Nodal pricing is a critical mechanism in electricity markets,utilized to determine the cost of power transmission to various nodes within a distribution network.As power systems evolve to incorporate higher levels of ...Nodal pricing is a critical mechanism in electricity markets,utilized to determine the cost of power transmission to various nodes within a distribution network.As power systems evolve to incorporate higher levels of renewable energy and face increasing demand fluctuations,traditional nodal pricing models often fall short to meet these new challenges.This research introduces a novel enhanced nodal pricing mechanism for distribution networks,integrating advanced optimization techniques and hybrid models to overcome these limitations.The primary objective is to develop a model that not only improves pricing accuracy but also enhances operational efficiency and system reliability.This study leverages cutting-edge hybrid algorithms,combining elements of machine learning with conventional optimization methods,to achieve superior performance.Key findings demonstrate that the proposed hybrid nodal pricing model significantly reduces pricing errors and operational costs compared to conventional methods.Through extensive simulations and comparative analysis,the model exhibits enhanced performance under varying load conditions and increased levels of renewable energy integration.The results indicate a substantial improvement in pricing precision and network stability.This study contributes to the ongoing discourse on optimizing electricity market mechanisms and provides actionable insights for policymakers and utility operators.By addressing the complexities of modern power distribution systems,our research offers a robust solution that enhances the efficiency and reliability of power distribution networks,marking a significant advancement in the field.展开更多
To consider the complex soil-structure interaction in a pile-slope system,it is necessary to analyze the performance of pile-slope systems based on a three-dimensional(3D)numerical model.Reliability analysis of a pile...To consider the complex soil-structure interaction in a pile-slope system,it is necessary to analyze the performance of pile-slope systems based on a three-dimensional(3D)numerical model.Reliability analysis of a pile-slope system based on 3D numerical modeling is very challenging because it is computationally expensive and the performance function of the pile failure mode is only defined in the safe domain of soil stability.In this paper,an efficient hybrid response surface method is suggested to study the system reliability of pile-reinforced slopes,where the support vector machine and the Kriging model are used to approximate performance functions of soil failure and pile failure,respectively.The versatility of the suggested method is illustrated in detail with an example.For the example examined in this paper,it is found that the pile failure can significantly contribute to system failure,and the reinforcement ratio can effectively reduce the probability of pile failure.There exists a critical reinforcement ratio beyond which the system failure probability is not sensitive to the reinforcement ratio.The pile spacing affects both the probabilities of soil failure and pile failure of the pile-reinforced slope.There exists an optimal location and an optimal length for the stabilizing piles.展开更多
For high-reliability systems in military,aerospace,and railway fields,the challenges of reliability analysis lie in dealing with unclear failure mechanisms,complex fault relationships,lack of fault data,and uncertaint...For high-reliability systems in military,aerospace,and railway fields,the challenges of reliability analysis lie in dealing with unclear failure mechanisms,complex fault relationships,lack of fault data,and uncertainty of fault states.To overcome these problems,this paper proposes a reliability analysismethod based on T-S fault tree analysis(T-S FTA)and Hyper-ellipsoidal Bayesian network(HE-BN).The method describes the connection between the various systemfault events by T-S fuzzy gates and translates them into a Bayesian network(BN)model.Combining the advantages of T-S fault tree modeling with the advantages of Bayesian network computation,a reliability modeling method is proposed that can fully reflect the fault characteristics of complex systems.Experts describe the degree of failure of the event in the form of interval numbers.The knowledge and experience of experts are fused with the D-S evidence theory to obtain the initial failure probability interval of the BN root node.Then,the Hyper-ellipsoidal model(HM)constrains the initial failure probability interval and constructs a HE-BN for the system.A reliability analysismethod is proposed to solve the problem of insufficient failure data and uncertainty in the degree of failure.The failure probability of the system is further calculated and the key components that affect the system’s reliability are identified.The proposedmethod accounts for the uncertainty and incompleteness of the failure data in complex multi-state systems and establishes an easily computable reliability model that fully reflects the characteristics of complex faults and accurately identifies system weaknesses.The feasibility and accuracy of the method are further verified by conducting case studies.展开更多
The reservoir operation awakens numerous landslides with multiple sliding surfaces known as reservoir landslides,and the systematic stability analysis for such landslides is becoming increasingly urgent.Taking the Maj...The reservoir operation awakens numerous landslides with multiple sliding surfaces known as reservoir landslides,and the systematic stability analysis for such landslides is becoming increasingly urgent.Taking the Majiagou landslide as an example,this paper analyses the comprehensive performance of the landslide from a probabilistic point of view.Under a reservoir operation cycle,a series of numerical analyses are carried out to simulate the migration of the seepage field,then the dynamic stability of the landslide is quantified accordingly.Subsequently,the wetting-drying cycles test is used to model the weakening of strength parameters in hydro-fluctuation belt under the long-term reservoir operation.Considering the weakening effect of long-term reservoir operation on the hydrofluctuation belt,the system reliability is evaluated using the Ditlevsen's bounds.The results suggest that the reservoir operation can affect the stability of the landslide by changing the seepage field.The system failure probability gradually rises as the number of wetting-drying cycles increases.Compared with conventional probabilistic analysis that calculates the failure probability of each sliding surface mechanically,analyzing the landslide in terms of system reliability can effectively narrow the failure probability range,which provides an insightful idea for evaluating the systematic stability of analogous reservoir landslides.展开更多
This paper investigates Bayesian methods for aerospace system reliability analysis using various sources of test data and expert knowledge at both subsystem and system levels. Four sce- narios based on available infor...This paper investigates Bayesian methods for aerospace system reliability analysis using various sources of test data and expert knowledge at both subsystem and system levels. Four sce- narios based on available information for the priors and test data of a system and/or subsystems are studied using specific Bayesian inference techniques. This paper proposes the Bayesian melding method for integrating subsystem-level priors with system-level priors for both system- and subsystem-level reliability analysis. System and subsystem reliability outcomes are compared under different scenarios. Computational challenges for posterior inferences using the sophisticated Bayesian melding method are addressed using Markov Chain Monte Carlo (MCMC) and adaptive Sam- piing Importance Re-sampling (SIR) methods. A case study with simulation results illustrates the applications of the proposed methods and provides insights for aerospace system reliability analysis using available multilevel information.展开更多
Based on the nonlinear Barton–Bandis(B–B)failure criterion,this study considers the system reliability of rock wedge stability under the pseudo-static seismic load.The failure probability(Pf)of the system is calcula...Based on the nonlinear Barton–Bandis(B–B)failure criterion,this study considers the system reliability of rock wedge stability under the pseudo-static seismic load.The failure probability(Pf)of the system is calculated based on the Monte−Carlo method when considering parameter correlation and variability.Parameter analysis and sensitivity analysis are carried out to explore the influence of parameters on reliability.The relationships among the failure probability,safety factor(Fs),and variation coefficient are explored,and then stability probability curves of the rock wedge under the pseudo-static seismic load are drawn.The results show that the parameter correlation of the B–B failure criterion has a significant influence on the failure probability,but correlation increases system reliability or decreases system reliability affected by other parameters.Under the pseudo-static seismic action,sliding on both planes is the main failure mode of wedge system.In addition,the parameters with relatively high sensitivity are two angles related to the joint dip.When the coefficient of variation is consistent,the probability of system failure is a function of the safety factor.展开更多
This study investigates strategies for solving the system reliability of large three-dimensional jacket structures.These structural systems normally fail as a result of a series of different components failures.The fa...This study investigates strategies for solving the system reliability of large three-dimensional jacket structures.These structural systems normally fail as a result of a series of different components failures.The failure characteristics are investigated under various environmental conditions and direction combinations.Theβ-unzipping technique is adopted to determine critical failure components,and the entire system is simplified as a series-parallel system to approximately evaluate the structural system reliability.However,this approach needs excessive computational effort for searching failure components and failure paths.Based on a trained artificial neural network(ANN),which can be used to approximate the implicit limit-state function of a complicated structure,a new alternative procedure is proposed to improve the efficiency of the system reliability analysis method.The failure probability is calculated through Monte Carlo simulation(MCS)with Latin hypercube sampling(LHS).The features and applicability of the above procedure are discussed and compared using an example jacket platform located in Chengdao Oilfield,Bohai Sea,China.This study provides a reference for the evaluation of the system reliability of jacket structures.展开更多
Several potential failure modes generally exist in rock slopes because of the existence of massive structural planes in rock masses. A system reliability analyses method for rock slopes with multiple failure modes bas...Several potential failure modes generally exist in rock slopes because of the existence of massive structural planes in rock masses. A system reliability analyses method for rock slopes with multiple failure modes based on nonlinear Barton-Bandis failure criterion is proposed. The factors of safety associated with the sliding and overturning failure modes are derived, respectively. The validity of this method is verified through a planar rock slope with an inclined slope top and tension crack. Several sensitivity analyses are adopted to study the influences of structural-plane parameters, geometric parameters, anchoring parameters and fracture morphology on the rock slopes system reliability.展开更多
In the field of the system reliability analysis with multiple failure modes,the advances mainly involve only random uncertainty.The upper bound of the system failure probability with multiple failure modes is usually ...In the field of the system reliability analysis with multiple failure modes,the advances mainly involve only random uncertainty.The upper bound of the system failure probability with multiple failure modes is usually employed to quantify the safety level under Random and Interval Hybrid Uncertainty(RI-HU).At present,there is a lack of an efficient and accurate method for estimating the upper bound of the system failure probability.This paper proposed an efficient Kriging model based on numerical simulation algorithm to solve the system reliability analysis under RI-HU.This method proposes a system learning function to train the system Kriging models of the system limit state surface.The convergent Kriging models are used to replace the limit state functions of the system multi-mode for identifying the state of the random sample.The proposed system learning function can adaptively select the failure mode contributing most to the system failure probability from the system and update its Kriging model.Thus,the efficiency of the Kriging training process can be improved by avoiding updating the Kriging models contributing less to estimating the system failure probability.The presented examples illustrate the superiority of the proposed method.展开更多
System reliability can produce a strong influence on the performance of the heat exchanger network(HEN).In this paper,an optimization method with system reliability analysis for flexible HEN by genetic/simulated annea...System reliability can produce a strong influence on the performance of the heat exchanger network(HEN).In this paper,an optimization method with system reliability analysis for flexible HEN by genetic/simulated annealing algorithms(GA/SA) is presented.Initial flexible arrangements of HEN is received by pseudo-temperature enthalpy diagram.For determining system reliability of HEN,the connections of heat exchangers(HEXs) and independent subsystems in the HEN are analyzed by the connection sequence matrix(CSM),and the system reliability is measured by the independent subsystem including maximum number of HEXs in the HEN.As for the HEN that did not meet system reliability,HEN decoupling is applied and the independent subsystems in the HEN are changed by removing decoupling HEX,and thus the system reliability is elevated.After that,heat duty redistribution based on the relevant elements of the heat load loops and HEX areas are optimized in GA/SA.Then,the favorable network configuration,which matches both the most economical cost and system reliability criterion,is located.Moreover,particular features belonging to suitable decoupling HEX are extracted from calculations.Corresponding numerical example is presented to verify that the proposed strategy is effective to formulate optimal flexible HEN with system reliability measurement.展开更多
For high reliability and long life systems, system pass/fail data are often rare. Integrating lower-level data, such as data drawn from the subsystem or component pass/fail testing,the Bayesian analysis can improve th...For high reliability and long life systems, system pass/fail data are often rare. Integrating lower-level data, such as data drawn from the subsystem or component pass/fail testing,the Bayesian analysis can improve the precision of the system reliability assessment. If the multi-level pass/fail data are overlapping,one challenging problem for the Bayesian analysis is to develop a likelihood function. Since the computation burden of the existing methods makes them infeasible for multi-component systems, this paper proposes an improved Bayesian approach for the system reliability assessment in light of overlapping data. This approach includes three steps: fristly searching for feasible paths based on the binary decision diagram, then screening feasible points based on space partition and constraint decomposition, and finally simplifying the likelihood function. An example of a satellite rolling control system demonstrates the feasibility and the efficiency of the proposed approach.展开更多
Importance measures in reliability systems are used to identify weak components in contributing to a proper function of the system. Traditional importance measures mainly concerned the changing value of the system rel...Importance measures in reliability systems are used to identify weak components in contributing to a proper function of the system. Traditional importance measures mainly concerned the changing value of the system reliability caused by the change of the reliability of the component, and seldom considered the joint effect of the probability distribution, improvement rate of the object component. This paper studies the rate of the system reliability upgrading with an improvement of the component reliability for the multi-state consecutive k-out-of-n system. To verify the multi-state consecutive k-out-of-n system reliability upgrading by improving one component based on its improvement rate, an increasing potential importance (IPI) and its physical meaning are described at first. Secondly, the relationship between the IPI and Birnbaum importance measures are discussed. And the IPI for some different improvement actions of the component is further discussed. Thirdly, the characteristics of the IPI are analyzed. Finally, an application to an oil pipeline system is given.展开更多
Complex slopes are characterized by large numbers of failure modes,cut sets or link sets,or by statistical dependence between the failure modes.For such slopes,a systematic quantitative method,or matrix-based system r...Complex slopes are characterized by large numbers of failure modes,cut sets or link sets,or by statistical dependence between the failure modes.For such slopes,a systematic quantitative method,or matrix-based system reliability method,was described and improved for their reliability analysis.A construction formula of event vector c E was suggested to solve the difficulty of identifying any component E in sample space,and event vector c of system events can be calculated based on it,then the bounds of system failure probability can be obtained with the given probability information.The improved method was illustrated for four copper mine slopes with multiple failure modes,and the bounds of system failure probabilities were calculated by self-compiling program on the platform of the software MATLAB.Comparison in results from matrix-based system reliability method and two generic system methods suggests that identical accuracy could be obtained by all methods if there are only a few failure modes in slope system.Otherwise,the bounds by the Ditlevsen method or Cornell method are expanded obviously with the increase of failure modes and their precision can hardly satisfy the requirement of practical engineering while the results from the proposed method are still accurate enough.展开更多
Allocation of fleet's spare parts is rarely studied due to its complexity. However, this task is extremely important because the warship's service level highly relies on the maintenance logistics' level. I...Allocation of fleet's spare parts is rarely studied due to its complexity. However, this task is extremely important because the warship's service level highly relies on the maintenance logistics' level. In this study, the readiness ratio is proposed as a critical index in measuring the system's reliability. A well-established mathematical model adopting the optimization method of spare part allocation is also introduced. The objective is to minimize the number of each spare part while satisfying the fleet's system reliability. The fault tree analysis(FTA) is applied to analyze the system's failure logic and stratify the units on ship. As a result, the strategy of spare part sharing can be introduced in detail. The solution algorithm is developed, and the simulation experiments to obtain the key parameters are conducted. The proposed model and algorithm are applied to an actual fleet of two warships, and results show that the method above is feasible and can be directly applied into practice.展开更多
Offshore structures will encounter serious environmental load, so it is important to study the structural system reliability and to evaluate the structural component safety rank. In this paper, the bracnch-and-bound m...Offshore structures will encounter serious environmental load, so it is important to study the structural system reliability and to evaluate the structural component safety rank. In this paper, the bracnch-and-bound method is adopted to search the main failure path, and the Ditlevsen bound method is used to calculate the system failure probability. The structure is then assessed by the fuzzy comprehensive assessment method, which evaluates the structural component safety rank. The ultimate equation of the tubular cross- section is analyzed on the basis of ultimate stregnth analysis. The influence of effect coefficients on the structural system failure probability is investigated, and basic results are obtained. A general program for spatial frame structures by means of the above method is developed, and verified by the numerical examples.展开更多
Recently, the physics-of-failure(PoF) method has been more and more popular in engineering to understand the failure mechanisms(FMs) of products.However, due to the lack of system modeling methods and problem-solving ...Recently, the physics-of-failure(PoF) method has been more and more popular in engineering to understand the failure mechanisms(FMs) of products.However, due to the lack of system modeling methods and problem-solving algorithms,the information of FMs cannot be used to evaluate system reliability.This paper presents a system reliability evaluation method with failure mechanism tree(FMT) considering physical dependency(PDEP) such as competition, trigger, acceleration, inhibition, damage accumulation, and parameter combination.And the binary decision diagram(BDD) analytical algorithm is developed to establish a system reliability model.The operation rules of ite operators for generating BDD are discussed.The flow chart of system reliability evaluation method based on FMT and BDD is proposed.The proposed method is applied in the case of an electronic controller drive unit.Results show that the method is effective to evaluate system reliability from the perspective of FM.展开更多
Taking into account the whole system structure and the component reliability estimation uncertainty, a system reliability estimation method based on probability and statistical theory for distributed monitoring system...Taking into account the whole system structure and the component reliability estimation uncertainty, a system reliability estimation method based on probability and statistical theory for distributed monitoring systems is presented. The variance and confidence intervals of the system reliability estimation are obtained by expressing system reliability as a linear sum of products of higher order moments of component reliability estimates when the number of component or system survivals obeys binomial distribution. The eigenfunction of binomial distribution is used to determine the moments of component reliability estimates, and a symbolic matrix which can facilitate the search of explicit system reliability estimates is proposed. Furthermore, a case of application is used to illustrate the procedure, and with the help of this example, various issues such as the applicability of this estimation model, and measures to improve system reliability of monitoring systems are discussed.展开更多
Multiple failure modes tend to be identified in the reliability analysis of a redundant truss structure.This identification process involves updating the model for identifying the next potential failure members.Herein...Multiple failure modes tend to be identified in the reliability analysis of a redundant truss structure.This identification process involves updating the model for identifying the next potential failure members.Herein we intend to update the finite element model automatically in the identification process of failure modes and further perform the system reliability analysis efficiently.This study presents a framework that is implemented through the joint simulation of MATLAB and APDL and consists of three parts:reliability index of a single member,identification of dominant failure modes,and system-level reliability analysis for system reliability analysis of truss structures.Firstly,RSM(response surface method)combines with a constrained optimization model to calculate the reliability indices ofmembers.Then theβ-unzipping method is adopted to identify the dominant failuremodes,and the system function in MATLAB,as well as the EKILL command in APDL,is used to facilitate the automatic update of the finite element model and realize load-redistribution.Besides,the differential equivalence recursion algorithmis performed to approximate the reliability indices of failuremodes efficiently and accurately.Eventually,the PNET(probabilistic network evaluation technique)is used to calculate the joint failure probability as well as the system reliability index.Two illustrative examples demonstrate the accuracy and efficiency of the proposed system reliability analysis framework through comparison with corresponding references.展开更多
Owing to the ageing of the existing structures worldwide and the lack of codes for the continued safely management of structures during their lifetime, it is very necessary to develop a tool to evaluate their system r...Owing to the ageing of the existing structures worldwide and the lack of codes for the continued safely management of structures during their lifetime, it is very necessary to develop a tool to evaluate their system reliability over a time interval. In this paper, a method is proposed to analyze system reliability of existing jacket platforms. The influences of dint, crack and corrosion are considered. The mechanics characteristics of the existing jacket platforms to extreme loads are analyzed by use of the nonlinear mechanical analysis. The nonlinear interaction of pile-soil-structure is taken into consideration in the analysis. By use of FEM method and Monte Carlo simulation, the system reliability of the existing jacket platforul can be obtained. The method has been illustrated through application to BZ28-1 three jacket platforms which have operated for sixteen years. Advantages of the proposed method for analyzing the system reliability of the existing jacket platform is also highlighted.展开更多
The mission reliability assessment plays a great role in logistics planning and supporting resource optimization of complex system.But the current problem,which is difficult to solve,is how to model and analyze the ch...The mission reliability assessment plays a great role in logistics planning and supporting resource optimization of complex system.But the current problem,which is difficult to solve,is how to model and analyze the characters of system reliability under the complex mission profile.In order to solve the problem,an agentbased simulation method was used to assess reliability for complex systems with various random working conditions.A multi-working condition simulation agent(MA)was designed and used to simulate the random transferring process of working conditions of system,and it cooperated with system simulation agents(SAs)and unit simulation agents(UAs)to realize system mission reliability(MR)simulation.Through simulation experiments,effect of multiple working conditions mission on the reliability of system was analyzed by comparing with the basic reliability condition.Feasibility and efficiency of the method were proved through simulation experiments of the case system.The research result provides a viable and useful method and a solution for MR analysis and assessment of complex systems in multi-working conditions,which can help to evaluate the reliability of operating system orienting to the practical mission and environment,and it is meaningful for the reliability analysis and the design of complex systems.展开更多
文摘Nodal pricing is a critical mechanism in electricity markets,utilized to determine the cost of power transmission to various nodes within a distribution network.As power systems evolve to incorporate higher levels of renewable energy and face increasing demand fluctuations,traditional nodal pricing models often fall short to meet these new challenges.This research introduces a novel enhanced nodal pricing mechanism for distribution networks,integrating advanced optimization techniques and hybrid models to overcome these limitations.The primary objective is to develop a model that not only improves pricing accuracy but also enhances operational efficiency and system reliability.This study leverages cutting-edge hybrid algorithms,combining elements of machine learning with conventional optimization methods,to achieve superior performance.Key findings demonstrate that the proposed hybrid nodal pricing model significantly reduces pricing errors and operational costs compared to conventional methods.Through extensive simulations and comparative analysis,the model exhibits enhanced performance under varying load conditions and increased levels of renewable energy integration.The results indicate a substantial improvement in pricing precision and network stability.This study contributes to the ongoing discourse on optimizing electricity market mechanisms and provides actionable insights for policymakers and utility operators.By addressing the complexities of modern power distribution systems,our research offers a robust solution that enhances the efficiency and reliability of power distribution networks,marking a significant advancement in the field.
基金substantially supported by the National Natural Science Foundation of China(Grant No.42072302)Shuguang Program from Shanghai Education Development Foundation and Shanghai Municipal Education Commission(Grant No.19SG19)Fundamental Research Funds for the Central Universities.
文摘To consider the complex soil-structure interaction in a pile-slope system,it is necessary to analyze the performance of pile-slope systems based on a three-dimensional(3D)numerical model.Reliability analysis of a pile-slope system based on 3D numerical modeling is very challenging because it is computationally expensive and the performance function of the pile failure mode is only defined in the safe domain of soil stability.In this paper,an efficient hybrid response surface method is suggested to study the system reliability of pile-reinforced slopes,where the support vector machine and the Kriging model are used to approximate performance functions of soil failure and pile failure,respectively.The versatility of the suggested method is illustrated in detail with an example.For the example examined in this paper,it is found that the pile failure can significantly contribute to system failure,and the reinforcement ratio can effectively reduce the probability of pile failure.There exists a critical reinforcement ratio beyond which the system failure probability is not sensitive to the reinforcement ratio.The pile spacing affects both the probabilities of soil failure and pile failure of the pile-reinforced slope.There exists an optimal location and an optimal length for the stabilizing piles.
基金the National Natural Science Foundation of China(51875073).
文摘For high-reliability systems in military,aerospace,and railway fields,the challenges of reliability analysis lie in dealing with unclear failure mechanisms,complex fault relationships,lack of fault data,and uncertainty of fault states.To overcome these problems,this paper proposes a reliability analysismethod based on T-S fault tree analysis(T-S FTA)and Hyper-ellipsoidal Bayesian network(HE-BN).The method describes the connection between the various systemfault events by T-S fuzzy gates and translates them into a Bayesian network(BN)model.Combining the advantages of T-S fault tree modeling with the advantages of Bayesian network computation,a reliability modeling method is proposed that can fully reflect the fault characteristics of complex systems.Experts describe the degree of failure of the event in the form of interval numbers.The knowledge and experience of experts are fused with the D-S evidence theory to obtain the initial failure probability interval of the BN root node.Then,the Hyper-ellipsoidal model(HM)constrains the initial failure probability interval and constructs a HE-BN for the system.A reliability analysismethod is proposed to solve the problem of insufficient failure data and uncertainty in the degree of failure.The failure probability of the system is further calculated and the key components that affect the system’s reliability are identified.The proposedmethod accounts for the uncertainty and incompleteness of the failure data in complex multi-state systems and establishes an easily computable reliability model that fully reflects the characteristics of complex faults and accurately identifies system weaknesses.The feasibility and accuracy of the method are further verified by conducting case studies.
基金supported by the Postdoctoral Fellowship Program of CPSF(No.GZB20230607)the Fundamental Research Funds for the Central Universities(No.2682024CX125)+3 种基金the National Key R&D Program of China(No.2023YFC3007201)the National Natural Science Foundation of China(No.42377161)the Natural Science Foundation of Hubei Province(No.2023AFB580)the Guizhou Provincial Science and Technology Project(No.QKHZC[2023]YB127)。
文摘The reservoir operation awakens numerous landslides with multiple sliding surfaces known as reservoir landslides,and the systematic stability analysis for such landslides is becoming increasingly urgent.Taking the Majiagou landslide as an example,this paper analyses the comprehensive performance of the landslide from a probabilistic point of view.Under a reservoir operation cycle,a series of numerical analyses are carried out to simulate the migration of the seepage field,then the dynamic stability of the landslide is quantified accordingly.Subsequently,the wetting-drying cycles test is used to model the weakening of strength parameters in hydro-fluctuation belt under the long-term reservoir operation.Considering the weakening effect of long-term reservoir operation on the hydrofluctuation belt,the system reliability is evaluated using the Ditlevsen's bounds.The results suggest that the reservoir operation can affect the stability of the landslide by changing the seepage field.The system failure probability gradually rises as the number of wetting-drying cycles increases.Compared with conventional probabilistic analysis that calculates the failure probability of each sliding surface mechanically,analyzing the landslide in terms of system reliability can effectively narrow the failure probability range,which provides an insightful idea for evaluating the systematic stability of analogous reservoir landslides.
文摘This paper investigates Bayesian methods for aerospace system reliability analysis using various sources of test data and expert knowledge at both subsystem and system levels. Four sce- narios based on available information for the priors and test data of a system and/or subsystems are studied using specific Bayesian inference techniques. This paper proposes the Bayesian melding method for integrating subsystem-level priors with system-level priors for both system- and subsystem-level reliability analysis. System and subsystem reliability outcomes are compared under different scenarios. Computational challenges for posterior inferences using the sophisticated Bayesian melding method are addressed using Markov Chain Monte Carlo (MCMC) and adaptive Sam- piing Importance Re-sampling (SIR) methods. A case study with simulation results illustrates the applications of the proposed methods and provides insights for aerospace system reliability analysis using available multilevel information.
基金Project(51878668)supported by the National Natural Science Foundation of ChinaProjects(2017-122-058,2018-123-040)supported by the Guizhou Provincial Department of Transportation Foundation,ChinaProject([2018]2815)supported by the Guizhou Provincial Department of Science and Technology Foundation,China。
文摘Based on the nonlinear Barton–Bandis(B–B)failure criterion,this study considers the system reliability of rock wedge stability under the pseudo-static seismic load.The failure probability(Pf)of the system is calculated based on the Monte−Carlo method when considering parameter correlation and variability.Parameter analysis and sensitivity analysis are carried out to explore the influence of parameters on reliability.The relationships among the failure probability,safety factor(Fs),and variation coefficient are explored,and then stability probability curves of the rock wedge under the pseudo-static seismic load are drawn.The results show that the parameter correlation of the B–B failure criterion has a significant influence on the failure probability,but correlation increases system reliability or decreases system reliability affected by other parameters.Under the pseudo-static seismic action,sliding on both planes is the main failure mode of wedge system.In addition,the parameters with relatively high sensitivity are two angles related to the joint dip.When the coefficient of variation is consistent,the probability of system failure is a function of the safety factor.
基金supported by the National Natural Science Foundation of China (No. 51779236)the NSFC- Shandong Joint Fund Project (No. U1706226)the National Key Research and Development Program (No. 2016YFC 0303401)
文摘This study investigates strategies for solving the system reliability of large three-dimensional jacket structures.These structural systems normally fail as a result of a series of different components failures.The failure characteristics are investigated under various environmental conditions and direction combinations.Theβ-unzipping technique is adopted to determine critical failure components,and the entire system is simplified as a series-parallel system to approximately evaluate the structural system reliability.However,this approach needs excessive computational effort for searching failure components and failure paths.Based on a trained artificial neural network(ANN),which can be used to approximate the implicit limit-state function of a complicated structure,a new alternative procedure is proposed to improve the efficiency of the system reliability analysis method.The failure probability is calculated through Monte Carlo simulation(MCS)with Latin hypercube sampling(LHS).The features and applicability of the above procedure are discussed and compared using an example jacket platform located in Chengdao Oilfield,Bohai Sea,China.This study provides a reference for the evaluation of the system reliability of jacket structures.
基金Project(51978666) supported by the National Natural Science Foundation of ChinaProject(2018-123-040) supported by the Guizhou Provincial Department of Transportation Foundation, ChinaProject(2019zzts009) supported by the Fundamental Research Funds for the Central Universities, China。
文摘Several potential failure modes generally exist in rock slopes because of the existence of massive structural planes in rock masses. A system reliability analyses method for rock slopes with multiple failure modes based on nonlinear Barton-Bandis failure criterion is proposed. The factors of safety associated with the sliding and overturning failure modes are derived, respectively. The validity of this method is verified through a planar rock slope with an inclined slope top and tension crack. Several sensitivity analyses are adopted to study the influences of structural-plane parameters, geometric parameters, anchoring parameters and fracture morphology on the rock slopes system reliability.
文摘In the field of the system reliability analysis with multiple failure modes,the advances mainly involve only random uncertainty.The upper bound of the system failure probability with multiple failure modes is usually employed to quantify the safety level under Random and Interval Hybrid Uncertainty(RI-HU).At present,there is a lack of an efficient and accurate method for estimating the upper bound of the system failure probability.This paper proposed an efficient Kriging model based on numerical simulation algorithm to solve the system reliability analysis under RI-HU.This method proposes a system learning function to train the system Kriging models of the system limit state surface.The convergent Kriging models are used to replace the limit state functions of the system multi-mode for identifying the state of the random sample.The proposed system learning function can adaptively select the failure mode contributing most to the system failure probability from the system and update its Kriging model.Thus,the efficiency of the Kriging training process can be improved by avoiding updating the Kriging models contributing less to estimating the system failure probability.The presented examples illustrate the superiority of the proposed method.
文摘System reliability can produce a strong influence on the performance of the heat exchanger network(HEN).In this paper,an optimization method with system reliability analysis for flexible HEN by genetic/simulated annealing algorithms(GA/SA) is presented.Initial flexible arrangements of HEN is received by pseudo-temperature enthalpy diagram.For determining system reliability of HEN,the connections of heat exchangers(HEXs) and independent subsystems in the HEN are analyzed by the connection sequence matrix(CSM),and the system reliability is measured by the independent subsystem including maximum number of HEXs in the HEN.As for the HEN that did not meet system reliability,HEN decoupling is applied and the independent subsystems in the HEN are changed by removing decoupling HEX,and thus the system reliability is elevated.After that,heat duty redistribution based on the relevant elements of the heat load loops and HEX areas are optimized in GA/SA.Then,the favorable network configuration,which matches both the most economical cost and system reliability criterion,is located.Moreover,particular features belonging to suitable decoupling HEX are extracted from calculations.Corresponding numerical example is presented to verify that the proposed strategy is effective to formulate optimal flexible HEN with system reliability measurement.
基金supported by the National Natural Science Foundation of China(61304218)
文摘For high reliability and long life systems, system pass/fail data are often rare. Integrating lower-level data, such as data drawn from the subsystem or component pass/fail testing,the Bayesian analysis can improve the precision of the system reliability assessment. If the multi-level pass/fail data are overlapping,one challenging problem for the Bayesian analysis is to develop a likelihood function. Since the computation burden of the existing methods makes them infeasible for multi-component systems, this paper proposes an improved Bayesian approach for the system reliability assessment in light of overlapping data. This approach includes three steps: fristly searching for feasible paths based on the binary decision diagram, then screening feasible points based on space partition and constraint decomposition, and finally simplifying the likelihood function. An example of a satellite rolling control system demonstrates the feasibility and the efficiency of the proposed approach.
基金supported by the National Natural Science Foundation of China (71271170 71101116)+1 种基金the National High Technology Research and Development Program of China (863 Progrom) (2012AA040914)the Basic Research Foundation of Northwestern Polytechnical University (JC20120228)
文摘Importance measures in reliability systems are used to identify weak components in contributing to a proper function of the system. Traditional importance measures mainly concerned the changing value of the system reliability caused by the change of the reliability of the component, and seldom considered the joint effect of the probability distribution, improvement rate of the object component. This paper studies the rate of the system reliability upgrading with an improvement of the component reliability for the multi-state consecutive k-out-of-n system. To verify the multi-state consecutive k-out-of-n system reliability upgrading by improving one component based on its improvement rate, an increasing potential importance (IPI) and its physical meaning are described at first. Secondly, the relationship between the IPI and Birnbaum importance measures are discussed. And the IPI for some different improvement actions of the component is further discussed. Thirdly, the characteristics of the IPI are analyzed. Finally, an application to an oil pipeline system is given.
基金Project(51078170) supported by the National Natural Science Foundation of ChinaProject(10JDG097) supported by Jiangsu University Talents Funds,China
文摘Complex slopes are characterized by large numbers of failure modes,cut sets or link sets,or by statistical dependence between the failure modes.For such slopes,a systematic quantitative method,or matrix-based system reliability method,was described and improved for their reliability analysis.A construction formula of event vector c E was suggested to solve the difficulty of identifying any component E in sample space,and event vector c of system events can be calculated based on it,then the bounds of system failure probability can be obtained with the given probability information.The improved method was illustrated for four copper mine slopes with multiple failure modes,and the bounds of system failure probabilities were calculated by self-compiling program on the platform of the software MATLAB.Comparison in results from matrix-based system reliability method and two generic system methods suggests that identical accuracy could be obtained by all methods if there are only a few failure modes in slope system.Otherwise,the bounds by the Ditlevsen method or Cornell method are expanded obviously with the increase of failure modes and their precision can hardly satisfy the requirement of practical engineering while the results from the proposed method are still accurate enough.
文摘Allocation of fleet's spare parts is rarely studied due to its complexity. However, this task is extremely important because the warship's service level highly relies on the maintenance logistics' level. In this study, the readiness ratio is proposed as a critical index in measuring the system's reliability. A well-established mathematical model adopting the optimization method of spare part allocation is also introduced. The objective is to minimize the number of each spare part while satisfying the fleet's system reliability. The fault tree analysis(FTA) is applied to analyze the system's failure logic and stratify the units on ship. As a result, the strategy of spare part sharing can be introduced in detail. The solution algorithm is developed, and the simulation experiments to obtain the key parameters are conducted. The proposed model and algorithm are applied to an actual fleet of two warships, and results show that the method above is feasible and can be directly applied into practice.
文摘Offshore structures will encounter serious environmental load, so it is important to study the structural system reliability and to evaluate the structural component safety rank. In this paper, the bracnch-and-bound method is adopted to search the main failure path, and the Ditlevsen bound method is used to calculate the system failure probability. The structure is then assessed by the fuzzy comprehensive assessment method, which evaluates the structural component safety rank. The ultimate equation of the tubular cross- section is analyzed on the basis of ultimate stregnth analysis. The influence of effect coefficients on the structural system failure probability is investigated, and basic results are obtained. A general program for spatial frame structures by means of the above method is developed, and verified by the numerical examples.
基金supported by the National Natural Science Foundation of China (6150301462073009)。
文摘Recently, the physics-of-failure(PoF) method has been more and more popular in engineering to understand the failure mechanisms(FMs) of products.However, due to the lack of system modeling methods and problem-solving algorithms,the information of FMs cannot be used to evaluate system reliability.This paper presents a system reliability evaluation method with failure mechanism tree(FMT) considering physical dependency(PDEP) such as competition, trigger, acceleration, inhibition, damage accumulation, and parameter combination.And the binary decision diagram(BDD) analytical algorithm is developed to establish a system reliability model.The operation rules of ite operators for generating BDD are discussed.The flow chart of system reliability evaluation method based on FMT and BDD is proposed.The proposed method is applied in the case of an electronic controller drive unit.Results show that the method is effective to evaluate system reliability from the perspective of FM.
基金This project is supported by National Natural Science Foundation of China(No.50335020,No.50205009)Laboratory of Intelligence Manufacturing Technology of Ministry of Education of China(No.J100301).
文摘Taking into account the whole system structure and the component reliability estimation uncertainty, a system reliability estimation method based on probability and statistical theory for distributed monitoring systems is presented. The variance and confidence intervals of the system reliability estimation are obtained by expressing system reliability as a linear sum of products of higher order moments of component reliability estimates when the number of component or system survivals obeys binomial distribution. The eigenfunction of binomial distribution is used to determine the moments of component reliability estimates, and a symbolic matrix which can facilitate the search of explicit system reliability estimates is proposed. Furthermore, a case of application is used to illustrate the procedure, and with the help of this example, various issues such as the applicability of this estimation model, and measures to improve system reliability of monitoring systems are discussed.
基金support from the National Key R&D Program of China(Grant Nos.2021YFB2600605,2021YFB2600600)the Overseas Scholar Program in the Hebei Province(C20190514)+1 种基金from the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures Project(ZZ2020-20)from the Youth Foundation of Hebei Science and Technology Research Project(QN2018108).
文摘Multiple failure modes tend to be identified in the reliability analysis of a redundant truss structure.This identification process involves updating the model for identifying the next potential failure members.Herein we intend to update the finite element model automatically in the identification process of failure modes and further perform the system reliability analysis efficiently.This study presents a framework that is implemented through the joint simulation of MATLAB and APDL and consists of three parts:reliability index of a single member,identification of dominant failure modes,and system-level reliability analysis for system reliability analysis of truss structures.Firstly,RSM(response surface method)combines with a constrained optimization model to calculate the reliability indices ofmembers.Then theβ-unzipping method is adopted to identify the dominant failuremodes,and the system function in MATLAB,as well as the EKILL command in APDL,is used to facilitate the automatic update of the finite element model and realize load-redistribution.Besides,the differential equivalence recursion algorithmis performed to approximate the reliability indices of failuremodes efficiently and accurately.Eventually,the PNET(probabilistic network evaluation technique)is used to calculate the joint failure probability as well as the system reliability index.Two illustrative examples demonstrate the accuracy and efficiency of the proposed system reliability analysis framework through comparison with corresponding references.
基金the National High Technology Research and Development Programof China(863 Program,Grant No.2006AA09A109-5)
文摘Owing to the ageing of the existing structures worldwide and the lack of codes for the continued safely management of structures during their lifetime, it is very necessary to develop a tool to evaluate their system reliability over a time interval. In this paper, a method is proposed to analyze system reliability of existing jacket platforms. The influences of dint, crack and corrosion are considered. The mechanics characteristics of the existing jacket platforms to extreme loads are analyzed by use of the nonlinear mechanical analysis. The nonlinear interaction of pile-soil-structure is taken into consideration in the analysis. By use of FEM method and Monte Carlo simulation, the system reliability of the existing jacket platforul can be obtained. The method has been illustrated through application to BZ28-1 three jacket platforms which have operated for sixteen years. Advantages of the proposed method for analyzing the system reliability of the existing jacket platform is also highlighted.
文摘The mission reliability assessment plays a great role in logistics planning and supporting resource optimization of complex system.But the current problem,which is difficult to solve,is how to model and analyze the characters of system reliability under the complex mission profile.In order to solve the problem,an agentbased simulation method was used to assess reliability for complex systems with various random working conditions.A multi-working condition simulation agent(MA)was designed and used to simulate the random transferring process of working conditions of system,and it cooperated with system simulation agents(SAs)and unit simulation agents(UAs)to realize system mission reliability(MR)simulation.Through simulation experiments,effect of multiple working conditions mission on the reliability of system was analyzed by comparing with the basic reliability condition.Feasibility and efficiency of the method were proved through simulation experiments of the case system.The research result provides a viable and useful method and a solution for MR analysis and assessment of complex systems in multi-working conditions,which can help to evaluate the reliability of operating system orienting to the practical mission and environment,and it is meaningful for the reliability analysis and the design of complex systems.