期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Matlab的控制图性能研究
1
作者 马瑞雪 马光辉 《自动化与仪器仪表》 2015年第8期176-178,共3页
以叶片为代表的航空发动机关键重要零件大量采用薄壁结构,是为了减轻重量、提高结构强度和性能,具有形状复杂,精度要求高,制造过程复杂,难加工等特点。由于这些零件结构复杂、精度要求高、易变形、工艺性差、加工难度大、制造过程复杂,... 以叶片为代表的航空发动机关键重要零件大量采用薄壁结构,是为了减轻重量、提高结构强度和性能,具有形状复杂,精度要求高,制造过程复杂,难加工等特点。由于这些零件结构复杂、精度要求高、易变形、工艺性差、加工难度大、制造过程复杂,导致出现质量问题的概率高、质量控制难度大、性能不可控。针对航空发动机压气机叶片的难加工以及多工序的工艺特点,采用多元控制图中的MEWMA控制图和T2控制图,对叶片的制造过程加以监控,以保证在加工制造过程中的稳定性以及最后合格品质量如何对叶片加工质量,并对两种控制图的性能进行比较验证。 展开更多
关键词 航空发动机叶片 MEWMA控制图 T2控制图 平均链长
原文传递
Monitoring Freeway Incident Detection Using a Hotelling T2 Control Chart
2
作者 Joonse Lim Young Seon Jeong Youngsul Jeong 《Computer Technology and Application》 2012年第5期361-367,共7页
In real-life freeway transportation system, a few number of incident observation (very rare event) is available while there are large numbers of normal condition dataset. Most of researches on freeway incident detec... In real-life freeway transportation system, a few number of incident observation (very rare event) is available while there are large numbers of normal condition dataset. Most of researches on freeway incident detection have considered the incident detection problem as classification one. However, because of insufficiency of incident events, most of previous researches have utilized simulated incident events to develop freeway incident detection models. In order to overcome this drawback, this paper proposes a wavelet-based Hotelling 7a control chart for freeway incident detection, which integrates a wavelet transform into an abnormal detection method. Firstly, wavelet transform extracts useful features from noisy original traffic observations, leading to reduce the dimensionality of input vectors. Then, a Hotelling T2 control chart describes a decision boundary with only normal traffic observations with the selected features in the wavelet domain. Unlike the existing incident detection algorithms, which require lots of incident observations to construct incident detection models, the proposed approach can decide a decision boundary given only normal training observations. The proposed method is evaluated in comparison with California algorithm, Minnesota algorithm and conventional neural networks. The experimental results present that the proposed algorithm in this paper is a promising alternative for freeway automatic incident detections. 展开更多
关键词 Freeway incident incident detection algorithms Hotelling T2 control chart wavelet transforms feature selection.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部