Safety Critical Systems (SCS) are those systems that may cause harm to the user(s) and/or the environment if operating outside of their prescribed specifications. Such systems are used in a wide variety of domains, su...Safety Critical Systems (SCS) are those systems that may cause harm to the user(s) and/or the environment if operating outside of their prescribed specifications. Such systems are used in a wide variety of domains, such as aerospace, automotive, railway transportation and healthcare. In this paper, we propose an approach to integrate safety analysis of SCSs within the Model Driven Engineering (MDE) system development process. The approach is based on model transformation and uses standard well-known techniques and open source tools for the modeling and analysis of SCSs. More specifically, the system modeled with the OMG’s standard systems modeling language, SysML, is automatically transformed in Fault Tree (FT) models, that can be analyzed with existing FT tools. The proposed model transformation takes place in two steps: a) generate FTs at the component level, in order to tackle complexity and enable reuse;and b) generate system level FTs by composing the components and their FTs. The approach is illustrated by applying it to a simplified industry-inspired case study.展开更多
载人航天器研制过程中,人因要素在早期阶段融入设计仍有待提升,且常规的基于模型的系统工程(model based systems engineering,MBSE)体系缺少将人与系统其余部分进行整合的充分考虑,导致开发迭代周期变长,也大幅增加了研制成本。针对这...载人航天器研制过程中,人因要素在早期阶段融入设计仍有待提升,且常规的基于模型的系统工程(model based systems engineering,MBSE)体系缺少将人与系统其余部分进行整合的充分考虑,导致开发迭代周期变长,也大幅增加了研制成本。针对这一问题,提出载人月球探测任务人因领域元模型构建方法,在人-系统整合的框架下,采用MBSE将人因需求整合至载人航天器的开发过程中,并基于系统建模语言SysML建立人因领域元模型,以实现在载人月球探测产品开发的全生命周期中融入人因需求,为产品的规划、设计和开发提供支持,有效减少研制中出现人因设计问题,降低研制成本。通过载人月球探测任务的典型案例进行建模,验证人因领域元模型建立方法的有效性,为类似系统设计的MBSE扩展应用提供参考。展开更多
Software is becoming the driving force in today’s mechatronic systems. It does not only realize a significant part of their functionality but it is also used to realize their most competitive advantages. However, the...Software is becoming the driving force in today’s mechatronic systems. It does not only realize a significant part of their functionality but it is also used to realize their most competitive advantages. However, the traditional development process is wholly inappropriate for the development of these systems that impose a tighter coupling of software with electronics and mechanics. In this paper, a synergistic integration of the constituent parts of mechatronic systems, i.e. mechanical, electronic and software is proposed though the 3+1 SysML view-model. SysML is used to specify the cen-tral view-model of the mechatronic system while the other three views are for the different disciplines involved. The widely used in software engineering V-model is extended to address the requirements set by the 3+1 SysML view-model and the Model Integrated Mechatronics (MIM) paradigm. A SysML profile is described to facilitate the application of the proposed view-model in the development of mechatronic systems.展开更多
为了达到组织目标和任务使命,必须建立一系列彼此相互关联的、具有层次结构的活动和过程之间的关系。要实现对组织的有效管理,核心就在于通过计划建模和控制系统来协调这些关系。在介绍与分析SysML语言特点的基础上,建立了作战行动序列(...为了达到组织目标和任务使命,必须建立一系列彼此相互关联的、具有层次结构的活动和过程之间的关系。要实现对组织的有效管理,核心就在于通过计划建模和控制系统来协调这些关系。在介绍与分析SysML语言特点的基础上,建立了作战行动序列(COA,Course of Action)的形式化定义,提出了基于SysML的作战行动序列建模方法,并给出了应用实例。应用该建模方法,有利于提高作战行动计划的适应性和开放性。展开更多
文摘Safety Critical Systems (SCS) are those systems that may cause harm to the user(s) and/or the environment if operating outside of their prescribed specifications. Such systems are used in a wide variety of domains, such as aerospace, automotive, railway transportation and healthcare. In this paper, we propose an approach to integrate safety analysis of SCSs within the Model Driven Engineering (MDE) system development process. The approach is based on model transformation and uses standard well-known techniques and open source tools for the modeling and analysis of SCSs. More specifically, the system modeled with the OMG’s standard systems modeling language, SysML, is automatically transformed in Fault Tree (FT) models, that can be analyzed with existing FT tools. The proposed model transformation takes place in two steps: a) generate FTs at the component level, in order to tackle complexity and enable reuse;and b) generate system level FTs by composing the components and their FTs. The approach is illustrated by applying it to a simplified industry-inspired case study.
文摘载人航天器研制过程中,人因要素在早期阶段融入设计仍有待提升,且常规的基于模型的系统工程(model based systems engineering,MBSE)体系缺少将人与系统其余部分进行整合的充分考虑,导致开发迭代周期变长,也大幅增加了研制成本。针对这一问题,提出载人月球探测任务人因领域元模型构建方法,在人-系统整合的框架下,采用MBSE将人因需求整合至载人航天器的开发过程中,并基于系统建模语言SysML建立人因领域元模型,以实现在载人月球探测产品开发的全生命周期中融入人因需求,为产品的规划、设计和开发提供支持,有效减少研制中出现人因设计问题,降低研制成本。通过载人月球探测任务的典型案例进行建模,验证人因领域元模型建立方法的有效性,为类似系统设计的MBSE扩展应用提供参考。
文摘Software is becoming the driving force in today’s mechatronic systems. It does not only realize a significant part of their functionality but it is also used to realize their most competitive advantages. However, the traditional development process is wholly inappropriate for the development of these systems that impose a tighter coupling of software with electronics and mechanics. In this paper, a synergistic integration of the constituent parts of mechatronic systems, i.e. mechanical, electronic and software is proposed though the 3+1 SysML view-model. SysML is used to specify the cen-tral view-model of the mechatronic system while the other three views are for the different disciplines involved. The widely used in software engineering V-model is extended to address the requirements set by the 3+1 SysML view-model and the Model Integrated Mechatronics (MIM) paradigm. A SysML profile is described to facilitate the application of the proposed view-model in the development of mechatronic systems.
文摘为了达到组织目标和任务使命,必须建立一系列彼此相互关联的、具有层次结构的活动和过程之间的关系。要实现对组织的有效管理,核心就在于通过计划建模和控制系统来协调这些关系。在介绍与分析SysML语言特点的基础上,建立了作战行动序列(COA,Course of Action)的形式化定义,提出了基于SysML的作战行动序列建模方法,并给出了应用实例。应用该建模方法,有利于提高作战行动计划的适应性和开放性。