The scope of this study is to present a novel methodology for the validation of a solar parabolic trough collector simulation model,developed in System Advisor Model software,using solar field thermal performance expe...The scope of this study is to present a novel methodology for the validation of a solar parabolic trough collector simulation model,developed in System Advisor Model software,using solar field thermal performance experimental model functions that duly account for the contributions of errors that are inherent in the collection of input experimental data.The study focuses on the uncertainty associated with the predicted thermal energy output and thermal efficiency,which were calculated by using standardized testing procedures that were developed by the National Renewable Energy Laboratory and the American Society of Mechanical Engineers.Errors due to imperfections of the experimental models used throughout the test are also counted in,as well as uncertainties attributed to the variability of meteorological conditions.The experimental tests were conducted under clear-sky and steady-state conditions in Kenya,using a prototype parabolic trough collector.The uncertainty analysis provided a realistic evaluation of the thermal performance of the prototype during testing,resulting in expanded uncertainties of 9.05%(0.104 kWhth)for thermal output and 3.66%(0.0258)for thermal efficiency.Notably,the predicted thermal output and thermal efficiency from the experimental models did not exceed observed levels,demonstrating a strong correlation between predicted and observed values,supported by R2 regression coefficients of 0.972 for thermal output and 0.989 for thermal efficiency.The comparison of the two experimental model results with the simulation outcomes validated the performance of the simulation model,as the simulation results fell within the experimental error margins.Additionally,the statistical analysis yielded significant results,with root mean square error,mean bias error,and t-statistics values for thermal energy output of 0.057,0.033,and 2.135,respectively,and for thermal efficiency,0.018,0.010,and 1.993,respectively,indicating the accuracy and reliability of the simulation model.Thus,the simulation model has been successfully validated,proving its capability to accurately predict the thermal output and efficiency of the parabolic trough collector.展开更多
Study of comparison of solar power generation between the GridLAB-D tool and System Advisor Model (SAM) in Dili, Timor Leste is presented in this paper. Weather Research and Forecasting (WRF) model is used to simulate...Study of comparison of solar power generation between the GridLAB-D tool and System Advisor Model (SAM) in Dili, Timor Leste is presented in this paper. Weather Research and Forecasting (WRF) model is used to simulate solar radiation for one calendar year from January to December 2014 using six-hourly interval 1° × 1° NCEP FNL analysis data. The one calendar year results from the WRF model will be used as input data for GridLAB-D and SAM to estimate the solar power generation. GridLAB-D is an open-source and analysis tool designed to operate the distribution power systems with a high-performance algorithm. System Advisor Model version SAM 2017.9.5 is used to estimate solar power performance with Photovoltaics (PVWatts)-<span style="font-family:;" "=""> <span style="font-family:;" "="">Commercial Distributed model. This model is designed to analyze the performance and the financing of renewable energy for electricity generation. The results show the lowest solar radiation is 512 W/m<sup>2</sup> obtained in June with an average monthly power of 20.6 kW and 30.55 kW generated from the SAM model and the GridLAB-D simulator, respectively. Meanwhile, the highest solar radiation is 1100 W/m<sup>2</sup>, 1112 W/m<sup>2</sup>, 1046 W/m<sup>2</sup>, and 1077 W/m<sup>2</sup> obtained in October, November, December, and January with an average monthly power of 55.72 kW, 62.44 kW, 56.65 kW, and 56.97 kW from the SAM model, in the other hand, 48.89 kW, 51.31 kW, 55.51 kW, and 57.18 kW generated by the GridLAB-D. Finally, the results show that the performance of the GridLAB-D and the SAM model was quite good because both model precisely presented values are almost closest to each other. This study proposes that the results of solar output power from both methods, GridLAB-D and SAM can be used to design grid-connected or stand-alone electric power projects to increase the quality of electricity generation in Dili, Timor Leste.</span></span>展开更多
Solar power is mostly influenced by solar irradiation,weather conditions,solar array mismatches and partial shading conditions.Therefore,before installing solar arrays,it is necessary to simulate and determine the pos...Solar power is mostly influenced by solar irradiation,weather conditions,solar array mismatches and partial shading conditions.Therefore,before installing solar arrays,it is necessary to simulate and determine the possible power generated.Maximum power point tracking is needed in order to make sure that,at any time,the maximum power will be extracted from the photovoltaic system.However,maximum power point tracking is not a suitable solution for mismatches and partial shading conditions.To overcome the drawbacks of maximum power point tracking due to mismatches and shadows,distributed maximum power point tracking is util-ized in this paper.The solar farm can be distributed in different ways,including one DC-DC converter per group of modules or per module.In this paper,distributed maximum power point tracking per module is implemented,which has the highest efficiency.This technology is applied to electric vehicles(EVs)that can be charged with a Level 3 charging station in<1 hour.However,the problem is that charging an EV in<1 hour puts a lot of stress on the power grid,and there is not always enough peak power reserve in the existing power grid to charge EVs at that rate.Therefore,a Level 3(fast DC)EV charging station using a solar farm by implementing distributed maximum power point tracking is utilized to address this issue.Finally,the simulation result is reported using MATLAB®,LTSPICE and the System Advisor Model.Simulation results show that the proposed 1-MW solar system will provide 5 MWh of power each day,which is enough to fully charge~120 EVs each day.Additionally,the use of the proposed photovoltaic system benefits the environment by removing a huge amount of greenhouse gases and hazardous pollutants.For example,instead of supplying EVs with power from coal-fired power plants,1989 pounds of CO_(2) will be eliminated from the air per hour.展开更多
Concentrated solar power plants can play a significant role in alleviating Sudan’s energy crisis.These plants can be established and implemented in Sudan,as their potential is considerably high due to the climate con...Concentrated solar power plants can play a significant role in alleviating Sudan’s energy crisis.These plants can be established and implemented in Sudan,as their potential is considerably high due to the climate conditions in Sudan.This study investigates the design of a parabolic trough concentrated solar power plant in Sudan and analyzes its technical and economic feasibility.The simulation of the plant’s model used System Advisor Model(SAM)software.To determine the best location for the construction of the plant,data from 15 cities in Sudan were compared with each other based on their solar radiation and land properties.Wadi Halfa,a city in the northern region of Sudan,was chosen as the location due to its good topographical properties and climate conditions.The results show that the proposed plant can generate 281.145 GWh of electricity annually with a capacity factor of 40.1%and an overall efficiency of 15%.Additionally,a simple cost analysis of the plant indicates a levelized cost of electricity of 0.155$/kWh.As the study results are consistent with the characteristics of similar plants,the proposed plant is considered technically and economically feasible under the conditions at its location.展开更多
Despite having very high solar irradiance,Pakistan still does not have any installed concentrated solar power(CSP)plant.Several studies have shown that multiple locations within the country are suitable for CSP plants...Despite having very high solar irradiance,Pakistan still does not have any installed concentrated solar power(CSP)plant.Several studies have shown that multiple locations within the country are suitable for CSP plants,but there is limited availability of comprehensive comparative studies.Therefore,this article presents a comparative analysis of different CSP technologies in Pakistan,focusing on their potential to address the country’s energy crisis.The study evaluates the pros and cons of different CSP technologies at various locations through site assessment,modelling,optimization and economic analysis using the System Advisor Model.Quetta and Nawabshah were selected as the locations for modelling multiple scenarios of 100-MW plants,using central receiver systems,parabolic trough collectors and linear Fresnel reflectors.The plants were integrated with thermal energy storage and the storage capacity was optimized using parametric analysis.The results showed that a central receiver system for the location of Quetta was the most favourable option,with an annual energy yield of 622 GWh at 7.44 cents/kWh,followed by a central receiver system for Nawabshah(608 GWh,9.03 cents/kWh).This study is the first to show that switching between line-concentrated and point-concentrated CSP technologies can open new opportunities for sites in Pakistan with relatively high solar resources,resulting in a 21.3%reduction in the levelized cost.展开更多
文摘The scope of this study is to present a novel methodology for the validation of a solar parabolic trough collector simulation model,developed in System Advisor Model software,using solar field thermal performance experimental model functions that duly account for the contributions of errors that are inherent in the collection of input experimental data.The study focuses on the uncertainty associated with the predicted thermal energy output and thermal efficiency,which were calculated by using standardized testing procedures that were developed by the National Renewable Energy Laboratory and the American Society of Mechanical Engineers.Errors due to imperfections of the experimental models used throughout the test are also counted in,as well as uncertainties attributed to the variability of meteorological conditions.The experimental tests were conducted under clear-sky and steady-state conditions in Kenya,using a prototype parabolic trough collector.The uncertainty analysis provided a realistic evaluation of the thermal performance of the prototype during testing,resulting in expanded uncertainties of 9.05%(0.104 kWhth)for thermal output and 3.66%(0.0258)for thermal efficiency.Notably,the predicted thermal output and thermal efficiency from the experimental models did not exceed observed levels,demonstrating a strong correlation between predicted and observed values,supported by R2 regression coefficients of 0.972 for thermal output and 0.989 for thermal efficiency.The comparison of the two experimental model results with the simulation outcomes validated the performance of the simulation model,as the simulation results fell within the experimental error margins.Additionally,the statistical analysis yielded significant results,with root mean square error,mean bias error,and t-statistics values for thermal energy output of 0.057,0.033,and 2.135,respectively,and for thermal efficiency,0.018,0.010,and 1.993,respectively,indicating the accuracy and reliability of the simulation model.Thus,the simulation model has been successfully validated,proving its capability to accurately predict the thermal output and efficiency of the parabolic trough collector.
文摘Study of comparison of solar power generation between the GridLAB-D tool and System Advisor Model (SAM) in Dili, Timor Leste is presented in this paper. Weather Research and Forecasting (WRF) model is used to simulate solar radiation for one calendar year from January to December 2014 using six-hourly interval 1° × 1° NCEP FNL analysis data. The one calendar year results from the WRF model will be used as input data for GridLAB-D and SAM to estimate the solar power generation. GridLAB-D is an open-source and analysis tool designed to operate the distribution power systems with a high-performance algorithm. System Advisor Model version SAM 2017.9.5 is used to estimate solar power performance with Photovoltaics (PVWatts)-<span style="font-family:;" "=""> <span style="font-family:;" "="">Commercial Distributed model. This model is designed to analyze the performance and the financing of renewable energy for electricity generation. The results show the lowest solar radiation is 512 W/m<sup>2</sup> obtained in June with an average monthly power of 20.6 kW and 30.55 kW generated from the SAM model and the GridLAB-D simulator, respectively. Meanwhile, the highest solar radiation is 1100 W/m<sup>2</sup>, 1112 W/m<sup>2</sup>, 1046 W/m<sup>2</sup>, and 1077 W/m<sup>2</sup> obtained in October, November, December, and January with an average monthly power of 55.72 kW, 62.44 kW, 56.65 kW, and 56.97 kW from the SAM model, in the other hand, 48.89 kW, 51.31 kW, 55.51 kW, and 57.18 kW generated by the GridLAB-D. Finally, the results show that the performance of the GridLAB-D and the SAM model was quite good because both model precisely presented values are almost closest to each other. This study proposes that the results of solar output power from both methods, GridLAB-D and SAM can be used to design grid-connected or stand-alone electric power projects to increase the quality of electricity generation in Dili, Timor Leste.</span></span>
基金support of the National Science Foundation(NSF)under Award Number:2115427 is gratefully acknowledged.SRS RN:Sustainable Transportation Electrification for an Equitable and Resilient Society(STEERS).
文摘Solar power is mostly influenced by solar irradiation,weather conditions,solar array mismatches and partial shading conditions.Therefore,before installing solar arrays,it is necessary to simulate and determine the possible power generated.Maximum power point tracking is needed in order to make sure that,at any time,the maximum power will be extracted from the photovoltaic system.However,maximum power point tracking is not a suitable solution for mismatches and partial shading conditions.To overcome the drawbacks of maximum power point tracking due to mismatches and shadows,distributed maximum power point tracking is util-ized in this paper.The solar farm can be distributed in different ways,including one DC-DC converter per group of modules or per module.In this paper,distributed maximum power point tracking per module is implemented,which has the highest efficiency.This technology is applied to electric vehicles(EVs)that can be charged with a Level 3 charging station in<1 hour.However,the problem is that charging an EV in<1 hour puts a lot of stress on the power grid,and there is not always enough peak power reserve in the existing power grid to charge EVs at that rate.Therefore,a Level 3(fast DC)EV charging station using a solar farm by implementing distributed maximum power point tracking is utilized to address this issue.Finally,the simulation result is reported using MATLAB®,LTSPICE and the System Advisor Model.Simulation results show that the proposed 1-MW solar system will provide 5 MWh of power each day,which is enough to fully charge~120 EVs each day.Additionally,the use of the proposed photovoltaic system benefits the environment by removing a huge amount of greenhouse gases and hazardous pollutants.For example,instead of supplying EVs with power from coal-fired power plants,1989 pounds of CO_(2) will be eliminated from the air per hour.
文摘Concentrated solar power plants can play a significant role in alleviating Sudan’s energy crisis.These plants can be established and implemented in Sudan,as their potential is considerably high due to the climate conditions in Sudan.This study investigates the design of a parabolic trough concentrated solar power plant in Sudan and analyzes its technical and economic feasibility.The simulation of the plant’s model used System Advisor Model(SAM)software.To determine the best location for the construction of the plant,data from 15 cities in Sudan were compared with each other based on their solar radiation and land properties.Wadi Halfa,a city in the northern region of Sudan,was chosen as the location due to its good topographical properties and climate conditions.The results show that the proposed plant can generate 281.145 GWh of electricity annually with a capacity factor of 40.1%and an overall efficiency of 15%.Additionally,a simple cost analysis of the plant indicates a levelized cost of electricity of 0.155$/kWh.As the study results are consistent with the characteristics of similar plants,the proposed plant is considered technically and economically feasible under the conditions at its location.
文摘Despite having very high solar irradiance,Pakistan still does not have any installed concentrated solar power(CSP)plant.Several studies have shown that multiple locations within the country are suitable for CSP plants,but there is limited availability of comprehensive comparative studies.Therefore,this article presents a comparative analysis of different CSP technologies in Pakistan,focusing on their potential to address the country’s energy crisis.The study evaluates the pros and cons of different CSP technologies at various locations through site assessment,modelling,optimization and economic analysis using the System Advisor Model.Quetta and Nawabshah were selected as the locations for modelling multiple scenarios of 100-MW plants,using central receiver systems,parabolic trough collectors and linear Fresnel reflectors.The plants were integrated with thermal energy storage and the storage capacity was optimized using parametric analysis.The results showed that a central receiver system for the location of Quetta was the most favourable option,with an annual energy yield of 622 GWh at 7.44 cents/kWh,followed by a central receiver system for Nawabshah(608 GWh,9.03 cents/kWh).This study is the first to show that switching between line-concentrated and point-concentrated CSP technologies can open new opportunities for sites in Pakistan with relatively high solar resources,resulting in a 21.3%reduction in the levelized cost.