期刊文献+
共找到753篇文章
< 1 2 38 >
每页显示 20 50 100
Recovery of polymetallic elements from cyanide tailings via reduction smelting
1
作者 Gong-hao LI Fen JIAO +3 位作者 Chen LI Si-yu GU Shi-yang LIU Xin WEI 《Transactions of Nonferrous Metals Society of China》 2025年第3期975-989,共15页
A process for treating cyanide tailings was proposed.The process essentially implicates reduction smelting which involves volatilizing silver,lead,and zinc in the cyanide tailings at high temperatures.Meanwhile,gold a... A process for treating cyanide tailings was proposed.The process essentially implicates reduction smelting which involves volatilizing silver,lead,and zinc in the cyanide tailings at high temperatures.Meanwhile,gold and copper combine with the reduced iron to form a metal phase,allowing for the simultaneous recovery of polymetallic elements.The experimental results indicate that the process works optimally with a coke powder of 7.5 wt.%,an alkalinity of 1.0,a melting temperature of 1450℃,and a melting time of 60 min.Under these conditions,more than 99% of gold,77% of copper and 94% of iron are incorporated into pig iron.In the meantime,the volatilization rate of silver exceeds 90%,while lead and zinc are essentially completely volatilized.The primary component of the by-product smelting slag is akermanite,which exhibits lower leaching toxicity than the national standard and belongs to general solid waste.Additionally,taking the trapping process of iron to copper as a case study,the mechanism of iron trapping is methodically examined and divided into three processes:smelting reduction,migration capture,and condensation deposition. 展开更多
关键词 cyanide tailings gold tailings reduction smelting valuable element recovery
在线阅读 下载PDF
Performance of stabilized copper mine tailings with freeze-thaw and wet-dry seasonal cycles 被引量:2
2
作者 Uddav Ghimire Tejo V.Bheemasetti Hee-Jeong Kim 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1418-1428,共11页
Approximately 3.44 billion tons of copper mine tailings(MT)were produced globally in 2018 with an increase of 45%from 2010.Significant efforts are being made to manage these tailings through storage facilities,recycli... Approximately 3.44 billion tons of copper mine tailings(MT)were produced globally in 2018 with an increase of 45%from 2010.Significant efforts are being made to manage these tailings through storage facilities,recycling,and reuse in different industries.Currently,a large portion of tailings are managed through the tailing storage facilities(TSF)where these tailings undergo hydro-thermal-mechanical stresses with seasonal cycles which are not comprehensively understood.This study presents an investigative study to evaluate the performance of control and cement-stabilized copper MT under the influence of seasonal cycles,freeze-thaw(F-T)and wet-dry(W-D)conditions,representing the seasonal variability in the cold and arid regions.The control and cement-stabilized MT samples were subjected to a maximum of 12 F-T and 12 W-D cycles and corresponding micro-and-macro behavior was investigated through scanning electron microscope(SEM),volumetric strain(εvT,wet density(r),moisture content loss,and unconfined compressive strength(UCS)tests.The results indicated the vulnerability of Copper MT to 67%and 75%strength loss reaching residual states with 12 F-T and 8 W-D cycles,respectively.Whereas the stabilized MT retained 39%-55%and 16%-34%strength with F-T and W-D cycles,demonstrating increased durability.This research highlights the impact of seasonal cycles and corresponding strength-deformation characteristics of control and stabilized Copper MT in cold and arid regions. 展开更多
关键词 Copper mine tailings(MT) Stabilization Seasonal cycles Cold and arid region
在线阅读 下载PDF
Rheological Properties of Phosphorus Tailings-cement-microsilica Mixed Slurry 被引量:1
3
作者 WANG Xiujuan WEI Yaowu +3 位作者 WANG Jingran HE Junming ZHANG Jin YOU Dahai 《China's Refractories》 2025年第1期43-50,共8页
Utilizing phosphorus tailings as the raw material for foam concrete is a key approach to achieving sustainable and efficient resource utilization.During the preparation of phosphorus tailings-based foam concrete,slurr... Utilizing phosphorus tailings as the raw material for foam concrete is a key approach to achieving sustainable and efficient resource utilization.During the preparation of phosphorus tailings-based foam concrete,slurry performance is critical to the successful production.Phosphorus tailings,cement and microsilica were used to prepare foam concrete slurry in this study.A rheometer was employed as a test tool to measure the variation of linear viscoelastic zone(LVR),viscosity,and yield stress of the slurries with different cement contents.The results indicate that the phosphorus tailings-cement-microsilica slurry exhibits shear-thinning properties,which aligns well with the Herschel-Bulkley model,showing a high degree of correlation.As the cement content increases,the energy storage modulus of the slurry rises,and the LVR length shows a nonlinear trend.The LVR reaches its maximum length of 0.04%when the cement content is 6 mass%or 8 mass%.The increment of the cement content leads to a more intricate internal network structure,which hinders the reconstruction rate of the flocculated structure after high-shear deformation. 展开更多
关键词 phosphorus tailings SLURRY rheology THIXOTROPY
在线阅读 下载PDF
Cotreatment strategy for hazardous arsenic-calcium residue and siderite tailings via arsenic fixation as scorodite
4
作者 Rui Su Xinrong Su +7 位作者 Yanjiao Gao Xu Ma Xiaoming Zhao Xiaoxia Ou Yubo Cui Jinru Lin Yuanming Pan Shaofeng Wang 《Journal of Environmental Sciences》 2025年第7期118-127,共10页
Siderite tailings is a potentially cost-free iron(Fe)source for arsenic(As)fixation in hazardous arsenic-calcium residues(ACR)as stable scorodite.In this study,a pure siderite reagent was employed to investigate the m... Siderite tailings is a potentially cost-free iron(Fe)source for arsenic(As)fixation in hazardous arsenic-calcium residues(ACR)as stable scorodite.In this study,a pure siderite reagent was employed to investigate the mechanism and optimal conditions for As fixation in ACR via scorodite formation,while the waste siderite tailings were used to further demonstrate the cotreatment method.The cotreatment method starts with an introduction of sulfuric acid to the ACR for As extraction and gypsum precipitation,and is followed by the addition of H_(2)O_(2) to oxidize As(Ⅲ)in the extraction solutions and finalized by adding siderite with continuous air injection for scorodite formation.The dissolution-oxidation of siderite can slowly produce Fe(Ⅲ)to control aqueous As(V)-Fe(Ⅲ)precipitation supersaturation for continuous scorodite crystallization.Chemical analyses show that the extraction efficiency of As from the ACR reaches 94.55%,while the precipitation yield of extracted As via scorodite formation arrives at 99.63% and 99.47%,leading to fixation efficiency of 94.20% and 94.04% in terms of the total As in the ACR by using siderite reagent and tailings,respectively.The final solid products show desirable TCLP stability and long-term stability,meeting the requirement for safe storage(GB 5085.3-2007).XRD,FTIR,and TEM results reveal that such high stability is attributable to the formation of scorodite and the surface adsorption of As on the raw siderite and secondary maghemite.This innovative and economical application of siderite tailings for the treatment of hazardous ACR can be extended to the management of hydrometallurgical wastes. 展开更多
关键词 ARSENIC Arsenic-calcium residues Siderite tailings SCORODITE Transformation Hydrometallurgical wastes
原文传递
Sustainable utilization of fluorite flotation tailings resources:A review
5
作者 Shenxu Bao Hailin Zhou +2 位作者 Yimin Zhang Ye Zhang Muyang Huang 《International Journal of Minerals,Metallurgy and Materials》 2025年第10期2305-2321,共17页
The rapid development of novel energy materials has led to a sustained surge in the global demand for fluorine.Fluorite is the primary source of fluorine globally and is increasingly being exploited.The estimated annu... The rapid development of novel energy materials has led to a sustained surge in the global demand for fluorine.Fluorite is the primary source of fluorine globally and is increasingly being exploited.The estimated annual production of fluorite worldwide is approximately 8 million tons,with an additional 5 million tons of fluorite tailings.This accumulation not only consumes land resources,but also contributes to dust generation and F-percolation,leading to water and air contamination.This paper comprehensively reviews the utilization methods of fluorite tailings,including the flotation recovery of quartz and fluorite,the preparation of cement mineralizing agents,and the preparation of concrete mineral additives,autoclaved lime sand brick,and glass-ceramics.Furthermore,potential future applications and research directions are proposed,including the comprehensive recovery of valuable minerals,auxiliary cementitious materials preparation,and the functionalization of glass-ceramics.This study can serve as a reference for expediting the utilization of fluorite tailings,promoting the development of tailing-free mines,and establishing sustainable development strategies. 展开更多
关键词 fluorite tailings FLOTATION valuable mineral recovery construction materials sustainable utilization solid waste
在线阅读 下载PDF
Characterization and acid leaching of rare earth elements in coal gangue using pretreatment of selective grinding,tailings discarding and alkali roasting
6
作者 Xiaorui Wang Wei Cheng +1 位作者 Ruidong Yang Jingkun Zang 《Journal of Rare Earths》 2025年第2期384-396,I0006,共14页
Co-associated rare earth elements(lanthanide and yttrium,REY)in coal and its by-products have been considered important potential nontraditional rare earth sources.In this study,a coal gangue sample collected from a c... Co-associated rare earth elements(lanthanide and yttrium,REY)in coal and its by-products have been considered important potential nontraditional rare earth sources.In this study,a coal gangue sample collected from a coal processing plant in Jinsha County of Guizhou Province,southwest China,was used as the research object.The content,modes of occurrence,and extraction(acid leaching after pretreatment of selective grinding,tailings discarding,and alkali roasting)of REY from the sample were analyzed.The result shows that the content of REY(1038.26μg/g)in pyrite and quartz is low but mainly enriched in kaolinite.Under the following conditions of a filling ratio of 40%(grinding media steel ball)and grinding time of 8 min,selective grinding pretreatment is applied to achieve 176.95μg/g(yield 24.08%)and 1104.93μg/g(yield 75.92%)of REY in+2 mm and-2 mm fractions,respectively.Thus,the-2 mm coal gangue fraction is selected,used as the feed,and roasted and leached with HCl.When Na_(2)CO_(3)and NaCl are separately used as roasting activators,the REY leaching ratios are 91.41%and 68.88%,respectively,under the optimum conditions.The contents of REY in the final leachate are 1010.02 and 761.08μg/g when Na_(2)CO_(3)and NaCl are used,respectively.The two REY contents are relatively higher than the impurity ions in the leachate,which facilitates further REY separation.The mechanism study reveals that high-temperature roasting increases the pore size and the total pore area of the gangue,which promotes leachate penetration and improves reaction efficiency.In addition,roasting facilitates the reaction between the sodium salt activator and kaolinite and other aluminosilicate minerals in the coal gangue to generate soluble salts,thus releasing REY into the solution.The appropriate roasting temperature transforms the activator into a molten state.Thus,the reaction between coal gangue and activator is a solid-liquid reaction rather than a solid-solid reaction,which improves the efficiency of the chemical reaction. 展开更多
关键词 Coal gangue Rare earth elements Selective grinding tailings discarding Alkali roasting LEACHING
原文传递
Understanding pore water pressure responses to sulphate in cemented tailings backfill with superplasticizers under thermo-hydro-mechanical-chemical field conditions
7
作者 Zubaida Al-Moselly Mamadou Fall 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4673-4684,共12页
This research examines the impact of sulphate on pore water pressure(PWP)development in cement paste backfill(CPB)containing polycarboxylate ether(PES)superplasticizers under thermal-hydraulic-mechanical-chemical(THMC... This research examines the impact of sulphate on pore water pressure(PWP)development in cement paste backfill(CPB)containing polycarboxylate ether(PES)superplasticizers under thermal-hydraulic-mechanical-chemical(THMC)conditions that imitate actual field curing scenarios.PWP in CPB-PES,with and without sulphate,was assessed under non-isothermal field curing temperatures,varied drainage conditions,and curing stresses using a specially experimental setup.Key findings indicate that PWP behavior in CPB with PES under field conditions diverges markedly from standard laboratory conditions due to the significant effects of field curing temperatures,drainage conditions,and backfill self-weight.The study establishes that high sulphate ion concentrations notably increase initial PWP and slow its dissipation by interfering with the cement hydration process.This interference delays hydration,reduces pore water consumption,and lowers capillary pressure.Moreover,the results show that THMC conditions,especially non-isothermal field temperatures and varied drainage scenarios,considerably accelerate cement hydration compared to standard laboratory conditions,resulting in a more rapid decrease in PWP.Furthermore,improved drainage under THMC conditions mitigates the adverse effects of sulphates by facilitating sulphate ion removal,thus supporting more efficient cement hydration and CPB self-desiccation.The insights gained from this research are essential for understanding PWP behavior in sulphate-bearing CPB-PES in the field,developing predictive THMC models for backfill performance assessment,and enhancing the safety and effectiveness of mining backfills. 展开更多
关键词 Cemented paste backfill(CPB) tailings Mine Sulphate Pore water pressure Thermo-hydro-mechanical-chemical(THMC) In-situ conditions
在线阅读 下载PDF
Synthesis of ternary geopolymers using prediction for effective solidification of mercury in tailings
8
作者 Xuan Lu Jinfa Guo +1 位作者 Fang Chen Mengkui Tian 《Journal of Environmental Sciences》 2025年第1期392-403,共12页
This study used steel slag,fly ash,and metakaolin as raw materials(SFM materials)to create silica-alumina-based geopolymers that can solidify Hg^(2+)when activated with sodiumbased water glass.The experiments began wi... This study used steel slag,fly ash,and metakaolin as raw materials(SFM materials)to create silica-alumina-based geopolymers that can solidify Hg^(2+)when activated with sodiumbased water glass.The experiments began with a triangular lattice point mixing design experiment,and the results were fitted,analyzed,and predicted.The optimum SFM material mass ratio was found to be 70%steel slag,25%fly ash,and 5%metakaolin.The optimum modulus of the activator was identified by comparing the unconfined compressive strength and solidifying impact on Hg^(2+)of geosynthetics with different modulus.The SFM geopolymer was then applied in the form of potting to cure the granulated mercury tailings.The inclusion of 50%SFM material generated a geosynthetic that reduced mercury transport to the surface soil by roughly 90%.The mercury concentration of herbaceous plant samples was also reduced by 78%.It indicates that the SFM material can effectively attenuate the migration transformation of mercury.Finally,characterization methods such as XPS and FTIR were used to investigate the mechanism of Hg^(2+)solidification by geopolymers generated by SFM materials.The possible solidification mechanisms were proposed as alkaline environment-induced mercury precipitation,chemical bonding s,surface adsorption of Hg^(2+)and its precipitates by the geopolymer,and physical encapsulation. 展开更多
关键词 MERCURY GEOPOLYMER SOLIDIFICATION tailings
原文传递
Investigation into the characteristics of magnesite tailings-catalyzed gasification of petroleum coke
9
作者 Xian-Chao Du Xiang Liu +1 位作者 Qian-Yun Liu Bing Wang 《Petroleum Science》 2025年第9期3830-3842,共13页
This study systematically investigated the catalytic gasification of two distinct petroleum coke(PC)using magnesium-based tailings(MT)as the catalyst.The research objectives focused on comparative analysis of gasifica... This study systematically investigated the catalytic gasification of two distinct petroleum coke(PC)using magnesium-based tailings(MT)as the catalyst.The research objectives focused on comparative analysis of gasification reactivities and elucidation of carbon microstructure evolution during PC gasification.Experimental results demonstrate that PC-B(derived from Liaohe Oilfields delayed coking)exhibited significantly higher gasification activity than PC-A(from Karamay Oilfields delayed coking),with aromatic C–H content and polycondensation index showing stronger correlations with reactivity than graphitization parameters.Notably,the MT catalyst exhibited material-dependent catalytic behaviors during gasification.MT catalyst enhanced structural ordering in PC-B by:(i)developing denser aromatic carbon layers,(ii)improving microcrystalline alignment,and(iii)elevating graphitization degree.These structural modifications contrasted sharply with PC-A’s response,where MT introduction generated active MgO species in the ash phase,boosting gasification reactivity.Conversely,in PC-B ash systems,MgO preferentially reacted with Al_(2)O_(3) to form inert MgAl_(2)O_(4) spinel,effectively deactivating the catalyst.Kinetic investigations validated the shrinking core model(SCM)as the dominant mechanism,with calculated activation energies of 172.12 kJ/mol(PC-A+5%MT)and 137.19 kJ/mol(PC-B+5%MT). 展开更多
关键词 Petroleum coke Catalytic gasification Mg-based tailings Carbon microstructure KINETICS
原文传递
Enhanced prediction of occurrence forms of heavy metals in tailings:A systematic comparison of machine learning methods and model integration
10
作者 Pengxin Zhao Kechao Li +3 位作者 Nana Zhou Qiusong Chen Min Zhou Chongchong Qi 《International Journal of Minerals,Metallurgy and Materials》 2025年第10期2406-2417,共12页
Tailings produced by mining and ore smelting are a major source of soil pollution.Understanding the speciation of heavy metals(HMs)in tailings is essential for soil remediation and sustainable development.Given the co... Tailings produced by mining and ore smelting are a major source of soil pollution.Understanding the speciation of heavy metals(HMs)in tailings is essential for soil remediation and sustainable development.Given the complex and time-consuming nature of traditional sequential laboratory extraction methods for determining the forms of HMs in tailings,a rapid and precise identification approach is urgently required.To address this issue,a general empirical prediction method for HM occurrence was developed using machine learning(ML).The compositional information of the tailings,properties of the HMs,and sequential extraction steps were used as inputs to calculate the percentages of the seven forms of HMs.After the models were tuned and compared,extreme gradient boosting,gradient boosting decision tree,and categorical boosting methods were found to be the top three performing ML models,with the coefficient of determination(R^(2))values on the testing set exceeding 0.859.Feature importance analysis for these three optimal models indicated that electronegativity was the most important factor affecting the occurrence of HMs,with an average feature importance of 0.4522.The subsequent use of stacking as a model integration method enabled the ability of the ML models to predict HM occurrence forms to be further improved,and resulting in an increase of R^(2) to 0.879.Overall,this study developed a robust technique for predicting the occurrence forms in tailings and provides an important reference for the environmental assessment and recycling of tailings. 展开更多
关键词 tailings sequential extraction occurrence forms model comparison stacking ensemble learning
在线阅读 下载PDF
Effect of magnesium slag and blast furnace slag as partial cement substitutes on properties of cemented tailings backfill
11
作者 YANG Jian YANG Xiao-bing +3 位作者 YAN Ze-peng YIN Sheng-hua ZHANG Xi-zhi QI Yao-bin 《Journal of Central South University》 2025年第7期2696-2716,共21页
Utilizing mine solid waste as a partial cement substitute(CS)to develop new cementitious materials is a significant technological innovation that will decrease the expenses associated with filling mining.To realize th... Utilizing mine solid waste as a partial cement substitute(CS)to develop new cementitious materials is a significant technological innovation that will decrease the expenses associated with filling mining.To realize the resource utilization of magnesium slag(MS)and blast furnace slag(BFS),the effects of different contents of MS and BFS as partial CSs on the deformation and energy characteristics of cemented tailings backfill on different curing ages(3,7,and 28 d)were discussed.Meanwhile,the destabilization failure energy criterion of the backfill was established from the direction of energy change.The results show that the strength of all backfills increased with increasing curing age,and the strengths of the backfills exceeded 1.342 MPa on day 28.The backfill with 50%BFS+50%cement has the best performance in mechanical properties(the maximum strength can reach 6.129 MPa)and is the best choice among these CS combinations.The trend in peak strain and elastic modulus of the backfill with increasing curing age may vary depending on the CS combination.The energy index at peak stress of the backfill with BFS as a partial CS was significantly higher than that of the backfill under other CS combinations.In contrast,the enhancement of the energy index when MS was used as a partial CS was not as significant as BFS.Sharp changes in the energy consumption ratio after continuous smooth changes can be used as a criterion for destabilization and failure of the backfill.The research results can provide guidance for the application of MS and BFS as partial CSs in mine filling. 展开更多
关键词 cemented tailings backfill cement substitute curing age mechanical properties energy evolution energy consumption ratio
在线阅读 下载PDF
A large-scale study on solidification of gold tailings based on microbially induced carbonate precipitation(MICP)
12
作者 Yaoting Duan Qin Yuan +1 位作者 Caiqi Yu Chunli Zheng 《Biogeotechnics》 2025年第3期10-20,共11页
One of the major challenges in the application of microbially induced carbonate precipitation(MICP)is achieving"bacteria freedom",as it necessitates a substantial volume of bacterial solutions.Nevertheless,b... One of the major challenges in the application of microbially induced carbonate precipitation(MICP)is achieving"bacteria freedom",as it necessitates a substantial volume of bacterial solutions.Nevertheless,both insitu bacterial cultivation and transportation of bacterial solutions have proven to be inefficient.In this study,we suggested the utilization of bacteria in the form of dry powder,enabling easy on-site activation and achieving a relatively high urease activity.We conducted MICP curing experiments on gold mine tailings(GMT)using steel slag(SS)as an additive.The results showed that the average unconfined compressive strength(UCS)values of the tailings treated with MICP and MICP+SS reached 0.51 and 0.71 MPa,respectively.In addition,the average leaching reduction rates of Cu,Pb,Cr,Zn,and T-CN in GMT after MICP treatment reached 98.54%,100%,70.94%,59.25%,and 98.02%,respectively,and the average reduction rates after MICP+SS treatment reached 98.77%,100%,88.03%,72.59%,and 98.63%,respectively.SEM,XRD,FT-IR analyses,and ultra-deep field microscopy results confirmed that the MICP treatment produced calcite-based calcium carbonate that filled the inter-tailing pores and cemented them together,and the hydration mechanism was the main reason for the increased curing efficiency of SS.Our research findings demonstrate that bacterial powder can efficiently achieve the objectives of heavy metal removal and tailing solidification.This approach can substantially de-crease the expenses associated with bacterial cultivation and solution transportation,thereby playing a crucial role in advancing the practical implementation of MICP. 展开更多
关键词 Gold mine tailings MICP SOLIDIFICATION Bacterial powder
暂未订购
Mechanical properties, deformation response, energy evolution and failure pattern of stratified cemented tailings backfill under triaxial compression
13
作者 Wenbin Xu Yalun Zhang +1 位作者 Kangqi Zhao Tong Sun 《International Journal of Minerals,Metallurgy and Materials》 2025年第10期2391-2405,共15页
The backfill should keep stable in the primary stope when mining an adjacent secondary stope in subsequent open stoping mining methods,and the large-size mined-out area is usually backfilled by multiple backfilling be... The backfill should keep stable in the primary stope when mining an adjacent secondary stope in subsequent open stoping mining methods,and the large-size mined-out area is usually backfilled by multiple backfilling before the recovery of a secondary stope,resulting in a layered structure of backfill in stope.Therefore,it is significant to investigate the deformation responses and mechanical properties of stratified cemented tailings backfill(SCTB)with different layer structures to remain self-standing as an artificial pillar in the primary stope.The current work examined the effects of enhance layer position(1/3,1/2,and 2/3)and thickness ratio(0,0.1,0.2,and 0.3)on the mechanical properties,deformation,energy evolution,microstructures,and failure modes of SCTB.The results demonstrate that the incorporation of an enhance layer significantly strengthens the deformation and strength of SCTB.Under a confining pressure of 50 kPa,the peak deviatoric stress rises from 525.6 to 560.3,597.1,and 790.5 kPa as the thickness ratio of enhance layer is increased from 0 to 0.1,0.2,and 0.3,representing a significant increase of 6.6%,13.6%,and 50.4%.As the confining pressure increases,the slopes of the curves in the elastic stage become steep,and the plastic phase is extended accordingly.Additionally,the incorporation of the enhance layer significantly improves the energy storage linit of SCTB specimen.As the thickness ratio of the enhance layer increases from 0 to 0.1,0.2,and 0.3,the elastic energy rises from 0.54 to 0.67,0.84,and 1.00 MJ·m^(-3),representing a significant increase of 24.1%,55.6%,and 85.2%.The internal friction angles and cohesions of the SCTB specimens are higher than those of the CTB specimens,however,the cohesion is more susceptible to enhance layer position and thickness ratio than the internal friction angle.The failure style of the SCTB specimen changes from shear failure to splitting bulging failure and shear bulging failure with the presence of an enhance layer.The crack propagation path is significantly blocked by the enhance layer.The findings are of great significance to the application and stability of the SCTB in subsequent stoping backfilling mines. 展开更多
关键词 stratified cemented tailings backfill enhance layer triaxial compressive tests mechanical properties energy evolution
在线阅读 下载PDF
Cyanobacterial bloom removal by rapid flocculation and settling using modified iron tailings sand materials
14
作者 Yichao WANG Wei ZHU +3 位作者 Ruochen WANG Guorui LI Xinyi WANG Jun ZHONG 《Journal of Oceanology and Limnology》 2025年第5期1501-1514,共14页
Inexpensive flocculant-modified iron tailings sand(ITS)were converted into effective flocculation materials for cyanobacteria blooms.After composite modification with polyaluminum chloride(PAC)and polyacrylamide(PAM),... Inexpensive flocculant-modified iron tailings sand(ITS)were converted into effective flocculation materials for cyanobacteria blooms.After composite modification with polyaluminum chloride(PAC)and polyacrylamide(PAM),the surface charge of ITS was altered from negative to positive,and surface adhesion was increased by~1.5 times.PAC/PAM-modified ITS(PP-ITS)had strong flocculating effects on cyanobacteria,facilitating their removal.When the dosage of PP-ITS was 150 mg/L and the ratio of flocculant to ITS was 1:20,the elimination rate of cyanobacteria was as high as 90%.The flocs formed were better than those with chitosan-modified clays(CS-CA)and PAC-modified ITS(PAC-ITS)in terms of settling velocity,size,and recovery ability.The positively charged groups in the flocculant,such as-NH_(2) and Al^(3+),are attracted to negatively charged ions on the surface of ITS,altering the surface charge.Additionally,hydrogen bonds could form between amide side groups,and surface adhesion was improved through molecular association.Coupled with the strong bridging and sweeping effects of the flocculant,the flocs generated by PP-ITS formed rapidly and were large and resilient.The use of PP-ITS could effectively treat cyanobacteria blooms as well as solve the problem of ore tailings disposal.These results are of practical importance for engineering strategies to control cyanobacteria blooms,though there are still some issues that need to be addressed,such as how cyanobacteria flocs are collected and utilized after settling. 展开更多
关键词 flocculation material cyanobacteria bloom flocculation mechanism iron tailings sand(ITS) settling velocity
在线阅读 下载PDF
Sustainable iron recovery from iron ore tailings using hydrogen-based reduction roasting and magnetic separation: A pilot-scale study
15
作者 Xinran Zhu Xuesong Sun +1 位作者 Yanjun Li Yuexin Han 《Chinese Journal of Chemical Engineering》 2025年第3期81-90,共10页
Iron tailings are a common solid waste resource,posing serious environmental and spatial challenges.This study proposed a novel hydrogen-based reduction roasting(HRR)technology for the processing of iron tailings usin... Iron tailings are a common solid waste resource,posing serious environmental and spatial challenges.This study proposed a novel hydrogen-based reduction roasting(HRR)technology for the processing of iron tailings using a combined beneficiation and metallurgy approach.Pilot-cale experiment results indicated that under the gas composition of CO:H_(2)=1:3,and optimal roasting conditions at a reduction temperature of 520℃,the majority of weakly magnetic hematite transforms into strongly magnetic magnetite during the reduction process.Combining roasting products with a magnetic separation-grinding-magnetic selection process yields a final iron concentrate with a grade of 56.68%iron and a recovery rate of 86.54%.Theoretical calculations suggested the annual production value can reach 29.7 million USD and a reduction of 20.79 tons of CO_(2) emissions per year.This highlights that the use of HRR in conjunction with traditional beneficiation processes can effectively achieve comprehensive utilization of iron tailings,thereby reducing environmental impact. 展开更多
关键词 Iron ore tailings HYDROGEN Reduction roasting Magnetic separation CO_(2)emissions
在线阅读 下载PDF
Machine learning model comparison and ensemble for predicting different morphological fractions of heavy metal elements in tailings and mine waste
16
作者 FENG Yu-xin HU Tao +4 位作者 ZHOU Na-na ZHOU Min BARKHORDARI Mohammad Sadegh LI Ke-chao QI Chong-chong 《Journal of Central South University》 2025年第9期3557-3573,共17页
Driven by rapid technological advancements and economic growth,mineral extraction and metal refining have increased dramatically,generating huge volumes of tailings and mine waste(TMWs).Investigating the morphological... Driven by rapid technological advancements and economic growth,mineral extraction and metal refining have increased dramatically,generating huge volumes of tailings and mine waste(TMWs).Investigating the morphological fractions of heavy metals and metalloids(HMMs)in TMWs is key to evaluating their leaching potential into the environment;however,traditional experiments are time-consuming and labor-intensive.In this study,10 machine learning(ML)algorithms were used and compared for rapidly predicting the morphological fractions of HMMs in TMWs.A dataset comprising 2376 data points was used,with mineral composition,elemental properties,and total concentration used as inputs and concentration of morphological fraction used as output.After grid search optimization,the extra tree model performed the best,achieving coefficient of determination(R2)of 0.946 and 0.942 on the validation and test sets,respectively.Electronegativity was found to have the greatest impact on the morphological fraction.The models’performance was enhanced by applying an ensemble method to the top three optimal ML models,including gradient boosting decision tree,extra trees and categorical boosting.Overall,the proposed framework can accurately predict the concentrations of different morphological fractions of HMMs in TMWs.This approach can minimize detection time,aid in the safe management and recovery of TMWs. 展开更多
关键词 tailings and mine waste morphological fractions model comparison machine learning model ensemble
在线阅读 下载PDF
Compression behavior and particle breakage in iron ore tailings
17
作者 Xu Ji Qiang Xu +2 位作者 Kaiyi Ren Lanting Wei Wensong Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6586-6605,共20页
The high stress levels in tall tailings dams can lead to particle crushing.Understanding the compressibility and breakage characteristics of tailings particles will contribute to the advancement to the design and cons... The high stress levels in tall tailings dams can lead to particle crushing.Understanding the compressibility and breakage characteristics of tailings particles will contribute to the advancement to the design and construction processes of high-rise tailings dams,as well as the accurate evaluation of the stability of tailings storage facilities(TSFs).This paper presents the results of a series of detailed one-dimensional oedometer compression tests conducted to investigate the compression behavior and particle breakage of iron ore tailings(IOTs)collected from two typical TSFs,with different initial particle size distributions and a wide range of initial specific volumes,under effective vertical stresses of up to 4.8 MPa.The results show that the compression paths of the IOTs were slowly convergent,and this nontransitional mode of compression behavior experienced a significant amount of particle breakage.The relative breakage(Br)was used to quantify the amount of breakage and the input specific work(W)was adopted to evaluate the factors influencing Br.The initial breakage stress of the IOTs was less than 0.2 MPa.For the finer tailings,Br increased with increasing vertical stresses until it reached a threshold,after which Br tended to remain constant.However,coarser IOTs continued to experience crushing even at 4.8 MPa.The particle breakage in the coarser IOTs is much more significant than it in the finer IOTs overall.It was also observed that the tailings grains within the loose specimens broke more easily than those within the dense specimens.Additionally,three types of particle crushing modes were identified for IOTs under one-dimensional compression,namely,abrasion,chipping,and splitting. 展开更多
关键词 Iron ore tailings Particle breakage COMPRESSIBILITY Particle size distribution
在线阅读 下载PDF
Strength and energy dissipation of whole tailings cemented backfill body
18
作者 CAI Faxiong SUN Wei +5 位作者 WEN Yao ZHANG Panke DING Fanyu ZHU Ailun HUANG Yan WANG Shaoyong 《Journal of Mountain Science》 2025年第7期2676-2688,共13页
The strength of backfill body is a crucial parameter in backfilling mining,and the failure process of cemented backfill body is essentially an energy dissipation process.To investigate the effects of curing age and ce... The strength of backfill body is a crucial parameter in backfilling mining,and the failure process of cemented backfill body is essentially an energy dissipation process.To investigate the effects of curing age and cement-sand ratio on the strength and energy consumption of backfill,whole tailings were used as aggregate to prepare slurry with mass concentration of 74%,and the slurry with cement-sand ratio of 1:4,1:6,1:8 and 1:12 was poured into backfill.Uniaxial compression tests were conducted on backfill body specimens that had been cured for 7 days,14 days,28 days,and 45 days.It aims at studying the compressive strength,damage,energy storage limit,energy dissipation,and crack propagation of the fill.The results show that when the cement-sand ratio is held constant,the strength of the backfill increases with curing age.Simultaneously,when the curing age is fixed,the strength is positively correlated with the cement-sand ratio.During uniaxial compression tests,it is observed that the pre-peak energy consumption,post-peak energy consumption,total energy consumption,and unit volume strain energy of the cemented backfill body exhibit exponential relationships with both curing age and cement-sand ratio.The energy storage limit of the backfill reflects its capacity to absorb energy prior to failure,while the relationship between damage and energy consumption provides an accurate depiction of its internal failure mechanisms at different stages.In the failure process of the cemented backfill body,primary cracks accompany secondary cracks,many microcracks initiate and propagate from the stress direction,and crack propagation consumes a significant amount of energy.This study on the strength,energy storage limit,and failure of the cemented backfill body can provide valuable insights for mine safety production. 展开更多
关键词 Whole tailings cemented backfill body Energy dissipation Compressive strength Cemented backfill body damage Crack propagation
原文传递
Insights into the dissolution kinetics of copper-nickel tailings for CO_(2)mineral sequestration
19
作者 Zhenghong Yang Haiyun Gu +3 位作者 Sijia Liu Kai Wu Linglin Xu Lijie Guo 《International Journal of Minerals,Metallurgy and Materials》 2025年第9期2119-2130,共12页
Copper-nickel tailings(CNTs),consisting of more than 80wt%magnesium-bearing silicate minerals,show great potential for CO_(2)mineral sequestration.The dissolution kinetics of CNTs in HCl solution was investigated thro... Copper-nickel tailings(CNTs),consisting of more than 80wt%magnesium-bearing silicate minerals,show great potential for CO_(2)mineral sequestration.The dissolution kinetics of CNTs in HCl solution was investigated through a leaching experiment and kinetic modeling,and the effects of reaction time,HCl concentration,solid-to-liquid ratio,and reaction temperature on the leaching rate of mag-nesium were comprehensively studied.Results show that the suitable leaching conditions for magnesium in CNTs are 2 M HCl,a solid-to-liquid ratio of 50 g·L^(−1),and 90℃,at which the maximum leaching rate of magnesium is as high as 83.88%.A modified shrinking core model can well describe the leaching kinetics of magnesium.The dissolution of magnesium was dominated by a combination of chemical reaction and product layer diffusion,with a calculated apparent activation energy of 77.51 kJ·mol^(−1).This study demonstrates the feasibil-ity of using CNTs as a media for CO_(2)mineral sequestration. 展开更多
关键词 copper-nickel tailings dissolution kinetics magnesium leaching shrinking core model CO_(2)mineral sequestration
在线阅读 下载PDF
Controlling magnetic agglomeration in superconducting high gradient magnetic separation processing of iron ore tailings for high-grade silica recovery
20
作者 Yongkui Li Suqin Li Zekun Zhao 《International Journal of Mining Science and Technology》 2025年第9期1627-1644,共18页
The superconducting high gradient magnetic separation(S-HGMS)technology can be used to effectively extract silica from iron ore tailings(IOTs).However,particle agglomeration in strong magnetic fields poses a challenge... The superconducting high gradient magnetic separation(S-HGMS)technology can be used to effectively extract silica from iron ore tailings(IOTs).However,particle agglomeration in strong magnetic fields poses a challenge in achieving optimal performance.In this study,we investigated the agglomeration of IOT particles and the mechanisms for its inhibition through surface analysis,density functional theory(DFT),and extended Derjaguin-Landau-Verwey-Overbeek(EDLVO)theory.Hematite was found to exhibit the highest magnetic moment among the minerals present in IOTs,making it particularly prone to magnetic agglomeration.The addition of the dispersant SDSH into the slurry was essential in promoting the dispersion of IOT particles during the S-HGMS process.This dispersant hydrolyzed to form HPO_(4)^(2-)and RSO_(3)^(-)groups in the solution,which then chemically adsorbed onto the metal ions exposed on the surfaces of non-quartz particles,increasing interparticle electrostatic repulsion.Furthermore,the RSO_(3)^(-)groups physically adsorbed onto the surface of quartz particles,resulting in strong steric repulsion and enhancing the hydrophilicity of the particle surfaces,thereby inhibiting magnetic agglomeration between the particles.Under optimal conditions,the SiO_(2)grade of the obtained high-grade silica powder increased from an initial value of 76.32%in IOTs to 97.42%,achieving a SiO_(2)recovery rate of 54.81%,which meets the requirements for quartz sand used in glass preparation.This study provides valuable insights into the magnetic agglomeration of IOT particles and its inhibition while providing a foundation for regulating S-HGMS processes. 展开更多
关键词 Iron ore tailings S-HGMS High-grade silica powder Magnetic agglomeration mechanism
在线阅读 下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部