Urban rail transit has the advantages of large traffic capacity,high punctuality and zero congestion,and it plays an increasingly important role in modern urban life.Braking system is an important system of urban rail...Urban rail transit has the advantages of large traffic capacity,high punctuality and zero congestion,and it plays an increasingly important role in modern urban life.Braking system is an important system of urban rail train,which directly affects the performance and safety of train operation and impacts passenger comfort.The braking performance of urban rail trains is directly related to the improvement of train speed and transportation capacity.Also,urban rail transit has the characteristics of high speed,short station distance,frequent starting,and frequent braking.This makes the braking control system constitute a time-varying,time-delaying and nonlinear control system,especially the braking force changes directly disturb the parking accuracy and comfort.To solve these issues,a predictive control algorithm based on T-S fuzzy model was proposed and applied to the train braking control system.Compared with the traditional PID control algorithm and self-adaptive fuzzy PID control algorithm,the braking capacity of urban rail train was improved by 8%.The algorithm can achieve fast and accurate synchronous braking,thereby overcoming the dynamic influence of the uncertainty,hysteresis and time-varying factors of the controlled object.Finally,the desired control objectives can be achieved,the system will have superior robustness,stability and comfort.展开更多
One of the keys in time-dependent routing is determining the weight of each road network link based on traffic information.To facilitate the estimation of the road's weight,Global Position System(GPS)data are comm...One of the keys in time-dependent routing is determining the weight of each road network link based on traffic information.To facilitate the estimation of the road's weight,Global Position System(GPS)data are commonly used in obtaining real-time traffic information.However,the information obtained by taxi-GPS does not cover the entire road network.Aiming at incomplete traffic information on urban roads,this paper proposes a novel fuzzy inference method.It considers the combined effect of road grade,traffic information,and other spatial factors.Taking the third law of geography as the basic premise,that is,the more similar the geographical environment,the more similar the characteristics of the geographical target will be.This method uses a Typical Link Pattern(TLP)model to describe the geographical environment.The TLP represents typical road sections with complete information.Then,it determines the relationship between roads lacking traffic information and the TLPs according to their related factors.After obtaining the TLPs,this method ascertains the weight of road links by calculating their similarities with TLPs based on the theory of fuzzy inference.Aiming at road links at different places,the dividing-conquering strategy and globe algorithm are also introduced to calculate the weight.These two strategies are used to address the excessively fragmented or lengthy links.The experimental results with the case of Newcastle show robustness in that the average Root Mean Square Error(RMSE)is 1.430 mph,and the bias is 0.2%;the overall RMSE is 11.067 mph,and the bias is 0.6%.This article is the first to combine the third law of geography with fuzzy inference,which significantly improves the estimation accuracy of road weights with incomplete information.Empirical application and validation show that the method can accurately predict vehicle speed under incomplete information.展开更多
Aiming at the problems that fuzzy neural network controller has heavy computation and lag,a T-S norm Fuzzy Neural Network Control based on hybrid learning algorithm was proposed.Immune genetic algorithm (IGA) was used...Aiming at the problems that fuzzy neural network controller has heavy computation and lag,a T-S norm Fuzzy Neural Network Control based on hybrid learning algorithm was proposed.Immune genetic algorithm (IGA) was used to optimize the parameters of membership functions (MFs) off line,and the neural network was used to adjust the parameters of MFs on line to enhance the response of the controller.Moreover,the latter network was used to adjust the fuzzy rules automatically to reduce the computation of the neural network and improve the robustness and adaptability of the controller,so that the controller can work well ever when the underwater vehicle works in hostile ocean environment.Finally,experiments were carried on " XX" mini autonomous underwater vehicle (min-AUV) in tank.The results showed that this controller has great improvement in response and overshoot,compared with the traditional controllers.展开更多
A fault diagnosis model is proposed based on fuzzy support vector machine (FSVM) combined with fuzzy clustering (FC).Considering the relationship between the sample point and non-self class,FC algorithm is applied to ...A fault diagnosis model is proposed based on fuzzy support vector machine (FSVM) combined with fuzzy clustering (FC).Considering the relationship between the sample point and non-self class,FC algorithm is applied to generate fuzzy memberships.In the algorithm,sample weights based on a distribution density function of data point and genetic algorithm (GA) are introduced to enhance the performance of FC.Then a multi-class FSVM with radial basis function kernel is established according to directed acyclic graph algorithm,the penalty factor and kernel parameter of which are optimized by GA.Finally,the model is executed for multi-class fault diagnosis of rolling element bearings.The results show that the presented model achieves high performances both in identifying fault types and fault degrees.The performance comparisons of the presented model with SVM and distance-based FSVM for noisy case demonstrate the capacity of dealing with noise and generalization.展开更多
The hardness prediction model was established by support vector regression(SVR).In order to avoid exaggerating the contribution of very tiny alloying elements,a weighted fuzzy C-means(WFCM)algorithm was proposed for d...The hardness prediction model was established by support vector regression(SVR).In order to avoid exaggerating the contribution of very tiny alloying elements,a weighted fuzzy C-means(WFCM)algorithm was proposed for data clustering using improved Mahalanobis distance based on random forest importance values,which could play a full role of important features and avoid clustering center overlap.The samples were divided into two classes.The top 10 features of each class were selected to form two feature subsets for better performance of the model.The dimension and dispersion of features decreased in such feature subsets.Comparing four machine learning algorithms,SVR had the best performance and was chosen to modeling.The hyper-parameters of the SVR model were optimized by particle swarm optimization.The samples in validation set were classified according to minimum distance of sample to clustering centers,and then the SVR model trained by feature subset of corresponding class was used for prediction.Compared with the feature subset of original data set,the predicted values of model trained by feature subsets of classified samples by WFCM had higher correlation coefficient and lower root mean square error.It indicated that WFCM was an effective method to reduce the dispersion of features and improve the accuracy of model.展开更多
Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of th...Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of the network results in packet loss and Delay(DL).For optimal performance,it is important to load balance between different gateways.As a result,a stable load balancing procedure is implemented,which selects gateways based on Fuzzy Logic(FL)and increases the efficiency of the network.In this case,since gate-ways are selected based on the number of nodes,the Energy Consumption(EC)was high.This paper presents a novel Node Quality-based Clustering Algo-rithm(NQCA)based on Fuzzy-Genetic for Cluster Head and Gateway Selection(FGCHGS).This algorithm combines NQCA with the Improved Weighted Clus-tering Algorithm(IWCA).The NQCA algorithm divides the network into clusters based upon node priority,transmission range,and neighbourfidelity.In addition,the simulation results tend to evaluate the performance effectiveness of the FFFCHGS algorithm in terms of EC,packet loss rate(PLR),etc.展开更多
提出CF-WFCM算法,该算法分为属性权重学习算法和聚类算法两部分.属性权重学习算法,从数据自身的相似性出发,通过梯度递减算法极小化属性评价函数CFuzziness(w),为每个属性赋予一个权重.将属性权重应用于Fuzzy C Mean聚类算法,得到CF-WFC...提出CF-WFCM算法,该算法分为属性权重学习算法和聚类算法两部分.属性权重学习算法,从数据自身的相似性出发,通过梯度递减算法极小化属性评价函数CFuzziness(w),为每个属性赋予一个权重.将属性权重应用于Fuzzy C Mean聚类算法,得到CF-WFCM算法的聚类算法.CF-WFCM算法强化重要属性在聚类过程中的作用,消减冗余属性的作用,从而改善聚类的效果.我们选取了部分UCI数据库进行实验,实验结果证明:CF-WFCM算法的聚类结果优于FCM算法的聚类结果.函数CFuzziness(w)不仅可以评价属性的重要性,而且可以评价属性评价函数的优劣.实验说明了这一问题.最后我们对CF-WFCM算法进行了讨论.展开更多
This paper presents a fuzzy logic approach to efficiently perform unsupervised character classification for improvement in robustness, correctness and speed of a character recognition system. The characters are first ...This paper presents a fuzzy logic approach to efficiently perform unsupervised character classification for improvement in robustness, correctness and speed of a character recognition system. The characters are first split into eight typographical categories. The classification scheme uses pattern matching to classify the characters in each category into a set of fuzzy prototypes based on a nonlinear weighted similarity function. The fuzzy unsupervised character classification, which is natural in the repre...展开更多
Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structur...Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structure by selecting important inputs of the system is studied. Firstly, a simplified two stage fuzzy curves method is proposed, which is employed to sort all possible inputs by their relevance with outputs, select the important input variables of the system and identify the structure.Secondly, in order to reduce the complexity of the model, the standard fuzzy c-means clustering algorithm and the recursive least squares algorithm are used to identify the premise parameters and conclusion parameters, respectively. Then, the effectiveness of IVS is verified by two well-known issues. Finally, the proposed identification method is applied to a realistic variable load pneumatic system. The simulation experiments indi cate that the IVS method in this paper has a positive influence on the approximation performance of the Takagi-Sugeno(T-S) fuzzy modeling.展开更多
基金This work was supported by the Youth Backbone Teachers Training Program of Henan colleges and universities under Grant No.2016ggjs-287(W.X.K.,http://jyt.henan.gov.cn/)the Project of Science and Technology of Henan province under Grant Nos.172102210124 and 202102210269(W.X.K.,http://www.hnkjt.gov.cn/)the Key Scientific Research Projects in Colleges and Universities in Henan Grant No.18B460003(W.X.K.,http://jyt.henan.gov.cn/)
文摘Urban rail transit has the advantages of large traffic capacity,high punctuality and zero congestion,and it plays an increasingly important role in modern urban life.Braking system is an important system of urban rail train,which directly affects the performance and safety of train operation and impacts passenger comfort.The braking performance of urban rail trains is directly related to the improvement of train speed and transportation capacity.Also,urban rail transit has the characteristics of high speed,short station distance,frequent starting,and frequent braking.This makes the braking control system constitute a time-varying,time-delaying and nonlinear control system,especially the braking force changes directly disturb the parking accuracy and comfort.To solve these issues,a predictive control algorithm based on T-S fuzzy model was proposed and applied to the train braking control system.Compared with the traditional PID control algorithm and self-adaptive fuzzy PID control algorithm,the braking capacity of urban rail train was improved by 8%.The algorithm can achieve fast and accurate synchronous braking,thereby overcoming the dynamic influence of the uncertainty,hysteresis and time-varying factors of the controlled object.Finally,the desired control objectives can be achieved,the system will have superior robustness,stability and comfort.
基金supported by the National Key Research and Development Program of China[grant number 2019YFC1804304]the National Natural Science Foundation of China[grant number 41771478]the Fundamental Research Funds for the Central Universities[grant number 2019B02514].
文摘One of the keys in time-dependent routing is determining the weight of each road network link based on traffic information.To facilitate the estimation of the road's weight,Global Position System(GPS)data are commonly used in obtaining real-time traffic information.However,the information obtained by taxi-GPS does not cover the entire road network.Aiming at incomplete traffic information on urban roads,this paper proposes a novel fuzzy inference method.It considers the combined effect of road grade,traffic information,and other spatial factors.Taking the third law of geography as the basic premise,that is,the more similar the geographical environment,the more similar the characteristics of the geographical target will be.This method uses a Typical Link Pattern(TLP)model to describe the geographical environment.The TLP represents typical road sections with complete information.Then,it determines the relationship between roads lacking traffic information and the TLPs according to their related factors.After obtaining the TLPs,this method ascertains the weight of road links by calculating their similarities with TLPs based on the theory of fuzzy inference.Aiming at road links at different places,the dividing-conquering strategy and globe algorithm are also introduced to calculate the weight.These two strategies are used to address the excessively fragmented or lengthy links.The experimental results with the case of Newcastle show robustness in that the average Root Mean Square Error(RMSE)is 1.430 mph,and the bias is 0.2%;the overall RMSE is 11.067 mph,and the bias is 0.6%.This article is the first to combine the third law of geography with fuzzy inference,which significantly improves the estimation accuracy of road weights with incomplete information.Empirical application and validation show that the method can accurately predict vehicle speed under incomplete information.
文摘Aiming at the problems that fuzzy neural network controller has heavy computation and lag,a T-S norm Fuzzy Neural Network Control based on hybrid learning algorithm was proposed.Immune genetic algorithm (IGA) was used to optimize the parameters of membership functions (MFs) off line,and the neural network was used to adjust the parameters of MFs on line to enhance the response of the controller.Moreover,the latter network was used to adjust the fuzzy rules automatically to reduce the computation of the neural network and improve the robustness and adaptability of the controller,so that the controller can work well ever when the underwater vehicle works in hostile ocean environment.Finally,experiments were carried on " XX" mini autonomous underwater vehicle (min-AUV) in tank.The results showed that this controller has great improvement in response and overshoot,compared with the traditional controllers.
基金Supported by the joint fund of National Natural Science Foundation of China and Civil Aviation Administration Foundation of China(No.U1233201)
文摘A fault diagnosis model is proposed based on fuzzy support vector machine (FSVM) combined with fuzzy clustering (FC).Considering the relationship between the sample point and non-self class,FC algorithm is applied to generate fuzzy memberships.In the algorithm,sample weights based on a distribution density function of data point and genetic algorithm (GA) are introduced to enhance the performance of FC.Then a multi-class FSVM with radial basis function kernel is established according to directed acyclic graph algorithm,the penalty factor and kernel parameter of which are optimized by GA.Finally,the model is executed for multi-class fault diagnosis of rolling element bearings.The results show that the presented model achieves high performances both in identifying fault types and fault degrees.The performance comparisons of the presented model with SVM and distance-based FSVM for noisy case demonstrate the capacity of dealing with noise and generalization.
基金supported by the National Research and Development Project of China (2020YFB2008400).
文摘The hardness prediction model was established by support vector regression(SVR).In order to avoid exaggerating the contribution of very tiny alloying elements,a weighted fuzzy C-means(WFCM)algorithm was proposed for data clustering using improved Mahalanobis distance based on random forest importance values,which could play a full role of important features and avoid clustering center overlap.The samples were divided into two classes.The top 10 features of each class were selected to form two feature subsets for better performance of the model.The dimension and dispersion of features decreased in such feature subsets.Comparing four machine learning algorithms,SVR had the best performance and was chosen to modeling.The hyper-parameters of the SVR model were optimized by particle swarm optimization.The samples in validation set were classified according to minimum distance of sample to clustering centers,and then the SVR model trained by feature subset of corresponding class was used for prediction.Compared with the feature subset of original data set,the predicted values of model trained by feature subsets of classified samples by WFCM had higher correlation coefficient and lower root mean square error.It indicated that WFCM was an effective method to reduce the dispersion of features and improve the accuracy of model.
文摘Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of the network results in packet loss and Delay(DL).For optimal performance,it is important to load balance between different gateways.As a result,a stable load balancing procedure is implemented,which selects gateways based on Fuzzy Logic(FL)and increases the efficiency of the network.In this case,since gate-ways are selected based on the number of nodes,the Energy Consumption(EC)was high.This paper presents a novel Node Quality-based Clustering Algo-rithm(NQCA)based on Fuzzy-Genetic for Cluster Head and Gateway Selection(FGCHGS).This algorithm combines NQCA with the Improved Weighted Clus-tering Algorithm(IWCA).The NQCA algorithm divides the network into clusters based upon node priority,transmission range,and neighbourfidelity.In addition,the simulation results tend to evaluate the performance effectiveness of the FFFCHGS algorithm in terms of EC,packet loss rate(PLR),etc.
文摘提出CF-WFCM算法,该算法分为属性权重学习算法和聚类算法两部分.属性权重学习算法,从数据自身的相似性出发,通过梯度递减算法极小化属性评价函数CFuzziness(w),为每个属性赋予一个权重.将属性权重应用于Fuzzy C Mean聚类算法,得到CF-WFCM算法的聚类算法.CF-WFCM算法强化重要属性在聚类过程中的作用,消减冗余属性的作用,从而改善聚类的效果.我们选取了部分UCI数据库进行实验,实验结果证明:CF-WFCM算法的聚类结果优于FCM算法的聚类结果.函数CFuzziness(w)不仅可以评价属性的重要性,而且可以评价属性评价函数的优劣.实验说明了这一问题.最后我们对CF-WFCM算法进行了讨论.
文摘This paper presents a fuzzy logic approach to efficiently perform unsupervised character classification for improvement in robustness, correctness and speed of a character recognition system. The characters are first split into eight typographical categories. The classification scheme uses pattern matching to classify the characters in each category into a set of fuzzy prototypes based on a nonlinear weighted similarity function. The fuzzy unsupervised character classification, which is natural in the repre...
基金This work was supported by the Natural Science Foundation of Hebei Province(F2019203505).
文摘Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structure by selecting important inputs of the system is studied. Firstly, a simplified two stage fuzzy curves method is proposed, which is employed to sort all possible inputs by their relevance with outputs, select the important input variables of the system and identify the structure.Secondly, in order to reduce the complexity of the model, the standard fuzzy c-means clustering algorithm and the recursive least squares algorithm are used to identify the premise parameters and conclusion parameters, respectively. Then, the effectiveness of IVS is verified by two well-known issues. Finally, the proposed identification method is applied to a realistic variable load pneumatic system. The simulation experiments indi cate that the IVS method in this paper has a positive influence on the approximation performance of the Takagi-Sugeno(T-S) fuzzy modeling.