This paper addresses a robust H∞filter design problem for nonlinear systems with time-varying delay through TakagiSugeno(T-S) fuzzy model approach. Firstly, by introducing free-weighting matrix method combined with a...This paper addresses a robust H∞filter design problem for nonlinear systems with time-varying delay through TakagiSugeno(T-S) fuzzy model approach. Firstly, by introducing free-weighting matrix method combined with a matrix decoupling approach and adopting an improved integral inequality method without ignoring any integral term, less conservative results are achieved. Next,based on the model, new delay-dependent sufficient conditions are derived, which are less conservative than the existing ones via solving the linear matrix inequalities(LMIs). Lastly, simulations show a significant improvement over the previous results.展开更多
An optimal fuzzy tracking synthesis for nonlinear discrete-time descriptor systems is discussed through the Parallel Distributed Compensation(PDC)approach and the Proportional-Difference(P-D)feedback framework.Based o...An optimal fuzzy tracking synthesis for nonlinear discrete-time descriptor systems is discussed through the Parallel Distributed Compensation(PDC)approach and the Proportional-Difference(P-D)feedback framework.Based on the Takagi-Sugeno Fuzzy Descriptor Model(T-SFDM),a nonlinear discrete-time descriptor system is represented as several linear fuzzy subsystems,which facilitates the linear P-D feedback technique and streamlines the fuzzy controller design process.Leveraging the P-D feedback fuzzy controller,the closed-loop T-SFDM can be transformed into a standard system that guarantees non-impulsiveness and causality for the nonlinear discrete-time descriptor system.In view of the disturbance problems,a passive performance constraint is incorporated into the fuzzy tracking synthesis to achieve dissipativity of disturbance energy.To achieve a better balance between state and control responses,the H2 performance requirement is considered and a minimization constraint is applied to optimize the H2 index.It is observed that there is a lack of research focusing on both disturbance and control input issues in nonlinear descriptor systems.Extending the Lyapunov theory,a stability analysis method is proposed for the tracking purpose with the combination of the free-weighting matrix to relax the analysis process while complying multiple performance constraints.Finally,two simulation examples are presented to demonstrate the feasibility and applicability of the proposed approach in practical control scenarios for nonlinear descriptor systems.展开更多
In order to overcome data-quantization, networked-induced delay, network packet dropouts and wrong sequences in the nonlinear networked control system, a novel nonlinear networked control system model is built by the ...In order to overcome data-quantization, networked-induced delay, network packet dropouts and wrong sequences in the nonlinear networked control system, a novel nonlinear networked control system model is built by the T-S fuzzy method. Two time-varying quantizers are added in the model. The key analysis steps in the method are to construct an improved interval-delay-dependent Lyapunov functional and to introduce the free-weighting matrix. By making use of the parallel distributed compensation technology and the convexity of the matrix function, the improved criteria of the stabilization and stability are obtained. Simulation experiments show that the parameters of the controllers and quantizers satisfying a certain performance can be obtained by solving a set of LMIs. The application of the nonlinear mass-spring system is provided to show that the proposed method is effective.展开更多
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ...This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.展开更多
In the context of advancing towards dual carbon goals,numerous factories are actively engaging in energy efficiency upgrades and transformations.To accurately pinpoint energy efficiency bottlenecks within factories an...In the context of advancing towards dual carbon goals,numerous factories are actively engaging in energy efficiency upgrades and transformations.To accurately pinpoint energy efficiency bottlenecks within factories and prioritize renovation sequences,it is crucial to conduct comprehensive evaluations of the energy performance across various workshops.Therefore,this paper proposes an evaluation model for workshop energy efficiency based on the drive-state-response(DSR)framework combined with the fuzzy BORDA method.Firstly,an in-depth analysis of the relationships between different energy efficiency indicators was conducted.Based on the DSR model,evaluation criteria were selected from three dimensions-drive factors,state characteristics,and response measures-to establish a robust energy efficiency indicator system.Secondly,three distinct assessment techniques were selected:Grey Relational Analysis(GRA),Entropy Weight Method(EWM),and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)forming a diversified set of evaluation methods.Subsequently,by introducing the fuzzy BORDA method,a comprehensive energy efficiency evaluation model was developed,aimed at quantitatively ranking the energy performance status of each workshop.Using a real-world factory as a case study,applying our proposed evaluationmodel yielded detailed scores and rankings for each workshop.Furthermore,post hoc testing was performed using the Spearman correlation coefficient,revealing a statistic value of 10.209,which validates the effectiveness and reliability of the proposed evaluation model.This model not only assists in identifying underperforming workshops within the factory but also provides solid data support and a decision-making basis for future energy efficiency optimization strategies.展开更多
With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration predict...With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration prediction system is of great scientific and practical significance for accurate and reliable predictions.This paper proposes a combination of pointinterval prediction system for pollutant concentration prediction by leveraging neural network,meta-heuristic optimization algorithm,and fuzzy theory.Fuzzy information granulation technology is used in data preprocessing to transform numerical sequences into fuzzy particles for comprehensive feature extraction.The golden Jackal optimization algorithm is employed in the optimization stage to fine-tune model hyperparameters.In the prediction stage,an ensemble learning method combines training results frommultiplemodels to obtain final point predictions while also utilizing quantile regression and kernel density estimation methods for interval predictions on the test set.Experimental results demonstrate that the combined model achieves a high goodness of fit coefficient of determination(R^(2))at 99.3% and a maximum difference between prediction accuracy mean absolute percentage error(MAPE)and benchmark model at 12.6%.This suggests that the integrated learning system proposed in this paper can provide more accurate deterministic predictions as well as reliable uncertainty analysis compared to traditionalmodels,offering practical reference for air quality early warning.展开更多
Water scarcity and environment deterioration have become main constraints to sustainable economic and social development.Scientifically assessing Water Resources Carrying Capacity(WRCC)is essential for the optimal all...Water scarcity and environment deterioration have become main constraints to sustainable economic and social development.Scientifically assessing Water Resources Carrying Capacity(WRCC)is essential for the optimal allocation of regional water resources.The hilly area at the northern foot of Yanshan Mountains is a key water conservation zone and an important water source for Beijing,Tianjin and Hebei.Grasping the current status and temporal trends of water quality and WRCC in representative small watersheds within this region is crucial for supporting rational water resources allocation and environment protection efforts.This study focuses on Pingquan City,a typical watershed in northern Hebei Province.Firstly,evaluation index systems for surface water quality,groundwater quality and WRCC were estab-lished based on the Pressure-State-Response(PSR)framework.Then,comprehensive evaluations of water quality and WRCC at the sub-watershed scale were conducted using the Varying Fuzzy Pattern Recogni-tion(VFPR)model.Finally,the rationality of the evaluation results was verified,and future scenarios were projected.Results showed that:(1)The average comprehensive evaluation scores for surface water and groundwater quality in the sub-watersheds were 1.44 and 1.46,respectively,indicating that both met the national Class II water quality standard and reflected a high-quality water environment.(2)From 2010 to 2020,the region's WRCC steadily improved,with scores rising from 2.99 to 2.83 and an average of 2.90,suggesting effective water resources management in Pingquan City.(3)According to scenario-based predic-tion,WRCC may slightly decline between 2025 and 2030,reaching 2.92 and 2.94,respectively,relative to 2020 levels.Therefore,future efforts should focus on strengthening scientific management and promoting the efficient use of water resources.Proactive measures are necessary to mitigate emerging contradiction and ensure the long-term stability and sustainability of the water resources system in the region.The evalua-tion system and spatiotemporal evolution patterns proposed in this study can provide a scientific basis for refined water resource management and ecological conservation in similar hilly areas.展开更多
Ship-mounted container cranes are challenging industrial applications of nonlinear pendulum-like systems with oscillating disturbance which can cause them unstable.Since wave-induced ship motion causes the hoisted con...Ship-mounted container cranes are challenging industrial applications of nonlinear pendulum-like systems with oscillating disturbance which can cause them unstable.Since wave-induced ship motion causes the hoisted container to swing during the transfer operation,the swing motion may be dangerously large and the operation must be stopped.In order to reduce payload pendulation of ship-mounted crane,nonlinear dynamics of ship-mounted crane is derived and a control method using T-S fuzzy model is proposed.Simulation results are given to illustrate the validity of the proposed design method and pendulation of ship-mounted crane is reduced significantly.展开更多
A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and th...A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.展开更多
In heating, ventilating and air-conditioning (HVAC) systems, there exist severe nonlinearity, time-varying nature, disturbances and uncertainties. A new predictive functional control based on Takagi-Sugeno (T-S) f...In heating, ventilating and air-conditioning (HVAC) systems, there exist severe nonlinearity, time-varying nature, disturbances and uncertainties. A new predictive functional control based on Takagi-Sugeno (T-S) fuzzy model was proposed to control HVAC systems. The T-S fuzzy model of stabilized controlled process was obtained using the least squares method, then on the basis of global linear predictive model from T-S fuzzy model, the process was controlled by the predictive functional controller. Especially the feedback regulation part was developed to compensate uncertainties of fuzzy predictive model. Finally simulation test results in HVAC systems control applications showed that the proposed fuzzy model predictive functional control improves tracking effect and robustness. Compared with the conventional PID controller, this control strategy has the advantages of less overshoot and shorter setting time, etc.展开更多
A new robust proportional-integral-derivative (PID) tracking control framework is considered for stochastic systems with non-Gaussian variable based on B-spline neural network approximation and T-S fuzzy model ident...A new robust proportional-integral-derivative (PID) tracking control framework is considered for stochastic systems with non-Gaussian variable based on B-spline neural network approximation and T-S fuzzy model identification. The tracked object is the statistical information of a given target probability density function (PDF), rather than a deterministic signal. Following B-spline approximation to the integrated performance function, the concerned problem is transferred into the tracking of given weights. Different from the previous related works, the time delay T-S fuzzy models with the exogenous disturbances are applied to identify the nonlinear weighting dynamics. Meanwhile, the generalized PID controller structure and the improved convex linear matrix inequalities (LMI) algorithms are proposed to fulfil the tracking problem. Furthermore, in order to enhance the robust performance, the peak-to-peak measure index is applied to optimize the tracking performance. Simulations are given to demonstrate the efficiency of the proposed approach.展开更多
A T-S fuzzy model with two rules is established to exactly describe the nonlinear uncertain heave dynamics of underwater vehicles with bounded heave speed.A single linear-matrix-inequality-based (LMI-based) state feed...A T-S fuzzy model with two rules is established to exactly describe the nonlinear uncertain heave dynamics of underwater vehicles with bounded heave speed.A single linear-matrix-inequality-based (LMI-based) state feedback controller is then synthesized to guarantee the global stability of the depth control system.Simulation results verify the effectiveness of the proposed approach in comparison with linear-quadratic regulator (LQR) method.Nonlinear disturbance observer is appended to the system when the underwater vehicles are affected by the gravity-buoyancy imbalance.The two-stage control method is effective to stabilize an uncertain system with both parameter uncertainties and external disturbances.展开更多
基金supported in part by Funds of National Science of China(No.61174215)
文摘This paper addresses a robust H∞filter design problem for nonlinear systems with time-varying delay through TakagiSugeno(T-S) fuzzy model approach. Firstly, by introducing free-weighting matrix method combined with a matrix decoupling approach and adopting an improved integral inequality method without ignoring any integral term, less conservative results are achieved. Next,based on the model, new delay-dependent sufficient conditions are derived, which are less conservative than the existing ones via solving the linear matrix inequalities(LMIs). Lastly, simulations show a significant improvement over the previous results.
基金founded by the National Science and Technology Council(Taiwan)under contract NSTC113-2221-E-019-032.
文摘An optimal fuzzy tracking synthesis for nonlinear discrete-time descriptor systems is discussed through the Parallel Distributed Compensation(PDC)approach and the Proportional-Difference(P-D)feedback framework.Based on the Takagi-Sugeno Fuzzy Descriptor Model(T-SFDM),a nonlinear discrete-time descriptor system is represented as several linear fuzzy subsystems,which facilitates the linear P-D feedback technique and streamlines the fuzzy controller design process.Leveraging the P-D feedback fuzzy controller,the closed-loop T-SFDM can be transformed into a standard system that guarantees non-impulsiveness and causality for the nonlinear discrete-time descriptor system.In view of the disturbance problems,a passive performance constraint is incorporated into the fuzzy tracking synthesis to achieve dissipativity of disturbance energy.To achieve a better balance between state and control responses,the H2 performance requirement is considered and a minimization constraint is applied to optimize the H2 index.It is observed that there is a lack of research focusing on both disturbance and control input issues in nonlinear descriptor systems.Extending the Lyapunov theory,a stability analysis method is proposed for the tracking purpose with the combination of the free-weighting matrix to relax the analysis process while complying multiple performance constraints.Finally,two simulation examples are presented to demonstrate the feasibility and applicability of the proposed approach in practical control scenarios for nonlinear descriptor systems.
基金The National Natural Science Foundation of China(No.60474049,60835001)Specialized Research Fund for Doctoral Program of Higher Education(No.20090092120027)
文摘In order to overcome data-quantization, networked-induced delay, network packet dropouts and wrong sequences in the nonlinear networked control system, a novel nonlinear networked control system model is built by the T-S fuzzy method. Two time-varying quantizers are added in the model. The key analysis steps in the method are to construct an improved interval-delay-dependent Lyapunov functional and to introduce the free-weighting matrix. By making use of the parallel distributed compensation technology and the convexity of the matrix function, the improved criteria of the stabilization and stability are obtained. Simulation experiments show that the parameters of the controllers and quantizers satisfying a certain performance can be obtained by solving a set of LMIs. The application of the nonlinear mass-spring system is provided to show that the proposed method is effective.
基金supported by the National Natural Science Foundation of China (62073303,61673356)Hubei Provincial Natural Science Foundation of China (2015CFA010)the 111 Project(B17040)。
文摘This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.
基金funded by the National Social Science Fund of China(Grant No.23BGL234).
文摘In the context of advancing towards dual carbon goals,numerous factories are actively engaging in energy efficiency upgrades and transformations.To accurately pinpoint energy efficiency bottlenecks within factories and prioritize renovation sequences,it is crucial to conduct comprehensive evaluations of the energy performance across various workshops.Therefore,this paper proposes an evaluation model for workshop energy efficiency based on the drive-state-response(DSR)framework combined with the fuzzy BORDA method.Firstly,an in-depth analysis of the relationships between different energy efficiency indicators was conducted.Based on the DSR model,evaluation criteria were selected from three dimensions-drive factors,state characteristics,and response measures-to establish a robust energy efficiency indicator system.Secondly,three distinct assessment techniques were selected:Grey Relational Analysis(GRA),Entropy Weight Method(EWM),and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)forming a diversified set of evaluation methods.Subsequently,by introducing the fuzzy BORDA method,a comprehensive energy efficiency evaluation model was developed,aimed at quantitatively ranking the energy performance status of each workshop.Using a real-world factory as a case study,applying our proposed evaluationmodel yielded detailed scores and rankings for each workshop.Furthermore,post hoc testing was performed using the Spearman correlation coefficient,revealing a statistic value of 10.209,which validates the effectiveness and reliability of the proposed evaluation model.This model not only assists in identifying underperforming workshops within the factory but also provides solid data support and a decision-making basis for future energy efficiency optimization strategies.
基金supported by General Scientific Research Funding of the Science and Technology Development Fund(FDCT)in Macao(No.0150/2022/A)the Faculty Research Grants of Macao University of Science and Technology(No.FRG-22-074-FIE).
文摘With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration prediction system is of great scientific and practical significance for accurate and reliable predictions.This paper proposes a combination of pointinterval prediction system for pollutant concentration prediction by leveraging neural network,meta-heuristic optimization algorithm,and fuzzy theory.Fuzzy information granulation technology is used in data preprocessing to transform numerical sequences into fuzzy particles for comprehensive feature extraction.The golden Jackal optimization algorithm is employed in the optimization stage to fine-tune model hyperparameters.In the prediction stage,an ensemble learning method combines training results frommultiplemodels to obtain final point predictions while also utilizing quantile regression and kernel density estimation methods for interval predictions on the test set.Experimental results demonstrate that the combined model achieves a high goodness of fit coefficient of determination(R^(2))at 99.3% and a maximum difference between prediction accuracy mean absolute percentage error(MAPE)and benchmark model at 12.6%.This suggests that the integrated learning system proposed in this paper can provide more accurate deterministic predictions as well as reliable uncertainty analysis compared to traditionalmodels,offering practical reference for air quality early warning.
基金financially supported by China Geological Survey Project(No.DD20220954)Open Funding Project of the Key Laboratory of Groundwater Sciences and Engineering,Ministry of Natural Resources(No.SK202301-4)+2 种基金Science and Technology Innovation Foundation of Comprehensive Survey&Command Center for Natural Resources(No.KC20240003)Yanzhao Shanshui Science and Innovation Fund of Langfang Integrated Natural Resources Survey Center,China Geological Survey(No.YZSSJJ202401-001)Open Foundation of the Key Laboratory of Coupling Process and Effect of Natural Resources Elements(No.2022KFKTC009).
文摘Water scarcity and environment deterioration have become main constraints to sustainable economic and social development.Scientifically assessing Water Resources Carrying Capacity(WRCC)is essential for the optimal allocation of regional water resources.The hilly area at the northern foot of Yanshan Mountains is a key water conservation zone and an important water source for Beijing,Tianjin and Hebei.Grasping the current status and temporal trends of water quality and WRCC in representative small watersheds within this region is crucial for supporting rational water resources allocation and environment protection efforts.This study focuses on Pingquan City,a typical watershed in northern Hebei Province.Firstly,evaluation index systems for surface water quality,groundwater quality and WRCC were estab-lished based on the Pressure-State-Response(PSR)framework.Then,comprehensive evaluations of water quality and WRCC at the sub-watershed scale were conducted using the Varying Fuzzy Pattern Recogni-tion(VFPR)model.Finally,the rationality of the evaluation results was verified,and future scenarios were projected.Results showed that:(1)The average comprehensive evaluation scores for surface water and groundwater quality in the sub-watersheds were 1.44 and 1.46,respectively,indicating that both met the national Class II water quality standard and reflected a high-quality water environment.(2)From 2010 to 2020,the region's WRCC steadily improved,with scores rising from 2.99 to 2.83 and an average of 2.90,suggesting effective water resources management in Pingquan City.(3)According to scenario-based predic-tion,WRCC may slightly decline between 2025 and 2030,reaching 2.92 and 2.94,respectively,relative to 2020 levels.Therefore,future efforts should focus on strengthening scientific management and promoting the efficient use of water resources.Proactive measures are necessary to mitigate emerging contradiction and ensure the long-term stability and sustainability of the water resources system in the region.The evalua-tion system and spatiotemporal evolution patterns proposed in this study can provide a scientific basis for refined water resource management and ecological conservation in similar hilly areas.
基金work supported by Changwon National University in 2011-2012work partly supported by the second stage of Brain Korea 21 Projects
文摘Ship-mounted container cranes are challenging industrial applications of nonlinear pendulum-like systems with oscillating disturbance which can cause them unstable.Since wave-induced ship motion causes the hoisted container to swing during the transfer operation,the swing motion may be dangerously large and the operation must be stopped.In order to reduce payload pendulation of ship-mounted crane,nonlinear dynamics of ship-mounted crane is derived and a control method using T-S fuzzy model is proposed.Simulation results are given to illustrate the validity of the proposed design method and pendulation of ship-mounted crane is reduced significantly.
基金This Project was supported by the National Natural Science Foundation of China (60374037 and 60574036)the Opening Project Foundation of National Lab of Industrial Control Technology (0708008).
文摘A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.
基金This work was supported by Young Scientists Fundamental Research Program of Shandong Province of China (No. 031B5147).
文摘In heating, ventilating and air-conditioning (HVAC) systems, there exist severe nonlinearity, time-varying nature, disturbances and uncertainties. A new predictive functional control based on Takagi-Sugeno (T-S) fuzzy model was proposed to control HVAC systems. The T-S fuzzy model of stabilized controlled process was obtained using the least squares method, then on the basis of global linear predictive model from T-S fuzzy model, the process was controlled by the predictive functional controller. Especially the feedback regulation part was developed to compensate uncertainties of fuzzy predictive model. Finally simulation test results in HVAC systems control applications showed that the proposed fuzzy model predictive functional control improves tracking effect and robustness. Compared with the conventional PID controller, this control strategy has the advantages of less overshoot and shorter setting time, etc.
基金supported by National Natural Science Foundationof China (No. 60472065, No. 60774013).
文摘A new robust proportional-integral-derivative (PID) tracking control framework is considered for stochastic systems with non-Gaussian variable based on B-spline neural network approximation and T-S fuzzy model identification. The tracked object is the statistical information of a given target probability density function (PDF), rather than a deterministic signal. Following B-spline approximation to the integrated performance function, the concerned problem is transferred into the tracking of given weights. Different from the previous related works, the time delay T-S fuzzy models with the exogenous disturbances are applied to identify the nonlinear weighting dynamics. Meanwhile, the generalized PID controller structure and the improved convex linear matrix inequalities (LMI) algorithms are proposed to fulfil the tracking problem. Furthermore, in order to enhance the robust performance, the peak-to-peak measure index is applied to optimize the tracking performance. Simulations are given to demonstrate the efficiency of the proposed approach.
文摘A T-S fuzzy model with two rules is established to exactly describe the nonlinear uncertain heave dynamics of underwater vehicles with bounded heave speed.A single linear-matrix-inequality-based (LMI-based) state feedback controller is then synthesized to guarantee the global stability of the depth control system.Simulation results verify the effectiveness of the proposed approach in comparison with linear-quadratic regulator (LQR) method.Nonlinear disturbance observer is appended to the system when the underwater vehicles are affected by the gravity-buoyancy imbalance.The two-stage control method is effective to stabilize an uncertain system with both parameter uncertainties and external disturbances.