spontaneous polarization field are highly promising piezo-photocatalytic candidate materials.In addition,developing structural design and revealing polarization ...Intergrowth ferroelectric semiconductors with excellent spontaneous polarization field are highly promising piezo-photocatalytic candidate materials.In addition,developing structural design and revealing polarization enhancement in-depth mechanism are top priorities.Herein,we introduce the intergrowth ferroelectrics Bi_(7)Ti_(4)NbO_(21)thin-layer nanosheets for piezo-photocatalytic CO_(2)reduction.Density functional theory(DFT)calculations indicate that interlayer lattice mismatch leads to increased tilting and rotation angle of Ti/NbO_(6)octahedra on perovskite-like layers,serving as the main reason for increased polarization.Furthermore,the tilting and rotation angle of the interlayer octahedron further increase under stress,suggesting a stronger driving force generated to facilitate charge carrier separation efficiency.Meanwhile,Bi_(7)Ti_(4)NbO_(21)nanosheets provide abundant active sites to effectively adsorb CO_(2)and acquire sensitive stress response,thereby presenting synergistically advanced piezo-photocatalytic CO_(2)reduction activity with a high CO generation rate of 426.97μmol g^(-1)h^(-1).Our work offers new perspectives and directions for initiating and investigating the mechanisms of high-performance intergrowth piezo-photocatalysts.展开更多
One-dimensional perovskites possess unique photoelectric properties that distinguish them from other perovskitetypes, making them a focal point in photoelectric research. In recent years, there has been a significant ...One-dimensional perovskites possess unique photoelectric properties that distinguish them from other perovskitetypes, making them a focal point in photoelectric research. In recent years, there has been a significant surge ininterest surrounding the synthesis and application of one-dimensional anisotropic perovskites, spurred by ad-vancementsin synthesis techniques and notable breakthroughs in novel methodologies and application proper-ties.This article provides a comprehensive review of the progress made in research on one-dimensionalanisotropic perovskites, detailing the synthesis mechanisms and potential pathways for performance enhance-mentin various applications. We highlight the crucial role of controllable synthesis and heterogeneous effect intailoring perovskite properties to boost application efficacy. Initially, this review examines the primary synthesismethods and mechanisms for creating heterogeneously induced one-dimensional anisotropic perovskites, cate-gorizingthem into two main approaches: the classical wet chemical synthesis, which utilizes selective ligands, andthe ligand-free, substrate-assisted method. The precision in controllable synthesis is essential for fabricatingheterogeneous structures, where the synthesized precursor, shape, and surface ligand significantly influence theinterfacial strength of the heterogenic interface. We also discuss the key features that must be improved for high-performanceapplications, exploring how heterogeneous effects can enhance performance and drive the devel-opmentof heterogeneous devices in various applications, such as photodetectors, solar cells, light-emitting di-odes,and photocatalysis. Conclusively, by highlighting the emerging potential and promising opportunitiesoffered by strategic heterogeneous construction, we forecast a dynamic and transformative future for their pro-ductionand application landscapes.展开更多
A strategy combining a tailored database and high-throughput activity screening that discover bioactive metabolites derived from Magnoliae Officinalis Cortex(MOC)was developed and implemented to rapidly profile and di...A strategy combining a tailored database and high-throughput activity screening that discover bioactive metabolites derived from Magnoliae Officinalis Cortex(MOC)was developed and implemented to rapidly profile and discover bioactive metabolites in vivo derived from traditional Chinese medicine(TCM).The strategy possessed four characteristics:1)The tailored database consisted of metabolites derived from big data-originated reference compound,metabolites predicted in silico,and MOC chemical profile-based pseudomolecular ions.2)When profiling MOC-derived metabolites in vivo,attentions were paid not only to prototypes of MOC compounds and metabolites directly derived from MOC compounds,as reported by most papers,but also to isomerized metabolites and the degradation products of MOC compounds as well as their derived metabolites.3)Metabolite traceability was performed,especially to distinguish isomeric prototypes-derived metabolites,prototypes of MOC compounds as well as phase I metabolites derived from other MOC compounds.4)Molecular docking was utilized for high-throughput activity screening and molecular dynamic simulation as well as zebrafish model were used for verification.Using this strategy,134 metabolites were swiftly characterized after the oral administration of MOC to rats,and several metabolites were reported for the first time.Furthermore,17 potential active metabolites were discovered by targeting the motilin,dopamine D2,and the serotonin type 4(5-HT4)receptors,and part bioactivities were verified using molecular dynamic simulation and a zebrafish constipation model.This study extends the application of mass spectrometry(MS)to rapidly profile TCM-derived metabolites in vivo,which will help pharmacologists rapidly discover potent metabolites from a complex matrix.展开更多
Catalytic reduction of 4-nitrophenol(4-NP)pollutant to the high-value 4-aminophenol(4-AP)with a clean hydrogen donor holds significant importance yet great challenges owing to the difficult activation of nitro and H s...Catalytic reduction of 4-nitrophenol(4-NP)pollutant to the high-value 4-aminophenol(4-AP)with a clean hydrogen donor holds significant importance yet great challenges owing to the difficult activation of nitro and H species.In this work,Ag tailoring Frustrated Lewis pairs(FLPs)of CeO_(2)(Ag/CeO_(2))were successfully fabricated for electrochemical reduction reaction of 4-NP(4-NP ERR).As a result,the bond of Ag with O atom changed the state of the Ce-O bond and electron density,where the tailored FLPs were the key factor for enhancing absorption and activation.The reaction rate of Ag/CeO_(2)reached up to 4.70 mmol·min^(-1)(Faraday efficiency:99.5%),which was about four times of CeO_(2).Additionally,this study delved into the proton-coupled electron processes to further understand the mechanism of 4-NP ERR.Therefore,in this study,we have endeavored to investigate the role of tailored FLPs sites and utilize this structure-function relationship to achieve environmentalfriendly chemical synthesis.展开更多
Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behav...Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior.Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties,providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs.The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable(opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts(0–100%).Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase,band alignment/structure,carrier density,and surface reactive activity,enabling novel and promising applications.This review comprehensively elaborates on atomically substitutional engineering in TMD layers,including theoretical foundations,synthetic strategies,tailored properties,and superior applications.The emerging type of ternary TMDs,Janus TMDs,is presented specifically to highlight their typical compounds,fabrication methods,and potential applications.Finally,opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field.展开更多
The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended ...The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended operating periods. In this study, we developed a composite anode(A/IF) by coating iron foam with cellulose-based aerogel. The concentration of Fe ions in the anode solution of A/IF anode reaches 0.280 μg/mL(Fe^(2+) vs. Fe^(3+) = 61%:39%) after 720 h of aseptic primary cell operation. This value was significantly higher than that(0.198 μg/mL, Fe^(2+) vs. Fe^(3+) = 92%:8%) on uncoated iron foam(IF), indicating a continuous release of Fe ions over long-term operation. Notably, the resulting MFCs hybrid cell exhibited a 23% reduction in Fe ion concentration(compared to a 47% reduction for the IF anode) during the sixth testing cycle(600-720 h). It achieved a high-power density of 301 ± 55 mW/m^(2) at 720 h, which was 2.62 times higher than that of the IF anode during the same period. Furthermore, a sedimentary microbial fuel cell(SMFCs) was constructed in a marine environment, and the A/IF anode demonstrated a power density of 103 ± 3 mW/m^(2) at 3240 h, representing a 75% improvement over the IF anode. These findings elucidate the significant enhancement in long-term power production performance of MFCs achieved through effective tailoring of Fe ions release during operation.展开更多
The cure rates of Helicobacter pylori (H. pylori) eradication therapy using a proton pump inhibitor (PPI) and antimicrobial agents such as amoxicillin, clarithromycin, and metronidazole are mainly influenced by bacter...The cure rates of Helicobacter pylori (H. pylori) eradication therapy using a proton pump inhibitor (PPI) and antimicrobial agents such as amoxicillin, clarithromycin, and metronidazole are mainly influenced by bacterial susceptibility to antimicrobial agents and the magnitude of the inhibition of acid secretion. Annual cure rates have gradually decreased because of the increased prevalence of H. pylori strains resistant to antimicrobial agents, especially to clarithromycin. Alternative regimens have therefore been developed incorporating different antimicrobial agents. Further, standard PPI therapy (twice-daily dosing) often fails to induce a long-term increase in intragastric pH > 4.0. Increasing the eradication rate requires more frequent and higher doses of PPIs. Therapeutic efficacy related to acid secretion is influenced by genetic factors such as variants of the genes encoding drug-metabolizing enzymes (e.g., cytochrome P450 2C19, CYP2C19), drug transporters (e.g., multidrug resistance protein-1; ABCB1), and inflammatory cytokines (e.g., interleukin-1β). For example, quadruple daily administration of PPI therapy potently inhibits acid secretion within 24 h, irrespective of CYP2C19 genotype. Therefore, tailored H. pylori eradication regimens that address acid secretion and employ optimal antimicrobial agents based on results of antimicrobial agent-susceptibility testing may prove effective in attaining higher eradication rates.展开更多
The deformation characteristics of tailor rolled blank (TRB) in the course of uniaxial tension were studied by means of analysis, test and simulation. The mechanical analytical model of TRB during uniaxial tension w...The deformation characteristics of tailor rolled blank (TRB) in the course of uniaxial tension were studied by means of analysis, test and simulation. The mechanical analytical model of TRB during uniaxial tension was set up, and the deformation formulae for the thinner side and for the thicker side were derived to quantify the deformation of TRB. On this basis, uniaxial tension tests on TRB and ordinary blanks (the thinner side and the thicker side of TRB) were conducted. Lagrange polynomial interpolation method was adopted to construct the stress-strain fields of unannealed and annealed TRBs for solving TRB material parameters, and then, uniaxial tension simulation on TRB was completed. Deformations and properties of unannealed TRB were compared with those of annealed TRB, and the thinner side and the thicker side were also compared. Finally, the research results were explained by metallurgical structure. The results show that nonuniform deformation happens in TRB during uniaxial tension, and the necking occurs on the thinner side. The agreement of analysis, test and simulation confirms the correctness of the analytical model and the deformation formulae. The findings of this paper can lay the foundation for the future study on TRB stamping formability and provide a way for TRB modeling.展开更多
Several automotive parts such as door panels have been manufactured by using load-adapted blanks for crash optimization and weight minimization. Recently, Tailor Rolled Blanks (TRB) has been introduced to remove the d...Several automotive parts such as door panels have been manufactured by using load-adapted blanks for crash optimization and weight minimization. Recently, Tailor Rolled Blanks (TRB) has been introduced to remove the disadvantages of a welding process which was used in joining panel components. TRB offers better structural design capabilities due to the seamless transitions on the panels with different thicknesses. In spite of the advantages of the process, TRB leaves internal stresses in the panel. This residual stresses lower the formability of Tailor Rolled Blanked (TRBed) parts and cause cracks near severe curvature during subsequent forming processes. In this research, the residual stresses of TRBed Al5J32-T4 sheets were studied by X-ray stress analysis, and also microstructure was observed along the rolling direction. In addition, heat treatment was done after TRB process in order to compare the residual stresses to that of the TRBed sheets before the heat treatment.展开更多
The process of automobile lightweight can be promoted by the application of tailor rolled blank(TRB)in the automobile industry.Therefore,research on the formability of TRB is of good practical significance and appli...The process of automobile lightweight can be promoted by the application of tailor rolled blank(TRB)in the automobile industry.Therefore,research on the formability of TRB is of good practical significance and application value because of the enormous potential of TRB in the aspect of automobile lightweight.Aiming at the present condition of lack of researches on the influence of characteristic parameters on TRB drawing process,the drawing formability of TRB was studied with a combination method of simulation and experiment by taking square box as the research object.Firstly,drawing simulation and experiment of TRB were carried out.Then,effects of thickness transition zone(TTZ)position and blank size on the drawing formability of TRB were analyzed.Forming limit and TTZ movement for TRB square box during the drawing process were respectively discussed,when transition zones of TRB were located at different positions and blanks were of different sizes.The results indicate that lubrication condition exerts greater influence on TRB forming limit in comparison with TTZ movement,and the smaller blank size and TTZ being located at the blank center or slightly offset to the thinner side are preferable for acquiring greater forming limit and smaller TTZ movement.展开更多
The structural,morphological and optical properties of single-phase polycrystalline La2-xSrxNiMnO6(x=0,0.3 and 0.5),synthesized by solid state reaction were investigated.The samples were characterized by X-ray diffrac...The structural,morphological and optical properties of single-phase polycrystalline La2-xSrxNiMnO6(x=0,0.3 and 0.5),synthesized by solid state reaction were investigated.The samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM)/energy dispersive analysis of X-rays(EDAX),Raman spectroscopy and diffuse reflectance spectroscopy(DRS)to elucidate the role of A-site Sr-doping in double perovskite La2 NiMnO6.Rietveld analysis of XRD patterns revealed that all the samples have monoclinic structure with space group P21/n.Positive gradient in the Williamson Hall plots revealed the presence of tensile strain in all the samples.The morphological studies revealed that average grain size increases along with appreciable decrease in porosity with Sr doping.The Ni/Mn antisite disorder was introduced in the La2 NiMnO6 by Sr-doping confirmed by an increase in the full width at half maximum(FWHM)and decrease in intensity of the Raman modes at around 540 and 665 cm-1 which correspond to the antisymmetric stretching and symmetric stretching modes,respectively.DRS results reveal that the band gap in La2 NiMnO6 can be tuned down by Sr-doping to a value of1.37 eV(very close to 1.40 eV,considered as optimum value for better efficiency of a solar cell).Thus,Sr-doped La2 NiMnO6 may be of prime importance for applications in solar cells.展开更多
Research on the formability of tailor rolled blank (TRB) is of good practical significance and application value because of the enormous potential of TRB in the aspect of automobile lightweight. However, the forming...Research on the formability of tailor rolled blank (TRB) is of good practical significance and application value because of the enormous potential of TRB in the aspect of automobile lightweight. However, the forming of TRB is problematic because of the varying properties; especially, springback is a main challenge. The transverse bending (bending axis is perpendicular to the rolling direction) of TRB U channel was studied through simulation and experiment. The forming characteristics of TRB U channel during transverse bending were analyzed. The mechanisms of forming defects, including bending springback and thickness transition zone (TTZ) movement, were revealed. On this basis, effects of blank geometric parameters on springbaek and TTZ movement were discussed. The results indicate that springback and TTZ movement happen during transverse bending of TRB U-channel. Nonuni form stress distribution is the most fundamental reason for the occurrence of springback of TRB during transverse bending. Annealing can eliminate nonuniform stress distribution, and thus diminish springbaek of TRB, especially springback on the thinner side. Therefore, springback of the whole TRB becomes more uniform. However, annealing can increase the TTZ movement. Blank thickness and TTZ position are the main factors affecting the formability of TRB U-channel during transverse bending.展开更多
The bone regenerative scaffold with the tailored degradation rate matching with the growth rate of the new bone is essential for adolescent bone repair.To satisfy these requirement,we proposed bone tissue scaffolds wi...The bone regenerative scaffold with the tailored degradation rate matching with the growth rate of the new bone is essential for adolescent bone repair.To satisfy these requirement,we proposed bone tissue scaffolds with controlled degradation rate using osteoinductive materials(Ca-P bioceramics),which is expected to present a controllable biodegradation rate for patients who need bone regeneration.Physicochemical properties,porosity,compressive strength and degradation properties of the scaffolds were studied.3D printed Ca-P scaffold(3DS),gas foaming Ca-P scaffold(FS)and autogenous bone(AB)were used in vivo for personalized beagle skull defect repair.Histological results indicated that the 3DS was highly vascularized and well combined with surrounding tissues.FS showed obvious newly formed bone tissues.AB showed the best repair effect,but it was found that AB scaffolds were partially absorbed and degraded.This study indicated that the 3D printed Ca-P bioceramics with tailored biodegradation rate is a promising candidate for personalized skull bone tissue reconstruction.展开更多
The development of advanced electrocatalysts for efficient catalyzing ethanol oxidation reaction(EOR)and oxygen reduction reaction(ORR) is significant for direct ethanol fuel cells(DEFCs).However,in many previous stud...The development of advanced electrocatalysts for efficient catalyzing ethanol oxidation reaction(EOR)and oxygen reduction reaction(ORR) is significant for direct ethanol fuel cells(DEFCs).However,in many previous studies,the major difficulties including lower utilization efficiency and weaker anti-CO-poison ability of Pt hamper the practical testing of such DEFCs,Herein,ternary Pt22Pd27C51 ultrathin(~5 nm)NWs are fabricated via a facile surfactant-free strategy.The surface and electronic structures of Pt22Pd27Cu51 NWs are further tailored via acid-etching treatment.The resulted PtPdCu NWs with an optimal atomic Pt/Pd/Cu ratio of 36:41:23 display excellent specific activities towards EOR(4.38 mA/cm^(2))and ORR(1.16 mA/cm^(2)),which are 19.8-and 5.7-folds larger than that of Pt/C,respectively.A singlecell was fabricated using Pt36Pd41Cu23 NWs as electrocatalyst in both anode and cathode with Pt loading of 1.2 mgpt/cm^(2).The power density measured at 80 ℃ is 21.7 mW/cm^(2),which is ~3.9 folds enhancement relative to that fabricated by using Pt/C(2 mgPt/cm^(2)).The enhanced catalytic performance of Pt36Pd41Cu23NWs could be attributed to that synergistic effect between Pt,Pd and Cu enhances CO anti-poisoning ability and promotes the C-C bond cleavage.This work provides a promising strategy for developing efficient electrocatalysts for DEFCs.展开更多
Long-term optical data storage(ODS)technology is essential to break the bottleneck of high energy consumption for information storage in the current era of big data.Here,ODS with an ultralong lifetime of 2×10^(7)...Long-term optical data storage(ODS)technology is essential to break the bottleneck of high energy consumption for information storage in the current era of big data.Here,ODS with an ultralong lifetime of 2×10^(7)years is attained with single ultrafast laser pulse induced reduction of Eu^(3+)ions and tailoring of optical properties inside the Eu-doped aluminosilicate glasses.We demonstrate that the induced local modifications in the glass can stand against the temperature of up to 970 K and strong ultraviolet light irradiation with the power density of 100 kW/cm^(2).Furthermore,the active ions of Eu^(2+)exhibit strong and broadband emission with the full width at half maximum reaching 190 nm,and the photoluminescence(PL)is flexibly tunable in the whole visible region by regulating the alkaline earth metal ions in the glasses.The developed technology and materials will be of great significance in photonic applications such as long-term ODS.展开更多
Residual stress developed during the rolling process of tailor rolled blank (TRB) can affect the springback of finished parts considerably. Springback characteristics of unannealed and annealed TRBs were investigate...Residual stress developed during the rolling process of tailor rolled blank (TRB) can affect the springback of finished parts considerably. Springback characteristics of unannealed and annealed TRBs were investigated by means of numerical simulation and experiments taking U-Channel as an example. TRBs were annealed by the annealing process (700 ℃, holding time 10 h), then stamping and springback processes of unannealed and annealed TRBs were simulated, and corresponding experiments were also carried out. Effects of the transition zone length, the blank thickness, the friction coefficient and the die clearance on the springback of TRB were analyzed. The results demonstrate that the springback of TRB annealed at 700 ~C for 10 h re- duces significantly. For unannealed and annealed U-Channels, the springback of TRB U-Channel is in direct proportion to the die clearance and is in inverse proportion to the transition zone length, the blank thickness and the friction coefficient. Spring- backs of the thinner monolithic (uniform thickness) blank, the thinner side of TRB, the thicker side of TRB and the thicker monolithic blank are sorted in descending order.展开更多
BACKGROUND Laparoscopic assisted total gastrectomy(LaTG)is associated with reduced nutritional status,and the procedure is not easily carried out without extensive expertise.A small remnant stomach after near-total ga...BACKGROUND Laparoscopic assisted total gastrectomy(LaTG)is associated with reduced nutritional status,and the procedure is not easily carried out without extensive expertise.A small remnant stomach after near-total gastrectomy confers no significant nutritional benefits over total gastrectomy.In this study,we developed a modified laparoscopic subtotal gastrectomy procedure,termed laparoscopicassisted tailored subtotal gastrectomy(LaTSG).AIM To evaluate the feasibility and nutritional impact of LaTSG compared to those of LaTG in patients with advanced middle-third gastric cancer(GC).METHODS We retrospectively analyzed surgical and oncological outcomes and postoperative nutritional status in 92 consecutive patients with middle-third GC who underwent radical laparoscopic gastrectomy at Department of Pancreatic Stomach Surgery,National Cancer Center/Cancer Hospital,Chinese Academy of Medical Sciences,and Peking Union Medical College between 2013 and 2017.Of these 92 patients,47 underwent LaTSG(LaTSG group),and the remaining underwent LaTG(LaTG group).RESULTS Operation time(210±49.8 min vs 208±50.0 min,P>0.05)and intraoperative blood loss(152.3±166.1 mL vs 188.9±167.8 mL,P>0.05)were similar between the groups.The incidence of postoperative morbidities was lower in the LaTSG group than in the LaTG group(4.2%vs 17.8%,P<0.05).Postoperatively,nutritional indices did not significantly differ,until postoperative 12 mo.Albumin,prealbumin,total protein,hemoglobin levels,and red blood cell counts were significantly higher in the LaTSG group than in the LaTG group(P<0.05).No significant differences in Fe or C-reaction protein levels were found between the two groups.Endoscopic examination demonstrated that reflux oesophagitis was more common in the LaTG group(0%vs 11.1%,P<0.05).Kaplan–Meier analysis showed a significant improvement in the overall survival(OS)and disease free survival(DFS)in the LaTSG group.Multivariate analysis showed that LaTSG was an independent prognostic factor for OS(P=0.048)but not for DFS(P=0.054).Subgroup analysis showed that compared to LaTG,LaTSG improved the survival of patients with stage III cancers,but not for other stages.CONCLUSION For advanced GC involving the middle third stomach,LaTSG can be a good option with reduced morbidity and favorable nutritional status and oncological outcomes.展开更多
基金support from the Natural Science Foundation of Jiangsu Province(BK20220596)Innovative science and technology platform project of cooperation between Yangzhou City and Yangzhou University,China(No.YZ202026305)+1 种基金Natural Science Foundation of China(21922202,21673202 and 22272147)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Intergrowth ferroelectric semiconductors with excellent spontaneous polarization field are highly promising piezo-photocatalytic candidate materials.In addition,developing structural design and revealing polarization enhancement in-depth mechanism are top priorities.Herein,we introduce the intergrowth ferroelectrics Bi_(7)Ti_(4)NbO_(21)thin-layer nanosheets for piezo-photocatalytic CO_(2)reduction.Density functional theory(DFT)calculations indicate that interlayer lattice mismatch leads to increased tilting and rotation angle of Ti/NbO_(6)octahedra on perovskite-like layers,serving as the main reason for increased polarization.Furthermore,the tilting and rotation angle of the interlayer octahedron further increase under stress,suggesting a stronger driving force generated to facilitate charge carrier separation efficiency.Meanwhile,Bi_(7)Ti_(4)NbO_(21)nanosheets provide abundant active sites to effectively adsorb CO_(2)and acquire sensitive stress response,thereby presenting synergistically advanced piezo-photocatalytic CO_(2)reduction activity with a high CO generation rate of 426.97μmol g^(-1)h^(-1).Our work offers new perspectives and directions for initiating and investigating the mechanisms of high-performance intergrowth piezo-photocatalysts.
基金supported by the National Natural Science Foundation of China(22272065)the Natural Science Foundation of Jiangsu Province(BK20211530)+1 种基金the Fundamental Research Funds for the Central Universities(JUSRP62218)the Key Research and Development Special Project of Yi'chun City,Jiangxi Province,China(2023ZDYFZX06).
文摘One-dimensional perovskites possess unique photoelectric properties that distinguish them from other perovskitetypes, making them a focal point in photoelectric research. In recent years, there has been a significant surge ininterest surrounding the synthesis and application of one-dimensional anisotropic perovskites, spurred by ad-vancementsin synthesis techniques and notable breakthroughs in novel methodologies and application proper-ties.This article provides a comprehensive review of the progress made in research on one-dimensionalanisotropic perovskites, detailing the synthesis mechanisms and potential pathways for performance enhance-mentin various applications. We highlight the crucial role of controllable synthesis and heterogeneous effect intailoring perovskite properties to boost application efficacy. Initially, this review examines the primary synthesismethods and mechanisms for creating heterogeneously induced one-dimensional anisotropic perovskites, cate-gorizingthem into two main approaches: the classical wet chemical synthesis, which utilizes selective ligands, andthe ligand-free, substrate-assisted method. The precision in controllable synthesis is essential for fabricatingheterogeneous structures, where the synthesized precursor, shape, and surface ligand significantly influence theinterfacial strength of the heterogenic interface. We also discuss the key features that must be improved for high-performanceapplications, exploring how heterogeneous effects can enhance performance and drive the devel-opmentof heterogeneous devices in various applications, such as photodetectors, solar cells, light-emitting di-odes,and photocatalysis. Conclusively, by highlighting the emerging potential and promising opportunitiesoffered by strategic heterogeneous construction, we forecast a dynamic and transformative future for their pro-ductionand application landscapes.
基金supported by the Scientific and Technological Innovation Project of China Academy of Chinese Medical Sciences,China(Grant Nos.:CI2023E002 and CI2021A04513)the National Natural Science Foundation of China(Grant Nos.:82204619 and 82274094)the Fundamental Research Funds for the Central Public Welfare Research Institutes,China(Grant Nos.:ZZ15-YQ-067 and ZZ16-ND-10-26).
文摘A strategy combining a tailored database and high-throughput activity screening that discover bioactive metabolites derived from Magnoliae Officinalis Cortex(MOC)was developed and implemented to rapidly profile and discover bioactive metabolites in vivo derived from traditional Chinese medicine(TCM).The strategy possessed four characteristics:1)The tailored database consisted of metabolites derived from big data-originated reference compound,metabolites predicted in silico,and MOC chemical profile-based pseudomolecular ions.2)When profiling MOC-derived metabolites in vivo,attentions were paid not only to prototypes of MOC compounds and metabolites directly derived from MOC compounds,as reported by most papers,but also to isomerized metabolites and the degradation products of MOC compounds as well as their derived metabolites.3)Metabolite traceability was performed,especially to distinguish isomeric prototypes-derived metabolites,prototypes of MOC compounds as well as phase I metabolites derived from other MOC compounds.4)Molecular docking was utilized for high-throughput activity screening and molecular dynamic simulation as well as zebrafish model were used for verification.Using this strategy,134 metabolites were swiftly characterized after the oral administration of MOC to rats,and several metabolites were reported for the first time.Furthermore,17 potential active metabolites were discovered by targeting the motilin,dopamine D2,and the serotonin type 4(5-HT4)receptors,and part bioactivities were verified using molecular dynamic simulation and a zebrafish constipation model.This study extends the application of mass spectrometry(MS)to rapidly profile TCM-derived metabolites in vivo,which will help pharmacologists rapidly discover potent metabolites from a complex matrix.
基金supported by National Natural Science Foundation of China(22075112)Opening Foundation of State Key Laboratory of Rare Earth Resource Utilization(RERU2023010)+1 种基金Opening Foundation of Key Laboratory of Functional Inorganic Material Chemistry(Heilongjiang University)Ministry of Education,China,Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_4006).
文摘Catalytic reduction of 4-nitrophenol(4-NP)pollutant to the high-value 4-aminophenol(4-AP)with a clean hydrogen donor holds significant importance yet great challenges owing to the difficult activation of nitro and H species.In this work,Ag tailoring Frustrated Lewis pairs(FLPs)of CeO_(2)(Ag/CeO_(2))were successfully fabricated for electrochemical reduction reaction of 4-NP(4-NP ERR).As a result,the bond of Ag with O atom changed the state of the Ce-O bond and electron density,where the tailored FLPs were the key factor for enhancing absorption and activation.The reaction rate of Ag/CeO_(2)reached up to 4.70 mmol·min^(-1)(Faraday efficiency:99.5%),which was about four times of CeO_(2).Additionally,this study delved into the proton-coupled electron processes to further understand the mechanism of 4-NP ERR.Therefore,in this study,we have endeavored to investigate the role of tailored FLPs sites and utilize this structure-function relationship to achieve environmentalfriendly chemical synthesis.
基金This work was supported by National Key R&D Program of China(2021YFF1200200)Peiyang Talents Project of Tianjin University.
文摘Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior.Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties,providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs.The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable(opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts(0–100%).Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase,band alignment/structure,carrier density,and surface reactive activity,enabling novel and promising applications.This review comprehensively elaborates on atomically substitutional engineering in TMD layers,including theoretical foundations,synthetic strategies,tailored properties,and superior applications.The emerging type of ternary TMDs,Janus TMDs,is presented specifically to highlight their typical compounds,fabrication methods,and potential applications.Finally,opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field.
基金financially supported by Joint Foundation of Ministry of Education of China(No.8091B022225)National Natural Science Foundation of China(No.52173078)。
文摘The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended operating periods. In this study, we developed a composite anode(A/IF) by coating iron foam with cellulose-based aerogel. The concentration of Fe ions in the anode solution of A/IF anode reaches 0.280 μg/mL(Fe^(2+) vs. Fe^(3+) = 61%:39%) after 720 h of aseptic primary cell operation. This value was significantly higher than that(0.198 μg/mL, Fe^(2+) vs. Fe^(3+) = 92%:8%) on uncoated iron foam(IF), indicating a continuous release of Fe ions over long-term operation. Notably, the resulting MFCs hybrid cell exhibited a 23% reduction in Fe ion concentration(compared to a 47% reduction for the IF anode) during the sixth testing cycle(600-720 h). It achieved a high-power density of 301 ± 55 mW/m^(2) at 720 h, which was 2.62 times higher than that of the IF anode during the same period. Furthermore, a sedimentary microbial fuel cell(SMFCs) was constructed in a marine environment, and the A/IF anode demonstrated a power density of 103 ± 3 mW/m^(2) at 3240 h, representing a 75% improvement over the IF anode. These findings elucidate the significant enhancement in long-term power production performance of MFCs achieved through effective tailoring of Fe ions release during operation.
基金Supported by Grant-in-aid from the Ministry of Education,Culture,Sports,Science and Technology of Japan,No.22790640 and No.24590912
文摘The cure rates of Helicobacter pylori (H. pylori) eradication therapy using a proton pump inhibitor (PPI) and antimicrobial agents such as amoxicillin, clarithromycin, and metronidazole are mainly influenced by bacterial susceptibility to antimicrobial agents and the magnitude of the inhibition of acid secretion. Annual cure rates have gradually decreased because of the increased prevalence of H. pylori strains resistant to antimicrobial agents, especially to clarithromycin. Alternative regimens have therefore been developed incorporating different antimicrobial agents. Further, standard PPI therapy (twice-daily dosing) often fails to induce a long-term increase in intragastric pH > 4.0. Increasing the eradication rate requires more frequent and higher doses of PPIs. Therapeutic efficacy related to acid secretion is influenced by genetic factors such as variants of the genes encoding drug-metabolizing enzymes (e.g., cytochrome P450 2C19, CYP2C19), drug transporters (e.g., multidrug resistance protein-1; ABCB1), and inflammatory cytokines (e.g., interleukin-1β). For example, quadruple daily administration of PPI therapy potently inhibits acid secretion within 24 h, irrespective of CYP2C19 genotype. Therefore, tailored H. pylori eradication regimens that address acid secretion and employ optimal antimicrobial agents based on results of antimicrobial agent-susceptibility testing may prove effective in attaining higher eradication rates.
基金financially supported by the National Natural Science Foundation of China (Nos. 51105068 and 51475086)the Fundamental Research Funds for the Central Universities (Nos. N130323003 and XNB201413)the Science and Technology Research Project for Higher School of Hebei Province (No. Z2013068)
文摘The deformation characteristics of tailor rolled blank (TRB) in the course of uniaxial tension were studied by means of analysis, test and simulation. The mechanical analytical model of TRB during uniaxial tension was set up, and the deformation formulae for the thinner side and for the thicker side were derived to quantify the deformation of TRB. On this basis, uniaxial tension tests on TRB and ordinary blanks (the thinner side and the thicker side of TRB) were conducted. Lagrange polynomial interpolation method was adopted to construct the stress-strain fields of unannealed and annealed TRBs for solving TRB material parameters, and then, uniaxial tension simulation on TRB was completed. Deformations and properties of unannealed TRB were compared with those of annealed TRB, and the thinner side and the thicker side were also compared. Finally, the research results were explained by metallurgical structure. The results show that nonuniform deformation happens in TRB during uniaxial tension, and the necking occurs on the thinner side. The agreement of analysis, test and simulation confirms the correctness of the analytical model and the deformation formulae. The findings of this paper can lay the foundation for the future study on TRB stamping formability and provide a way for TRB modeling.
基金This work was financiallysupportedbythe Research Grants(NN-8501)from Ministry ofCommerce,Industry and Energyin Republic ofKorea.
文摘Several automotive parts such as door panels have been manufactured by using load-adapted blanks for crash optimization and weight minimization. Recently, Tailor Rolled Blanks (TRB) has been introduced to remove the disadvantages of a welding process which was used in joining panel components. TRB offers better structural design capabilities due to the seamless transitions on the panels with different thicknesses. In spite of the advantages of the process, TRB leaves internal stresses in the panel. This residual stresses lower the formability of Tailor Rolled Blanked (TRBed) parts and cause cracks near severe curvature during subsequent forming processes. In this research, the residual stresses of TRBed Al5J32-T4 sheets were studied by X-ray stress analysis, and also microstructure was observed along the rolling direction. In addition, heat treatment was done after TRB process in order to compare the residual stresses to that of the TRBed sheets before the heat treatment.
基金Item Sponsored by National Natural Science Foundation of China(51105068,51475086)Fundamental Research Funds for the Central Universities of China(N130323003,XNB201413)Science and Technology Research Project for Higher School of Hebei Province of China(Z2013068)
文摘The process of automobile lightweight can be promoted by the application of tailor rolled blank(TRB)in the automobile industry.Therefore,research on the formability of TRB is of good practical significance and application value because of the enormous potential of TRB in the aspect of automobile lightweight.Aiming at the present condition of lack of researches on the influence of characteristic parameters on TRB drawing process,the drawing formability of TRB was studied with a combination method of simulation and experiment by taking square box as the research object.Firstly,drawing simulation and experiment of TRB were carried out.Then,effects of thickness transition zone(TTZ)position and blank size on the drawing formability of TRB were analyzed.Forming limit and TTZ movement for TRB square box during the drawing process were respectively discussed,when transition zones of TRB were located at different positions and blanks were of different sizes.The results indicate that lubrication condition exerts greater influence on TRB forming limit in comparison with TTZ movement,and the smaller blank size and TTZ being located at the blank center or slightly offset to the thinner side are preferable for acquiring greater forming limit and smaller TTZ movement.
基金the full support from our Institute, National Institute of Technology SrinagarMinistry of Human Resource Development (MHRD) India, for the financial support
文摘The structural,morphological and optical properties of single-phase polycrystalline La2-xSrxNiMnO6(x=0,0.3 and 0.5),synthesized by solid state reaction were investigated.The samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM)/energy dispersive analysis of X-rays(EDAX),Raman spectroscopy and diffuse reflectance spectroscopy(DRS)to elucidate the role of A-site Sr-doping in double perovskite La2 NiMnO6.Rietveld analysis of XRD patterns revealed that all the samples have monoclinic structure with space group P21/n.Positive gradient in the Williamson Hall plots revealed the presence of tensile strain in all the samples.The morphological studies revealed that average grain size increases along with appreciable decrease in porosity with Sr doping.The Ni/Mn antisite disorder was introduced in the La2 NiMnO6 by Sr-doping confirmed by an increase in the full width at half maximum(FWHM)and decrease in intensity of the Raman modes at around 540 and 665 cm-1 which correspond to the antisymmetric stretching and symmetric stretching modes,respectively.DRS results reveal that the band gap in La2 NiMnO6 can be tuned down by Sr-doping to a value of1.37 eV(very close to 1.40 eV,considered as optimum value for better efficiency of a solar cell).Thus,Sr-doped La2 NiMnO6 may be of prime importance for applications in solar cells.
基金Item Sponsored by National Natural Science Foundation of China(51475086)Natural Science Foundation of Hebei Province of China(E2016501118,E2015501073)China Postdoctoral Science Foundation(2016M591404)
文摘Research on the formability of tailor rolled blank (TRB) is of good practical significance and application value because of the enormous potential of TRB in the aspect of automobile lightweight. However, the forming of TRB is problematic because of the varying properties; especially, springback is a main challenge. The transverse bending (bending axis is perpendicular to the rolling direction) of TRB U channel was studied through simulation and experiment. The forming characteristics of TRB U channel during transverse bending were analyzed. The mechanisms of forming defects, including bending springback and thickness transition zone (TTZ) movement, were revealed. On this basis, effects of blank geometric parameters on springbaek and TTZ movement were discussed. The results indicate that springback and TTZ movement happen during transverse bending of TRB U-channel. Nonuni form stress distribution is the most fundamental reason for the occurrence of springback of TRB during transverse bending. Annealing can eliminate nonuniform stress distribution, and thus diminish springbaek of TRB, especially springback on the thinner side. Therefore, springback of the whole TRB becomes more uniform. However, annealing can increase the TTZ movement. Blank thickness and TTZ position are the main factors affecting the formability of TRB U-channel during transverse bending.
基金This work was supported by the National Key Research and Development Program of China(No.18YFB1105600,2018YFC1106800)National Natural Science Foundation of China(51875518)+1 种基金Sichuan Province Science&Technology Department Projects(2016CZYD0004,2017SZ0001,2018GZ0142,2019YFH0079)Research Foundation for Young Teachers of Sichuan University(2018SCUH0017)and The“111”Project(No.B16033).
文摘The bone regenerative scaffold with the tailored degradation rate matching with the growth rate of the new bone is essential for adolescent bone repair.To satisfy these requirement,we proposed bone tissue scaffolds with controlled degradation rate using osteoinductive materials(Ca-P bioceramics),which is expected to present a controllable biodegradation rate for patients who need bone regeneration.Physicochemical properties,porosity,compressive strength and degradation properties of the scaffolds were studied.3D printed Ca-P scaffold(3DS),gas foaming Ca-P scaffold(FS)and autogenous bone(AB)were used in vivo for personalized beagle skull defect repair.Histological results indicated that the 3DS was highly vascularized and well combined with surrounding tissues.FS showed obvious newly formed bone tissues.AB showed the best repair effect,but it was found that AB scaffolds were partially absorbed and degraded.This study indicated that the 3D printed Ca-P bioceramics with tailored biodegradation rate is a promising candidate for personalized skull bone tissue reconstruction.
基金supported by the National Natural Science Foundation of China (No. 21902119)。
文摘The development of advanced electrocatalysts for efficient catalyzing ethanol oxidation reaction(EOR)and oxygen reduction reaction(ORR) is significant for direct ethanol fuel cells(DEFCs).However,in many previous studies,the major difficulties including lower utilization efficiency and weaker anti-CO-poison ability of Pt hamper the practical testing of such DEFCs,Herein,ternary Pt22Pd27C51 ultrathin(~5 nm)NWs are fabricated via a facile surfactant-free strategy.The surface and electronic structures of Pt22Pd27Cu51 NWs are further tailored via acid-etching treatment.The resulted PtPdCu NWs with an optimal atomic Pt/Pd/Cu ratio of 36:41:23 display excellent specific activities towards EOR(4.38 mA/cm^(2))and ORR(1.16 mA/cm^(2)),which are 19.8-and 5.7-folds larger than that of Pt/C,respectively.A singlecell was fabricated using Pt36Pd41Cu23 NWs as electrocatalyst in both anode and cathode with Pt loading of 1.2 mgpt/cm^(2).The power density measured at 80 ℃ is 21.7 mW/cm^(2),which is ~3.9 folds enhancement relative to that fabricated by using Pt/C(2 mgPt/cm^(2)).The enhanced catalytic performance of Pt36Pd41Cu23NWs could be attributed to that synergistic effect between Pt,Pd and Cu enhances CO anti-poisoning ability and promotes the C-C bond cleavage.This work provides a promising strategy for developing efficient electrocatalysts for DEFCs.
基金supports from the National Key R&D Program of China (No. 2021YFB2802000 and 2021YFB2800500)the National Natural Science Foundation of China (Grant Nos. U20A20211, 51902286, 61775192, 61905215, and 62005164)+2 种基金Key Research Project of Zhejiang Labthe State Key Laboratory of High Field Laser Physics (Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences)China Postdoctoral Science Foundation (2021M702799)。
文摘Long-term optical data storage(ODS)technology is essential to break the bottleneck of high energy consumption for information storage in the current era of big data.Here,ODS with an ultralong lifetime of 2×10^(7)years is attained with single ultrafast laser pulse induced reduction of Eu^(3+)ions and tailoring of optical properties inside the Eu-doped aluminosilicate glasses.We demonstrate that the induced local modifications in the glass can stand against the temperature of up to 970 K and strong ultraviolet light irradiation with the power density of 100 kW/cm^(2).Furthermore,the active ions of Eu^(2+)exhibit strong and broadband emission with the full width at half maximum reaching 190 nm,and the photoluminescence(PL)is flexibly tunable in the whole visible region by regulating the alkaline earth metal ions in the glasses.The developed technology and materials will be of great significance in photonic applications such as long-term ODS.
基金supported by the National Natural Science Foundation of China(Nos.10932003,50974039and50872126)the National Basic Research Program of China(No.2010CB832700)the Fundamental Research Funds for the Central Universities(893324,DUT11ZD202)
文摘Residual stress developed during the rolling process of tailor rolled blank (TRB) can affect the springback of finished parts considerably. Springback characteristics of unannealed and annealed TRBs were investigated by means of numerical simulation and experiments taking U-Channel as an example. TRBs were annealed by the annealing process (700 ℃, holding time 10 h), then stamping and springback processes of unannealed and annealed TRBs were simulated, and corresponding experiments were also carried out. Effects of the transition zone length, the blank thickness, the friction coefficient and the die clearance on the springback of TRB were analyzed. The results demonstrate that the springback of TRB annealed at 700 ~C for 10 h re- duces significantly. For unannealed and annealed U-Channels, the springback of TRB U-Channel is in direct proportion to the die clearance and is in inverse proportion to the transition zone length, the blank thickness and the friction coefficient. Spring- backs of the thinner monolithic (uniform thickness) blank, the thinner side of TRB, the thicker side of TRB and the thicker monolithic blank are sorted in descending order.
基金Supported by National Natural Science Foundation of China,No.81772642Beijing Municipal Science and Technology Commission,No.Z161100000116045Capital’s Funds for Health Improvement and Research,No.CFH 2018-2-4022。
文摘BACKGROUND Laparoscopic assisted total gastrectomy(LaTG)is associated with reduced nutritional status,and the procedure is not easily carried out without extensive expertise.A small remnant stomach after near-total gastrectomy confers no significant nutritional benefits over total gastrectomy.In this study,we developed a modified laparoscopic subtotal gastrectomy procedure,termed laparoscopicassisted tailored subtotal gastrectomy(LaTSG).AIM To evaluate the feasibility and nutritional impact of LaTSG compared to those of LaTG in patients with advanced middle-third gastric cancer(GC).METHODS We retrospectively analyzed surgical and oncological outcomes and postoperative nutritional status in 92 consecutive patients with middle-third GC who underwent radical laparoscopic gastrectomy at Department of Pancreatic Stomach Surgery,National Cancer Center/Cancer Hospital,Chinese Academy of Medical Sciences,and Peking Union Medical College between 2013 and 2017.Of these 92 patients,47 underwent LaTSG(LaTSG group),and the remaining underwent LaTG(LaTG group).RESULTS Operation time(210±49.8 min vs 208±50.0 min,P>0.05)and intraoperative blood loss(152.3±166.1 mL vs 188.9±167.8 mL,P>0.05)were similar between the groups.The incidence of postoperative morbidities was lower in the LaTSG group than in the LaTG group(4.2%vs 17.8%,P<0.05).Postoperatively,nutritional indices did not significantly differ,until postoperative 12 mo.Albumin,prealbumin,total protein,hemoglobin levels,and red blood cell counts were significantly higher in the LaTSG group than in the LaTG group(P<0.05).No significant differences in Fe or C-reaction protein levels were found between the two groups.Endoscopic examination demonstrated that reflux oesophagitis was more common in the LaTG group(0%vs 11.1%,P<0.05).Kaplan–Meier analysis showed a significant improvement in the overall survival(OS)and disease free survival(DFS)in the LaTSG group.Multivariate analysis showed that LaTSG was an independent prognostic factor for OS(P=0.048)but not for DFS(P=0.054).Subgroup analysis showed that compared to LaTG,LaTSG improved the survival of patients with stage III cancers,but not for other stages.CONCLUSION For advanced GC involving the middle third stomach,LaTSG can be a good option with reduced morbidity and favorable nutritional status and oncological outcomes.