期刊文献+
共找到259篇文章
< 1 2 13 >
每页显示 20 50 100
Predictive Control Algorithm for Urban Rail Train Brake Control System Based on T-S Fuzzy Model
1
作者 Xiaokan Wang Qiong Wang Shuang Liang 《Computers, Materials & Continua》 SCIE EI 2020年第9期1859-1867,共9页
Urban rail transit has the advantages of large traffic capacity,high punctuality and zero congestion,and it plays an increasingly important role in modern urban life.Braking system is an important system of urban rail... Urban rail transit has the advantages of large traffic capacity,high punctuality and zero congestion,and it plays an increasingly important role in modern urban life.Braking system is an important system of urban rail train,which directly affects the performance and safety of train operation and impacts passenger comfort.The braking performance of urban rail trains is directly related to the improvement of train speed and transportation capacity.Also,urban rail transit has the characteristics of high speed,short station distance,frequent starting,and frequent braking.This makes the braking control system constitute a time-varying,time-delaying and nonlinear control system,especially the braking force changes directly disturb the parking accuracy and comfort.To solve these issues,a predictive control algorithm based on T-S fuzzy model was proposed and applied to the train braking control system.Compared with the traditional PID control algorithm and self-adaptive fuzzy PID control algorithm,the braking capacity of urban rail train was improved by 8%.The algorithm can achieve fast and accurate synchronous braking,thereby overcoming the dynamic influence of the uncertainty,hysteresis and time-varying factors of the controlled object.Finally,the desired control objectives can be achieved,the system will have superior robustness,stability and comfort. 展开更多
关键词 Predictive control t-s fuzzy model urban rail train algorithm
在线阅读 下载PDF
A novel fuzzy inference method for urban incomplete road weight assignment
2
作者 Longhao Wang Xiaoping Rui 《Geo-Spatial Information Science》 CSCD 2024年第6期2008-2022,共15页
One of the keys in time-dependent routing is determining the weight of each road network link based on traffic information.To facilitate the estimation of the road's weight,Global Position System(GPS)data are comm... One of the keys in time-dependent routing is determining the weight of each road network link based on traffic information.To facilitate the estimation of the road's weight,Global Position System(GPS)data are commonly used in obtaining real-time traffic information.However,the information obtained by taxi-GPS does not cover the entire road network.Aiming at incomplete traffic information on urban roads,this paper proposes a novel fuzzy inference method.It considers the combined effect of road grade,traffic information,and other spatial factors.Taking the third law of geography as the basic premise,that is,the more similar the geographical environment,the more similar the characteristics of the geographical target will be.This method uses a Typical Link Pattern(TLP)model to describe the geographical environment.The TLP represents typical road sections with complete information.Then,it determines the relationship between roads lacking traffic information and the TLPs according to their related factors.After obtaining the TLPs,this method ascertains the weight of road links by calculating their similarities with TLPs based on the theory of fuzzy inference.Aiming at road links at different places,the dividing-conquering strategy and globe algorithm are also introduced to calculate the weight.These two strategies are used to address the excessively fragmented or lengthy links.The experimental results with the case of Newcastle show robustness in that the average Root Mean Square Error(RMSE)is 1.430 mph,and the bias is 0.2%;the overall RMSE is 11.067 mph,and the bias is 0.6%.This article is the first to combine the third law of geography with fuzzy inference,which significantly improves the estimation accuracy of road weights with incomplete information.Empirical application and validation show that the method can accurately predict vehicle speed under incomplete information. 展开更多
关键词 weight assignment path planning algorithm fuzzy inference road network
原文传递
T-S norm FNN controller based on hybrid learning algorithm
3
作者 郭冰洁 李岳明 万磊 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第3期27-32,共6页
Aiming at the problems that fuzzy neural network controller has heavy computation and lag,a T-S norm Fuzzy Neural Network Control based on hybrid learning algorithm was proposed.Immune genetic algorithm (IGA) was used... Aiming at the problems that fuzzy neural network controller has heavy computation and lag,a T-S norm Fuzzy Neural Network Control based on hybrid learning algorithm was proposed.Immune genetic algorithm (IGA) was used to optimize the parameters of membership functions (MFs) off line,and the neural network was used to adjust the parameters of MFs on line to enhance the response of the controller.Moreover,the latter network was used to adjust the fuzzy rules automatically to reduce the computation of the neural network and improve the robustness and adaptability of the controller,so that the controller can work well ever when the underwater vehicle works in hostile ocean environment.Finally,experiments were carried on " XX" mini autonomous underwater vehicle (min-AUV) in tank.The results showed that this controller has great improvement in response and overshoot,compared with the traditional controllers. 展开更多
关键词 t-s NORM fuzzy neural network UNDERWATER vehicles IMMUNE GENETIC algorithm Hybrid learning algorithm
在线阅读 下载PDF
Fault Diagnosis Model Based on Fuzzy Support Vector Machine Combined with Weighted Fuzzy Clustering 被引量:3
4
作者 张俊红 马文朋 +1 位作者 马梁 何振鹏 《Transactions of Tianjin University》 EI CAS 2013年第3期174-181,共8页
A fault diagnosis model is proposed based on fuzzy support vector machine (FSVM) combined with fuzzy clustering (FC).Considering the relationship between the sample point and non-self class,FC algorithm is applied to ... A fault diagnosis model is proposed based on fuzzy support vector machine (FSVM) combined with fuzzy clustering (FC).Considering the relationship between the sample point and non-self class,FC algorithm is applied to generate fuzzy memberships.In the algorithm,sample weights based on a distribution density function of data point and genetic algorithm (GA) are introduced to enhance the performance of FC.Then a multi-class FSVM with radial basis function kernel is established according to directed acyclic graph algorithm,the penalty factor and kernel parameter of which are optimized by GA.Finally,the model is executed for multi-class fault diagnosis of rolling element bearings.The results show that the presented model achieves high performances both in identifying fault types and fault degrees.The performance comparisons of the presented model with SVM and distance-based FSVM for noisy case demonstrate the capacity of dealing with noise and generalization. 展开更多
关键词 fuzzy support VECTOR machine fuzzy clustering SAMPLE weight GENETIC algorithm parameter optimization FAULT diagnosis
在线阅读 下载PDF
A weighted fuzzy C-means clustering method for hardness prediction
5
作者 Yuan Liu Shi-zhong Wei 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第1期176-191,共16页
The hardness prediction model was established by support vector regression(SVR).In order to avoid exaggerating the contribution of very tiny alloying elements,a weighted fuzzy C-means(WFCM)algorithm was proposed for d... The hardness prediction model was established by support vector regression(SVR).In order to avoid exaggerating the contribution of very tiny alloying elements,a weighted fuzzy C-means(WFCM)algorithm was proposed for data clustering using improved Mahalanobis distance based on random forest importance values,which could play a full role of important features and avoid clustering center overlap.The samples were divided into two classes.The top 10 features of each class were selected to form two feature subsets for better performance of the model.The dimension and dispersion of features decreased in such feature subsets.Comparing four machine learning algorithms,SVR had the best performance and was chosen to modeling.The hyper-parameters of the SVR model were optimized by particle swarm optimization.The samples in validation set were classified according to minimum distance of sample to clustering centers,and then the SVR model trained by feature subset of corresponding class was used for prediction.Compared with the feature subset of original data set,the predicted values of model trained by feature subsets of classified samples by WFCM had higher correlation coefficient and lower root mean square error.It indicated that WFCM was an effective method to reduce the dispersion of features and improve the accuracy of model. 展开更多
关键词 Hardness prediction weighted fuzzy C-means algorithm Feature selection Particle swarm optimization Support vector regression Dispersion reduction
原文传递
Fuzzy Fruit Fly Optimized Node Quality-Based Clustering Algorithm for Network Load Balancing
6
作者 P.Rahul N.Kanthimathi +1 位作者 B.Kaarthick M.Leeban Moses 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1583-1600,共18页
Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of th... Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of the network results in packet loss and Delay(DL).For optimal performance,it is important to load balance between different gateways.As a result,a stable load balancing procedure is implemented,which selects gateways based on Fuzzy Logic(FL)and increases the efficiency of the network.In this case,since gate-ways are selected based on the number of nodes,the Energy Consumption(EC)was high.This paper presents a novel Node Quality-based Clustering Algo-rithm(NQCA)based on Fuzzy-Genetic for Cluster Head and Gateway Selection(FGCHGS).This algorithm combines NQCA with the Improved Weighted Clus-tering Algorithm(IWCA).The NQCA algorithm divides the network into clusters based upon node priority,transmission range,and neighbourfidelity.In addition,the simulation results tend to evaluate the performance effectiveness of the FFFCHGS algorithm in terms of EC,packet loss rate(PLR),etc. 展开更多
关键词 Ad-hoc load balancing H-MANET fuzzy logic system genetic algorithm node quality-based clustering algorithm improved weighted clustering fruitfly optimization
在线阅读 下载PDF
基于分段评价遗传算法的移动机器人路径规划
7
作者 谢嘉 孙帅浩 +3 位作者 李永国 梁锦涛 金昌兵 陈学飞 《传感技术学报》 北大核心 2025年第6期1064-1071,共8页
针对传统遗传算法在处理路径规划问题时存在适应性差、收敛速度慢和易早熟等问题,提出一种基于分段评价路径的改进遗传算法。设计一种动态权重适应度函数,在线调节参数并考虑坡度因素,来增强算法对复杂环境的适应能力;提出一种新的交叉... 针对传统遗传算法在处理路径规划问题时存在适应性差、收敛速度慢和易早熟等问题,提出一种基于分段评价路径的改进遗传算法。设计一种动态权重适应度函数,在线调节参数并考虑坡度因素,来增强算法对复杂环境的适应能力;提出一种新的交叉变异方式,分段评价个体后进行有选择性的交叉和变异,提升算法的寻优能力,加快收敛速度;采用模糊控制在线调节交叉变异概率,避免算法早熟;引入删除算子剔除冗余节点,提高最优解的平滑性;在20×20和30×30地图环境上进行仿真实验,结果表明所提算法具有更强的适应能力,改进型交叉变异能更快地搜索到更优路径,在线调节交叉变异概率很好地避免了算法早熟,最终解在路径长度、收敛速度及平滑度上均有提升。 展开更多
关键词 路径规划 分段评价路径 改进遗传算法 动态权重适应度函数 选择性交叉变异 模糊控制
在线阅读 下载PDF
基于属性权重的Fuzzy C Mean算法 被引量:46
8
作者 王丽娟 关守义 +1 位作者 王晓龙 王熙照 《计算机学报》 EI CSCD 北大核心 2006年第10期1797-1803,共7页
提出CF-WFCM算法,该算法分为属性权重学习算法和聚类算法两部分.属性权重学习算法,从数据自身的相似性出发,通过梯度递减算法极小化属性评价函数CFuzziness(w),为每个属性赋予一个权重.将属性权重应用于Fuzzy C Mean聚类算法,得到CF-WFC... 提出CF-WFCM算法,该算法分为属性权重学习算法和聚类算法两部分.属性权重学习算法,从数据自身的相似性出发,通过梯度递减算法极小化属性评价函数CFuzziness(w),为每个属性赋予一个权重.将属性权重应用于Fuzzy C Mean聚类算法,得到CF-WFCM算法的聚类算法.CF-WFCM算法强化重要属性在聚类过程中的作用,消减冗余属性的作用,从而改善聚类的效果.我们选取了部分UCI数据库进行实验,实验结果证明:CF-WFCM算法的聚类结果优于FCM算法的聚类结果.函数CFuzziness(w)不仅可以评价属性的重要性,而且可以评价属性评价函数的优劣.实验说明了这一问题.最后我们对CF-WFCM算法进行了讨论. 展开更多
关键词 梯度递减算法 fuzzy C Mean算法 属性权重学习算法 聚类有效性函数
在线阅读 下载PDF
An Approach to Unsupervised Character Classification Based on Similarity Measure in Fuzzy Model
9
作者 卢达 钱忆平 +1 位作者 谢铭培 浦炜 《Journal of Southeast University(English Edition)》 EI CAS 2002年第4期370-376,共7页
This paper presents a fuzzy logic approach to efficiently perform unsupervised character classification for improvement in robustness, correctness and speed of a character recognition system. The characters are first ... This paper presents a fuzzy logic approach to efficiently perform unsupervised character classification for improvement in robustness, correctness and speed of a character recognition system. The characters are first split into eight typographical categories. The classification scheme uses pattern matching to classify the characters in each category into a set of fuzzy prototypes based on a nonlinear weighted similarity function. The fuzzy unsupervised character classification, which is natural in the repre... 展开更多
关键词 fuzzy model weighted fuzzy similarity measure unsupervised character classification matching algorithm classification hierarchy
在线阅读 下载PDF
空间加权距离的GIS数据Fuzzy C-means聚类方法与应用分析 被引量:3
10
作者 王海起 张腾 +1 位作者 彭佳琦 董倩楠 《地球信息科学学报》 CSCD 北大核心 2013年第6期854-861,共8页
Fuzzy c-means聚类常采用普通欧式距离进行相似性度量,对于地理空间对象来说,聚类不仅应考虑属性特征的相似性,还应考虑对象的空间邻近性。本文基于普通欧式距离提出了多种形式的空间加权距离公式,不同的距离公式分别在两个坐标方向、... Fuzzy c-means聚类常采用普通欧式距离进行相似性度量,对于地理空间对象来说,聚类不仅应考虑属性特征的相似性,还应考虑对象的空间邻近性。本文基于普通欧式距离提出了多种形式的空间加权距离公式,不同的距离公式分别在两个坐标方向、各属性上进行加权,权重向量既可以度量空间位置特征、属性特征的作用大小,也可度量位置距离在X、Y空间方向上的各向同性或异性程度。权重向量的获取以空间对象相似性的模糊函数为评价目标,通过动态学习率的梯度下降算法优化计算,并将空间加权距离引入到fuzzy c-means聚类算法中以取代普通欧式距离。本文以空间数据集Meuse为应用实例,分别采用不同形式的空间加权距离进行FCM模糊聚类,类数取为2-10类,通过PC、PE和Xie-Beni等聚类有效性指标的比较表明:空间加权距离的聚类效果要优于普通距离,且在空间数据聚类分析中,除属性信息外位置等空间特征信息同样起到了重要作用。 展开更多
关键词 空间加权距离 GIS数据 fuzzyC—means聚类 梯度下降学习算法
原文传递
混凝土耐久性可变模糊集聚类法评价
11
作者 朱红军 陆明志 +2 位作者 臧德记 刘华强 蔡一平 《浙江水利水电学院学报》 2025年第2期69-71,78,共4页
根据水闸墩墙安全检测数据,考虑影响混凝土结构耐久性等诸多因素,利用可变模糊集聚类循环迭代理论,建立水闸墩墙水上混凝土结构耐久性等级的评价模型。评价模型里考虑了指标权重对聚类分析的影响,提出了计算指标权重的公式。通过工程实... 根据水闸墩墙安全检测数据,考虑影响混凝土结构耐久性等诸多因素,利用可变模糊集聚类循环迭代理论,建立水闸墩墙水上混凝土结构耐久性等级的评价模型。评价模型里考虑了指标权重对聚类分析的影响,提出了计算指标权重的公式。通过工程实例的对比评价分析,认为这种基于可变模糊集的聚类迭代模型能够用于钢筋混凝土构件的耐久性等级评价,可为类似工程的评价提供参考。 展开更多
关键词 混凝土 耐久性 权重 可变模糊集 聚类算法
在线阅读 下载PDF
基于联合仿真的空调控制算法性能分析
12
作者 吴中越 徐象国 《能源工程》 2025年第5期88-97,共10页
为系统化评估空调控制算法的温湿调控效果及其对空调能效的影响,本文设计了一套用于评价控制算法性能的测试方案。首先采用四分法得到杭州地区的四种典型室外工况,用以分析室外温湿度对控制算法性能的影响。进一步地建立EnergyPlus-Pyt... 为系统化评估空调控制算法的温湿调控效果及其对空调能效的影响,本文设计了一套用于评价控制算法性能的测试方案。首先采用四分法得到杭州地区的四种典型室外工况,用以分析室外温湿度对控制算法性能的影响。进一步地建立EnergyPlus-Python联合仿真平台用以模拟空调在真实环境下的运行状态,并为计算空调的制冷季节能效比创造条件。以已被广泛应用的PID算法以及具有温湿解耦能力的权重模糊逻辑算法为对比对象,测试结果显示PID算法在不同室外环境下均存在较长的响应时间,且容易出现频繁的温湿波动。权重模糊逻辑算法则有较好的温湿调控精度,且温湿度曲线更为稳定。同时,测试结果显示在高温环境下算法倾向于有更长的响应时间,而在低湿环境下倾向于有更大的稳态误差。因此,在算法开发中,需要关注算法在不同室外环境下的性能。 展开更多
关键词 家用空调 控制算法 联合仿真 模糊逻辑算法 ENERGYPLUS
在线阅读 下载PDF
直腿抬高康复模式下机械臂单绳悬吊恒力控制
13
作者 朱璇 凌六一 《安徽工程大学学报》 2025年第2期1-7,共7页
针对下肢运动障碍患者在传统直腿抬高康复训练中过于依赖辅助力运动,导致自身主动力激发不充分的问题,利用机械臂单绳悬吊系统完成恒力减重康复任务,以制定泛化性的训练目标。为了达到理想控制效果,对患者在训练过程中的受力状态进行分... 针对下肢运动障碍患者在传统直腿抬高康复训练中过于依赖辅助力运动,导致自身主动力激发不充分的问题,利用机械臂单绳悬吊系统完成恒力减重康复任务,以制定泛化性的训练目标。为了达到理想控制效果,对患者在训练过程中的受力状态进行分析,建立患者完全被动条件下髋关节角度与悬吊拉力之间的映射关系。根据患者自主运动时髋关节的旋转角度,确定患者当前所处康复阶段的恒力减重目标,采用天牛须模糊PID控制器进行控制,将其与模糊PID和经典PID控制进行恒拉力比较实验。通过控制器对设定目标悬吊拉力的跟踪情况可知,在运动阶段使用天牛须搜索算法优化后的控制器输出拉力跟踪误差相较于模糊PID和经典PID控制器更小;在静态保持阶段,优化后的控制器输出拉力的稳态时间相较于其他两种控制策略更短,响应速度更快。研究结果验证了机械臂单绳悬吊系统在直腿抬高康复训练中的可行性,并通过天牛须优化算法的有效应用,显著提升了训练的稳定性和效率。 展开更多
关键词 康复机械臂 直腿抬高 单绳悬吊 恒力减重 天牛须搜索算法 模糊PID
在线阅读 下载PDF
体系化设备检查方法应用研究
14
作者 徐兴 《安全、健康和环境》 2025年第6期85-90,共6页
传统设备检查方法在设备管理中存在3方面显著缺陷。首先,人为主观因素对检测结果影响显著,表现为依赖人工经验判断,检查人员易受技能水平、操作规范性和工作疲劳度等因素干扰,导致检测标准执行不一致;其次,评估指标权重设置缺乏科学性,... 传统设备检查方法在设备管理中存在3方面显著缺陷。首先,人为主观因素对检测结果影响显著,表现为依赖人工经验判断,检查人员易受技能水平、操作规范性和工作疲劳度等因素干扰,导致检测标准执行不一致;其次,评估指标权重设置缺乏科学性,如传统方法常采用固定权重分配模式,未考虑企业设备管理理念的动态变化,缺乏统计学验证;最后,数据结论缺乏准确性,难以有效表征出管理实际与薄弱环节。针对上述问题,提出基于模糊算法的检查改进方案。通过建立隶属度函数量化指标的模糊边界,采用动态权重调整机制,使评估结果更贴合企业实际。通过提升方法在历年设备检查中应用结果分析,验证其能够有效提升设备管理体系适应性建设,提高装置的可靠性,降低设备故障率,从而提升企业设备管理水平。 展开更多
关键词 设备检查 人为主观因素 设备管理 模糊算法 权重 体系化
在线阅读 下载PDF
基于改进DWA算法的凿岩机器人路径规划
15
作者 刘展飞 刘建林 《山东工业技术》 2025年第5期61-66,共6页
针对传统DWA算法在机器人移动过程中易陷入局部最优、路径性能差等弊端,建立凿岩机器人车辆运动模型,提出改进型DWA算法,引入虚拟目标点法与模糊权重调整机制,以避开局部最优解和路径冗余,通过仿真实验,与传统DWA算法对比,证实改进DWA... 针对传统DWA算法在机器人移动过程中易陷入局部最优、路径性能差等弊端,建立凿岩机器人车辆运动模型,提出改进型DWA算法,引入虚拟目标点法与模糊权重调整机制,以避开局部最优解和路径冗余,通过仿真实验,与传统DWA算法对比,证实改进DWA算法有较好脱困能力与路径搜索性能,具有迭代时间短、路径平滑等特点。 展开更多
关键词 凿岩机器人 路径规划 DWA算法 虚拟目标法 模糊权重调整
在线阅读 下载PDF
基于模糊加权CNN的分布式光伏短期出力预测
16
作者 洪杨 王同乐 +2 位作者 孔娟 王鹏 吴亚新 《信息技术》 2025年第2期150-155,共6页
为提升光伏短期出力预测准确性,提出基于模糊加权卷积神经网络的分布式光伏短期出力预测方法。筛选气象数据,按照数据特征值陡坡图,预处理数据,建立模糊加权卷积神经网络模型,将模糊卷积网络结构分为不同的层级,基于隶属度矩阵对数据进... 为提升光伏短期出力预测准确性,提出基于模糊加权卷积神经网络的分布式光伏短期出力预测方法。筛选气象数据,按照数据特征值陡坡图,预处理数据,建立模糊加权卷积神经网络模型,将模糊卷积网络结构分为不同的层级,基于隶属度矩阵对数据进行最小归一化处理,按照模糊算法,求解最优值,根据预测因子,以粒子飞行算法为基础,按照水平斜面辐照度模型,量化天气数值并训练模型输出,从而实现光伏出力短期预测。实验结果表明,应用文中方法对分布式光伏短期出力进行预测,平均相对误差较小,为0.245。 展开更多
关键词 模糊加权卷积神经网络 分布式光伏 光伏出力 粒子飞行算法 隶属度矩阵
在线阅读 下载PDF
基于RCM的轨道交通车辆均衡修优化方法
17
作者 王伟 毛建鹏 +1 位作者 王钐森 陈学娇 《轨道交通装备与技术》 2025年第4期48-54,共7页
随着城市人口增多以及交通需求增大,城市轨道交通的交通运量与运力矛盾突出。为保证车辆的正点率和上线率满足交通需求,车辆的维修模式至关重要。基于以可靠性为中心的维修(RCM)分析故障数据,再根据熵权-模糊综合评价法评估风险等级,选... 随着城市人口增多以及交通需求增大,城市轨道交通的交通运量与运力矛盾突出。为保证车辆的正点率和上线率满足交通需求,车辆的维修模式至关重要。基于以可靠性为中心的维修(RCM)分析故障数据,再根据熵权-模糊综合评价法评估风险等级,选出需要均衡修的车辆关键系统部件。接着利用模块的划分重组以及模型的构建,优化部件结构在维修时的分配,最后通过退火算法进行计算。经过该方法优化,S地铁公司均衡修每年的库停时间将缩减为20 d,为国内轨道交通车辆关键部件的均衡修流程优化提供了参考。 展开更多
关键词 轨道交通车辆 均衡修流程 熵权-模糊综合评价法 RCM分析 模块重组 模拟退火算法
原文传递
改进粒子群的压缩式制冷系统模糊PID解耦控制
18
作者 吴冬 丁绪东 +2 位作者 孙昊 马浩翔 杨远星 《电子科技》 2025年第7期7-14,共8页
针对压缩式制冷系统在实际运行中存在高耦合、非线性以及外部干扰等复杂状况,文中提出一种基于粒子群优化算法的模糊PID(Proportional Integration Differentiation)解耦控制策略。通过串联前置反馈解耦器消除压缩式制冷系统蒸发温度与... 针对压缩式制冷系统在实际运行中存在高耦合、非线性以及外部干扰等复杂状况,文中提出一种基于粒子群优化算法的模糊PID(Proportional Integration Differentiation)解耦控制策略。通过串联前置反馈解耦器消除压缩式制冷系统蒸发温度与过热度之间的耦合效应,将双输入双输出系统解耦为两个单输入单输出系统。将惯性权重进行动态非线性下降处理,使用改进粒子群算法优化模糊PID控制器的控制参数,并通过MATLAB进行仿真实验。仿真结果表明,模糊PID控制器通过串联解耦控制器和改进PSO(Particle Swarm Optimization)算法优化后,过热度和蒸发温度的超调量分别下降了30.6%、42.7%,调节时间缩短了225 s、275 s。上述结果表明所提方法有效抑制了系统震荡,使系统的动态性能得到显著提升。 展开更多
关键词 压缩式制冷系统 模型辨识 模糊控制 PID 多变量解耦 改进粒子群优化算法 参数整定 惯性权重 MATLAB
在线阅读 下载PDF
Fuzzy identification of nonlinear dynamic system based on selection of important input variables 被引量:1
19
作者 LYU Jinfeng LIU Fucai REN Yaxue 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期737-747,共11页
Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structur... Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structure by selecting important inputs of the system is studied. Firstly, a simplified two stage fuzzy curves method is proposed, which is employed to sort all possible inputs by their relevance with outputs, select the important input variables of the system and identify the structure.Secondly, in order to reduce the complexity of the model, the standard fuzzy c-means clustering algorithm and the recursive least squares algorithm are used to identify the premise parameters and conclusion parameters, respectively. Then, the effectiveness of IVS is verified by two well-known issues. Finally, the proposed identification method is applied to a realistic variable load pneumatic system. The simulation experiments indi cate that the IVS method in this paper has a positive influence on the approximation performance of the Takagi-Sugeno(T-S) fuzzy modeling. 展开更多
关键词 Takagi-Sugeno(t-s)fuzzy modeling input variable selection(IVS) fuzzy identification fuzzy c-means clustering algorithm
在线阅读 下载PDF
多场景下基于AHP-EWM的人体健康状态评估模型研究 被引量:3
20
作者 火久元 王虹阳 +1 位作者 巨涛 胡军 《计算机工程》 CAS CSCD 北大核心 2024年第7期372-380,共9页
为解决人体健康评估方法个性化监测不足的问题以及在满足不同场景下健康状态精细化评估的需求,需要一种基于多场景的人体健康状态评估方法来实现长期自动化监测。提出一种基于层次分析法(AHP)和熵权法(EWM)组合的多场景人体健康状态评... 为解决人体健康评估方法个性化监测不足的问题以及在满足不同场景下健康状态精细化评估的需求,需要一种基于多场景的人体健康状态评估方法来实现长期自动化监测。提出一种基于层次分析法(AHP)和熵权法(EWM)组合的多场景人体健康状态评估模型。首先采集人体在运动、休息、工作/学习和娱乐等4种不同场景下的健康监测指标数据,构建相应的评估指标体系。然后分别根据评估指标计算出AHP和EWM权重,再采用量子粒子群优化(QPSO)算法对AHP和EWM中的主客观权重进行分配,以确保评价指标占比的客观性。最后通过模糊综合评价法对人体健康状态进行评估和量化,并利用实际监测数据对方法的可靠性和稳定性进行验证。实验结果表明,在4种场景下所提方法的综合得分分别为63.78、59.83、58.71和59.21,表明在不同场景下该模型都具有较好的准确性和稳定性。根据评估结果,对测试者的身体状态评价结果进行分析,并给出一些健康建议。所提模型可全面了解人体在不同场景下的健康状况,并为人们提供科学的健康指导,从而为健康管理和疾病预防提供科学依据。 展开更多
关键词 健康状态 多重场景 层次分析法 熵权法 量子粒子群优化算法 模糊综合评价法
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部