期刊文献+
共找到58,247篇文章
< 1 2 250 >
每页显示 20 50 100
Additive-free oxidation of isochromans with molecular oxygen synergistically catalyzed by mixed-addendum polyoxometalate-based coordination polymers
1
作者 Zou-Guang Han Ling-Ling Dai +4 位作者 Hong-Rui Tian Xiang-Yu Ren Jie Lian Bao-Kuan Chen Yan-Feng Bi 《Rare Metals》 2025年第6期4003-4013,共11页
Attaining the selective oxidation of isochroman into isochromanone in a molecular oxygen(O_(2))environment without any additives,via a heterogeneous oxidation process,is highly desirable and challenging work.Herein,we... Attaining the selective oxidation of isochroman into isochromanone in a molecular oxygen(O_(2))environment without any additives,via a heterogeneous oxidation process,is highly desirable and challenging work.Herein,we prepare two mixed-addendum polyoxometalate-based coordination polymers of the general formula[H_(x)M_(1-x)(i-PrIm)_(4)][H_(2)N(CH_(3))_(2)]_(4)[HPMo_(8)V_(6)O_(42)](M=Co 1,Ni,2;i-PrIm=1-isopropyl-1H-imidazole).Needing no additives,they can catalyze the selective oxidation of isochroman to isochromanone with O_(2)as an oxidant,with yields of 91.5%(1)and 46.8%(2),respectively.Mechanistic studies indicate that the excellent performance of catalyst 1 is attributed to the synergistic operation of[Co(i-Pr-Im)_(4))]complex and PMo_(8)V_(6)unit,and that the catalytic reaction is a radical pathway involving superoxide radicals.Additionally,the catalyst 1 can be recycled and reused at least four times with uncompromised performance.These results provide fundamental guidelines for designing efficient and multi-site heterogeneous catalysts for the selective oxidation of benzyl C(sp^(3))-H bonds by activating O_(2). 展开更多
关键词 Mixed-addendum phosphovanadomolybdate Metal-organic complex Molecular oxygen activating synergistic effect Heterogeneous catalysis Isochromanone
原文传递
Synergistic enhancement of load-bearing and energy-absorbing performance in additively manufactured lattice structures through modifications to conventional unit cells
2
作者 Yi Ren Yu Nie +5 位作者 Bowen Xue Yucheng Zhao Lulu Liu Chao Lou Yongxun Li Wei Chen 《Defence Technology(防务技术)》 2025年第10期116-130,共15页
The unit cell configuration of lattice structures critically influences their load-bearing and energy absorption performance.In this study,three novel lattice structures were developed by modifying the conventional FB... The unit cell configuration of lattice structures critically influences their load-bearing and energy absorption performance.In this study,three novel lattice structures were developed by modifying the conventional FBCCZ unit cell through reversing,combining,and turning strategies.The designed lattices were fabricated via laser powder bed fusion(LPBF)using Ti-6Al-4V powder,and the mechanical properties,energy absorption capacity,and deformation behaviors were systematically investigated through quasi-static compression tests and finite element simulations.The results demonstrate that the three modified lattices exhibit superior performance over the conventional FBCCZ structure in terms of fracture strain,specific yield strength,specific ultimate strength,specific energy absorption,and energy absorption efficiency,thereby validating the efficacy of unit cell modifications in enhancing lattice performance.Notably,the CFBCCZ and TFBCCZ lattices significantly outperform both the FBCCZ and RFBCCZ lattice structures in load-bearing and energy absorption.While TFBCCZ shows marginally higher specific elastic modulus and energy absorption efficiency than CFBCCZ,the latter achieves superior energy absorption due to its highest ultimate strength and densification strain.Finite element simulations further reveal that the modified lattices,through optimized redistribution and adjustment of internal nodes and struts,effectively alleviate stress concentration during loading.This structural modification enhances the structural integrity and deformation stability under external loads,enabling a synergistic enhancement of load-bearing capacity and energy absorption performance. 展开更多
关键词 Load-bearing Energy absorption additive manufacturing Lattice structure Unit cell modification
在线阅读 下载PDF
Synergistically Improving the Strength and Anisotropy of Wire Arc Additively Manufactured Al-Mg-Sc-Zr alloy by Regulating Heat Input
3
作者 Xuru Hou Lin Zhao +5 位作者 Shubin Ren Yun Peng Yang Cao Chengyong Ma Zhiling Tian Xuanhui Qu 《Additive Manufacturing Frontiers》 2025年第3期209-227,共19页
Wire arc additive manufacturing(WAAM)is one of the most promising approaches to manufacturing large and complex metal components owing to its low cost and high efficiency.However,pores and coarse columnar grains cause... Wire arc additive manufacturing(WAAM)is one of the most promising approaches to manufacturing large and complex metal components owing to its low cost and high efficiency.However,pores and coarse columnar grains caused by thermal accumulation in WAAM significantly decrease the strength and increase the anisotropy,preventing the achievement of both high strength and isotropy.In this study,the strength and anisotropy of AlMg-Sc-Zr alloys were improved by regulating heat input.The results indicated that as the heat input increased from 60 to 99 J/mm,all the components had lower porosity(lower than 0.04%),the size of the Al_(3)(Sc_(1-x),Zr_(x))phases decreased,and the number density increased.The average grain size gradually decreased,and the grain morphologies transformed from coarse equiaxed grain(CEG)+fine equiaxed grain(FEG)to FEG owing to the increase in Al_(3)(Sc_(1-x),Zr_(x))phases with increasing heat input.After heat treatment at 325℃for 6 h,high-density dispersed Al_(3)Sc phases(<10 nm)precipitated.The alloy possessed the highest strength at 79 J/mm,ultimate tensile strength(UTS)of approximately 423±3 MPa,and in-plane anisotropy of approximately 4.3%.At a heat input of 99 J/mm,the in-plane anisotropy decreased to 1.2%and UTS reached 414±5 MPa.The reduction in the CEG prolonged the crack propagation path,which improved the UTS in the vertical direction and reduced the anisotropy.Theoretical calculations indicated that the main strengthening mechanisms were solid solution and precipitation strengthening.This study lays the theoretical foundations for WAAM-processed high-strength and isotropic Al alloy components. 展开更多
关键词 Wire arc additive manufacturing(WAAM) Al-Mg-Sc-Zr alloy MICROSTRUCTURES High strength ANISOTROPY
在线阅读 下载PDF
Synergistic solvation and interphase design via a steric-electronic additive for ultra-long cycling lithium metal batteries
4
作者 Min Cheng Xu Zhou +1 位作者 Yuhang Liang Yuanhui Zheng 《Journal of Energy Chemistry》 2025年第9期759-768,I0020,共11页
The electrochemical instability of traditional ether-based electrolytes poses a challenge for their use in high-voltage lithium metal batteries.Herein,a synergetic optimization strategy was proposed by introducing an ... The electrochemical instability of traditional ether-based electrolytes poses a challenge for their use in high-voltage lithium metal batteries.Herein,a synergetic optimization strategy was proposed by introducing an additive with a strong electron-withdrawing group and significant steric hindrance-isosorbide dinitrate(ISDN),reconstructing the solvation structure and solid electrolyte interphase(SEI),enabling highly stable and efficient lithium metal batteries.We found that ISDN can strengthen the interaction between Li^(+)and the anions of lithium salts and weaken the interaction between Li^(+)and the solvent in the solvation structure.It promotes the formation of a LiF-rich and LiN_(x)O_(y)-rich SEI layer,enhancing the uniformity and compactness of Li deposition and inhibiting solvent decomposition,which effectively expands the electrochemical window to 4.8 V.The optimized Li‖Li cells offer stable cycling over 1000 h with an overpotential of only 57.7 mV at 1 mA cm^(-2).Significantly,Li‖3.7 mA h LiFePO_(4)cells retain 108.3%of initial capacity after 546 cycles at a rate of 3 C.Under high-loading conditions(Li‖4.9 mA h LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)full cells)and a cutoff voltage of 4.5 V,the ISDN-containing electrolyte enables stable cycling for 140 cycles.This study leverages steric hindrance and electron-withdrawing effect to synergistically reconstruct the Li^(+)solvation structure and promote stable SEI formation,establishing a novel electrolyte paradigm for high-energy lithium metal batteries. 展开更多
关键词 Electrolyte additives Steric-electronic synergy Dual-function optimization Solvation structure Solid electrolyte interphase Lithium metal anodes
在线阅读 下载PDF
Synergistic improvement of erosion-corrosion resistance and mechanical properties of nickel aluminium bronze alloy by the addition of Cr 被引量:1
5
作者 Wan-Yu Wang Wen-Jing Zhang +1 位作者 Guo-Jie Huang Xu-Jun Mi 《Rare Metals》 2025年第1期623-638,共16页
The effect of Cr addition on nickel aluminium bronze(NAB)alloy microstructure,mechanical properties,and erosion-corrosion behaviour has been studied.The results show that Cr addition does not change the composition of... The effect of Cr addition on nickel aluminium bronze(NAB)alloy microstructure,mechanical properties,and erosion-corrosion behaviour has been studied.The results show that Cr addition does not change the composition of the precipitated phases,more Cr entered theκphase and a small amount of Cr solubilized in the matrix,which increase the hardness of theκand matrix and decrease the potential difference between theκand matrix.NAB alloy with Cr shows high erosion-corrosion resistance at high flow rate conditions,due to its lower phase potential difference and higher surface hardness.At the flow rate of 3 m·s^(-1),the corrosion rate is 0.076 mm·year^(-1),which is~20%lower than that of the unadded Cr sample.Moreover,the corrosion product film contains Cr_(2)O_(3)and Cr^(3+),which improves the densification of the film and raises alloy’s corrosion resistance with Cr addition.The combination of mechanical and corrosion resistant properties may qualify this alloy as a potential candidate material for sustainable and safe equipment. 展开更多
关键词 Nickel aluminium bronze Cr addition Microstructure Erosion-corrosion behaviour Mechanical properties
原文传递
Optimization of glass-forming ability and synergistic enhancement of strength plasticity in Cu_(50)Zr_(46)Al_(4)metallic glasses through Ag additions
6
作者 Dongmei Li Zhongyi Zhang +3 位作者 Bolin Shang Rui Feng Xuefeng Li Peng Yu 《Chinese Physics B》 2025年第8期646-650,共5页
Bulk metallic glasses(BMGs)are typically characterized by high strength and elasticity.However,they generally demonstrate a deficiency in plastic deformation capability at room temperatures.In this work,Cu_(50-x)Zr_(4... Bulk metallic glasses(BMGs)are typically characterized by high strength and elasticity.However,they generally demonstrate a deficiency in plastic deformation capability at room temperatures.In this work,Cu_(50-x)Zr_(46)Al4Agx(x=0,1,2,3,4)alloys were prepared by arc melting and copper mold casting to investigate their structure,glass-forming ability,and mechanical properties.The results show that the addition of Ag can increase the parameter of DTx and g in Cu_(50)Zr_(46)Al_(4)alloy by 116%and 1.5%respectively,effectively enhancing its thermal stability and glass-forming ability.Compressive fracture tests reveal that the addition of Ag can significantly improve the yield strength,ultimate strength,and plasticity of the Cu_(50)Zr_(46)Al_(4)alloy.Specifically,with the Ag addition of 1 at.%,the alloy’s ultimate strength and plasticity increased by 71.8%and 21 times,respectively.Furthermore,the introduction of Ag can effectively control the free volume content in the Cu_(50)Zr_(46)Al_(4)alloy,thereby tuning the hardness of the material.This work provides valuable insights into improving the mechanical performance of BMGs through micro-alloying approaches. 展开更多
关键词 metallic glasses glass-forming ability synergistic enhancement strength-plasticity Ag addition
原文传递
Synergistic effect of low Gd+Mn additions on evolution of microstructure and mechanical properties of Mg−Gd−Mn alloy
7
作者 Dong-dong GU Jian PENG Fu-sheng PAN 《Transactions of Nonferrous Metals Society of China》 2025年第2期431-445,共15页
The synergistic effect of low Gd+Mn additions on the evolution of microstructure and mechanical properties of Mg−xGd−0.8Mn alloy was investigated.Gd addition shows a strong grain refinement effect on the extruded Mg−x... The synergistic effect of low Gd+Mn additions on the evolution of microstructure and mechanical properties of Mg−xGd−0.8Mn alloy was investigated.Gd addition shows a strong grain refinement effect on the extruded Mg−xGd−0.8Mn alloy,and leads to a continuous decrease in the area fraction of basal texture grains and the corresponding maximum density of texture components.However,the maximum density of the basal texture components grows abruptly as Gd content increases to 6 wt.%.When the Gd content is below 6 wt.%,the asymmetry of the tensile and compressive yield of the alloy is negatively correlated to the Gd content due to grain refinement and texture weakening effects.Besides,the contribution of grain refinement to higher alloy yield strength is more significant than that of grain orientation.Compared with the extruded Mg−xGd alloy,the extruded Mg−xGd−0.8Mn alloy shows a lower limit composition point that corresponds to solid solution strengthening and plasticizing effect(2 wt.%and 4 wt.%).Finally,the trend of basal slip and prismatic slip resistance variations of the extruded Mg−xGd−0.8Mn alloys was predicted. 展开更多
关键词 Mg−Gd−Mn alloy Gd+Mn additions mechanical properties texture evolution solid solution strengthening and plasticizing effect
在线阅读 下载PDF
Synergistic effects of chemical additives and mature compost on reducing H_2S emission during kitchen waste composting 被引量:1
8
作者 Yongdi Liu Haihou Wang +9 位作者 Hao Zhang Yueyue Tao Rui Chen Sheng Hang Xiaoyan Ding Meidi Cheng Guochun Ding Yuquan Wei Ting Xu Ji Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第5期84-92,共9页
Additives could improve composting performance and reduce gaseous emission,but few studies have explored the synergistic of additives on H_(2)S emission and compost maturity.This research aims to make an investigation... Additives could improve composting performance and reduce gaseous emission,but few studies have explored the synergistic of additives on H_(2)S emission and compost maturity.This research aims to make an investigation about the effects of chemical additives and mature compost on H_(2)S emission and compost maturity of kitchen waste composting.The results showed that additives increased the germination index value and H_(2)S emission reduction over 15 days and the treatment with both chemical additives and mature compost achieved highest germination index value and H_(2)S emission reduction(85%).Except for the treatment with only chemical additives,the total sulfur content increased during the kitchen waste composting.The proportion of effective sulfur was higher with the addition of chemical additives,compared with other groups.The relative abundance of H_(2)S-formation bacterial(Desulfovibrio)was reduced and the relative abundance of bacterial(Pseudomonas and Paracoccus),which could convert sulfur-containing substances and H_(2)S to sulfate was improved with additives.In the composting process with both chemical additives and mature compost,the relative abundance of Desulfovibrio was lowest,while the relative abundance of Pseudomonas and Paracoccus was highest.Taken together,the chemical additives and mature compost achieved H_(2)S emission reduction by regulating the dynamics of microbial community. 展开更多
关键词 Kitchen waste composting Sulfur conversion Chemical additives Mature compost Microbial community
原文传递
Fast strength-ductility synergistically adjusting of cold spray additive manufactured Cu deposits via electric pulse processing 被引量:1
9
作者 Dong WU Yaxin XU +2 位作者 Wenya LI Xiawei YANG Yu SU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第5期558-569,共12页
Electric Pulse Processing(EPP)treatment was innovatively introduced to optimize the strength and ductility of the CSAMed Cu deposits.The results show that EPP is an efficient and fast post-treatment to improve the str... Electric Pulse Processing(EPP)treatment was innovatively introduced to optimize the strength and ductility of the CSAMed Cu deposits.The results show that EPP is an efficient and fast post-treatment to improve the strength and ductility(within tens of seconds).The larger the pulse current and number of pulses,the better the mechanical properties.Interestingly,this research found that when the heat input determined by pulse current and number of pulses exceeds a certain threshold(pulse current intensity is 2000 A,number of pulses is 10),increasing the number of repeat time could also effectively improve the mechanical properties.A tensile strength of 210 MPa and a ductility of 14.0%could be obtained with reasonable EPP parameters(pulse current intensity is 2000 A,number of pulses is 10,and repeat number is 2),which is similar to those of conventional annealing(e.g.,tensile strength is 272 MPa,elongation is 28.3%).The microstructure evolution analysis shows that EPP can effectively improve the bonding quality between the deposited particles by recrystallization,promote grain growth and the formation of twins,which is the main reason for the improvement of mechanical properties. 展开更多
关键词 Cold spray additive manufacturing Copper deposit Mechanical property Electric pulse processing Post treatment
原文传递
Multi-layer multi-pass friction rolling additive manufacturing of Al alloy:Toward complex large-scale high-performance components 被引量:1
10
作者 Haibin Liu Run Hou +2 位作者 Chenghao Wu Ruishan Xie Shujun Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期425-438,共14页
At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-laye... At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-layer multi-pass FRAM-deposited alumin-um alloy samples were successfully prepared using a non-shoulder tool head.The material flow behavior and microstructure of the over-lapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys.The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adja-cent passes in the overlapped center area.Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone,which made the recrystallization degree in the left and right edge zones of the over-lapped zone the highest,followed by the overlapped center zone and the non-overlapped zone.The tensile strength of the overlapped zone exceeded 90%of that of the single-pass deposition sample.It is proved that although there are uneven grooves on the surface of the over-lapping area during multi-layer and multi-pass deposition,they can be filled by the flow of materials during the deposition of the next lay-er,thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area.The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components. 展开更多
关键词 aluminum alloy additive manufacturing SOLID-STATE friction stir welding multi-layer multi-pass
在线阅读 下载PDF
Recent progress on in-situ characterization of laser additive manufacturing process by synchrotron radiation 被引量:2
11
作者 Wenquan Lu Liang Zhao +2 位作者 Zhun Su Jianguo Li Qiaodan Hu 《Journal of Materials Science & Technology》 2025年第14期29-46,共18页
Laser additive manufacturing(LAM)has been widely used in high-end manufacturing fields such as aerospace,nuclear power,and shipbuilding.However,it is a grand challenge for direct and continuous observation of complex ... Laser additive manufacturing(LAM)has been widely used in high-end manufacturing fields such as aerospace,nuclear power,and shipbuilding.However,it is a grand challenge for direct and continuous observation of complex laser-matter interaction,melt flow,and defect formation during LAM due to extremely large temperature gradient,fast cooling rate,and small time(millisecond)and space(micron)scales.The emergence of synchrotron radiation provides a feasible approach for in situ observation of the LAM process.This paper outlines the current development in real-time characterization of LAM by synchrotron radiation,including laser-matter interaction,molten pool evolution,solidification structure evolution,and defects formation and elimination.Furthermore,the future development direction and application-oriented research are also discussed. 展开更多
关键词 Laser additive manufacturing Synchrotron radiation Melt pool DEFECT
原文传递
Synergistic mechanisms of steel slag,granulated blast furnace slag,and desulfurization gypsum in high-content steel slag-based cementitious backfill materials 被引量:1
12
作者 Jianshuai Hao Zihan Zhou +5 位作者 Zhonghui Chen Yanjun Shen Kuizhen Fang Fei Tang Fengyang Xin Lingfei Zhang 《International Journal of Mining Science and Technology》 2025年第6期1005-1018,共14页
In the steel slag-based mine backfill cementitious material systems,the hydration reaction mechanisms and synergistic effects of steel slag(SS),granulated blast furnace slag(GBFS),and desulfurization gypsum(DG)are cru... In the steel slag-based mine backfill cementitious material systems,the hydration reaction mechanisms and synergistic effects of steel slag(SS),granulated blast furnace slag(GBFS),and desulfurization gypsum(DG)are crucial for performance optimization and regulation.However,existing studies have yet to fully reveal the underlying synergistic mechanisms,which limits the application and promotion of high SS content in mine backfill and low-carbon building materials.This study systematically explores the synergistic effects between various solid wastes and their regulation of the hydration process in the SS-based cementitious system through multi-scale characterization techniques.The results show that GBFS,by releasing active Si^(4+)and Al^(3+),triggers a synergistic activation effect with Ca^(2+)provided by SS,promoting the formation of C-S-H gel and ettringite,significantly optimizing the hardened paste microstructure.When the GBFS content reaches 30%,the C-S-H content increases by 40.8%,the pore size distribution improves,the proportion of large pores decreases by 68.7%,and the 90-day compressive strength increases to 5 times that of the baseline group.The sulfate activation effect of DG accelerates the hydration of silicate minerals,but excessive incorporation(>16%)can lead to microcracks caused by the expansion of AFt crystals,resulting in a strength reduction.Under the synergistic effect of 8%DG and 30%GBFS,the hydration reaction is most intense,with the peak heat release rate reaching 0.92 mW/g and the cumulative heat release amount being 240 J/g.By constructing a“SS-GBFS-DG-cement”quaternary synergistic system(mass ratio range:SS:GBFS:cement:DG=(50–62):(20–40):10:(8–12)),the matching of active components in high-content SS systems was optimized,significantly improving microstructural defects and meeting engineering application requirements.This study provides a theoretical basis for the component design and performance regulation of high-content SS-based cementitious materials. 展开更多
关键词 Steel slag Mine backfill Hydration process synergistic mechanisms
在线阅读 下载PDF
Does Photofrin II Combined with a Radio-Adaptive Dose Lead to a Synergistic or Additive Effect after Ionising Irradiation <i>In Vitro</i>?
13
作者 Moshe Schaffer Alina Balandin +4 位作者 Birgit Ertl-Wagner Pamela Schaffer Luigi Bonavina Alfons Hofstette Ulrike Kulka 《Journal of Cancer Therapy》 2011年第4期595-600,共6页
Background: The radiosensitizing effect of Photofrin II has been demonstrated in vitro and in animal models, even in tumor models known to be highly radioresistant, such as glioblastoma and bladder carcinoma. Radio-ad... Background: The radiosensitizing effect of Photofrin II has been demonstrated in vitro and in animal models, even in tumor models known to be highly radioresistant, such as glioblastoma and bladder carcinoma. Radio-adaptive doses are also known to lead to an augmented cell or tissue reaction. The aim of this study was to investigate potential synergistic or additive effects when combining the two methods in vitro for an improved therapeutic concept in bladder cancer. Material and Methods: RT4 human bladder carcinoma cell line and HCV29 human bladder epithelium cells were seeded and incubated with various concentrations of Photofrin II. The cells were additionally irradiated with ionizing radiation (0.05 Gy/2 Gy/0.05 Gy + 2 Gy). Cells without Photofrin II incubation and irradiation served as controls. The cell survival was evaluated. Results: The survival rate of both cell lines, RT4 and HCV29, did not differ significantly when incubated with a non-toxic concentration of Photofrin II and exposed to a pre-irradiation dose of 0.05 Gy prior to the 2 Gy radiation fraction, compared to cells exposed to Photofrin II plus a 2 Gy ionizing radiation. Conclusion: The combination of both methods did neither demonstrate a synergistic or additive effect nor did it lead to a negative influence of both modulating factors in an in vitro setting. 展开更多
关键词 Adative DOSE PHOTOFRIN II Ionising IRRADIATION synergistic/additive Effect
暂未订购
Synergistic Effects of Several Additives on Herbicidal Activity of Bensulfuron-methyl
14
作者 李水清 朱绍洪 《Plant Diseases and Pests》 CAS 2011年第3期42-44,61,共4页
[ Objective] The aim was to select the best additives of bensulfuron-methyl. [ Method ] Taking radish as the testing plant, the synergistic effect of five common additives including Span 60, methyl olelate, silicone o... [ Objective] The aim was to select the best additives of bensulfuron-methyl. [ Method ] Taking radish as the testing plant, the synergistic effect of five common additives including Span 60, methyl olelate, silicone oil I, Tween 20 and detergent on the herbicidal activities of bensulfuron-methyl were tested in the la- borotory. [ Results ] The effects of the mixture of various additives and bensulfuran-methyl on relative stem control effect of radish, relative inhibition rate against stem length, relative inhibition rote against abeveground fresh weight, relative inhibition rote aginst root length and root fresh weight were studied, and the results showed that Span 60 and methyl olelate had stronger synergistic effect on the herbicidal activities of bensulfuron-methyl, and the synergistic effect of detergent was the weakest. [ Conclusion ] Span 60 and methyl olelate could be used as the synergistic agents of bensulfuron-methyl, and the study could provide references for se- lecting the additives of bensulfuron-methyl. 展开更多
关键词 BENSULFURON-METHYL additiveS Herbicidal activities RADISH China
在线阅读 下载PDF
Additive Manufacturing of Silicon Carbide Microwave-Absorbing Metamaterials 被引量:1
15
作者 Hanqing Zhao Qingwei Liao +3 位作者 Yinghao Li Xiangcheng Chu Songmei Yuan Lei Qin 《Additive Manufacturing Frontiers》 2025年第1期3-17,共15页
SiC is a wave-absorbing material with good dielectric properties,high-temperature resistance,and corrosion resistance,which has great potential for development in the field of high-temperature wave-absorbing.However,S... SiC is a wave-absorbing material with good dielectric properties,high-temperature resistance,and corrosion resistance,which has great potential for development in the field of high-temperature wave-absorbing.However,SiC is limited by its low impedance-matching performance and single wave-absorbing mechanism.Therefore,compatible metamaterial technologies are required to enhance its wave-absorbing performance further.The electromagnetic wave(EMW)absorbing metamaterials can realize perfect absorption of EMWs in specific frequency bands and precise regulation of EMW phase,propagation mode,and absorption frequency bands through structural changes.However,the traditional molding methods for manufacturing complex geometric shapes require expensive molds,involve process complexity,and have poor molding accuracy and other limitations.Therefore,additive manufacturing(AM)technology,through material layered stacking to achieve the processing of materials,is a comprehensive multidisciplinary advanced manufacturing technology and has become the core technology for manufacturing metamaterials.This review introduces the principles and applications of different AM technologies for SiC and related materials,discusses the current status and development trends of various AM technologies for fabricating silicon-carbon-based wave-absorbing metamaterials,summarizes the limitations and technological shortcomings of existing AM technologies for fabricating silicon-carbon-based wave-absorbing metamaterials,and provides an outlook for the future development of related AM technologies. 展开更多
关键词 SIC Electromagnetic absorption METAMATERIALS additive manufacturing
在线阅读 下载PDF
Microstructural analysis and defect characterization of additively manufactured AA6061 aluminum alloy via laser powder bed fusion 被引量:1
16
作者 Sivaji Karna Lang Yuan +5 位作者 Tianyu Zhang Rimah Al-Aridi Andrew J.Gross Daniel Morrall Timothy Krentz Dale Hitchcock 《Journal of Materials Science & Technology》 2025年第16期288-306,共19页
AA6061 is a widely used aluminum alloy with significant applications in the aerospace and automotive industries.Despite its popularity,the utilization of additively manufactured AA6061 through the laser powder bed fus... AA6061 is a widely used aluminum alloy with significant applications in the aerospace and automotive industries.Despite its popularity,the utilization of additively manufactured AA6061 through the laser powder bed fusion(LPBF)process has been hindered by the pronounced formation of pores and cracks during rapid solidification.This study quantitatively investigated defects,including pores and cracks,and microstructures,including texture,grain size,subgrain structure,and precipitates,of LPBF-manufactured AA6061 across a broad spectrum of laser power and speed combinations.A high relative density of more than 99%was achieved with a low-power and low-speed condition,specifically 200 W and 100 mm s−1,with minimal cracks.Large pores,akin to or exceeding melt pool dimensions,emerged under either low or high energy densities,driven by the lack of fusion and vaporization/denudation mechanisms,re-spectively.Solidification cracks,confirmed by the fractography,were propagated along grain boundaries and are highly dependent on laser scanning speed.Elevated power and speed exhibited finer grain size with refined subgrain cellular structures and increased precipitates at interdendritic regions.The cooling rate and thermal gradient estimated from thermal analytical solutions explain the microstructures’char-acteristics.Nano-sized Si-Fe-Mg enriched precipitates are confirmed in both as-built and heat-treated conditions,whereas T6 heat treatment promotes a uniform distribution with coarsening of those precipi-tates.The low-power and low-speed conditions demonstrated the highest yield strength,consistent with defect levels.A minimum of 102.3%increase in yield strength with reduced ductility was observed after heat treatment for all examined conditions.This work sheds light on printing parameters to mitigate the formation of pores and cracks in additively manufactured AA6061,proposing a process window for op-timized fabrication and highlighting the potential for enhanced material properties and reduced defects through process control. 展开更多
关键词 additive manufacturing MICROSTRUCTURE Solidification cracking POROSITY PRECIPITATES Tensile properties
原文传递
Fabrication and development of mechanical metamaterials via additive manufacturing for biomedical applications:a review 被引量:1
17
作者 Junsheng Chen Jibing Chen +4 位作者 Hongze Wang Liang He Boyang Huang Sasan Dadbakhsh Paulo Bartolo 《International Journal of Extreme Manufacturing》 2025年第1期1-44,共44页
In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are i... In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are inspired by nature itself.It describes how new AM technologies(e.g.continuous liquid interface production and multiphoton polymerization,etc)and recent developments in more mature AM technologies(e.g.powder bed fusion,stereolithography,and extrusion-based bioprinting(EBB),etc)lead to more precise,efficient,and personalized biomedical components.EBB is a revolutionary topic creating intricate models with remarkable mechanical compatibility of metamaterials,for instance,stress elimination for tissue engineering and regenerative medicine,negative or zero Poisson’s ratio.By exploiting the designs of porous structures(e.g.truss,triply periodic minimal surface,plant/animal-inspired,and functionally graded lattices,etc),AM-made bioactive bone implants,artificial tissues,and organs are made for tissue replacement.The material palette of the AM metamaterials has high diversity nowadays,ranging from alloys and metals(e.g.cobalt-chromium alloys and titanium,etc)to polymers(e.g.biodegradable polycaprolactone and polymethyl methacrylate,etc),which could be even integrated within bioactive ceramics.These advancements are driving the progress of the biomedical field,improving human health and quality of life. 展开更多
关键词 biomedical application additive manufacturing mechanical metamaterials biomimetic materials
暂未订购
Synergistically enhanced ORR and HER performance on Co-N-C coupled in-situ generated PtCo intermetallic 被引量:1
18
作者 Guanyu Luo Min Song +6 位作者 Lulu An Xiao Huang Qian Zhang Chenhao Zhang Tao Shen Shuang Wang Deli Wang 《Journal of Energy Chemistry》 2025年第1期721-729,共9页
Integrating multi-scale sites in a composite catalyst is vital to realize efficient electrocatalysis.Herein,a synergistic composite catalyst consisting of Co atomic sites and in-situ generated PtCo intermetallic compo... Integrating multi-scale sites in a composite catalyst is vital to realize efficient electrocatalysis.Herein,a synergistic composite catalyst consisting of Co atomic sites and in-situ generated PtCo intermetallic compounds (IMCs)(o-PtCo@CoNC) is proposed through Co pre-anchoring and subsequent impregnation-reduction method.High loading of Co atoms provides a chance for in-situ generating PtCo ordered intermetallic compounds.The remaining Co single atoms and PtCo IMCs construct synergistic electrocatalytic micro-regions.Benefiting from the ordered structure,synergistic effect of Pt Co IMCs and Co single atoms,o-PtCo@CoNC exhibits excellent electrocatalytic performance for oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) with mass activity of 1.21 A mgPt-1(at 0.9 V) and5.70 A mgPt-1(at an overpotential of 100 mV),respectively.Besides,o-PtCo@CoNC delivers negligible loss of half-wave potential and overpotential during long-term stability test in acid solutions,with 13 mV decay after 50,000 potential cycles for ORR and a 2.7 mV decay after 20,000 potential cycles for HER.The integration strategy of single-atomic sites coupled IMCs paves the way for enhancing the activity and durability of Pt-based electrocatalysts. 展开更多
关键词 synergistic effect INTERMETALLICS Single atomic sites Oxygen reduction reaction Hydrogen evolution reaction
在线阅读 下载PDF
Ultrasensitive electrospinning fibrous strain sensor with synergistic conductive network for human motion monitoring and human-computer interaction 被引量:1
19
作者 Jingwen Wang Shun Liu +6 位作者 Zhaoyang Chen Taoyu Shen Yalong Wang Rui Yin Hu Liu Chuntai Liu Changyu Shen 《Journal of Materials Science & Technology》 2025年第10期213-222,共10页
With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, ... With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, and human-computer interaction owing to their outstanding sensing performance. This paper reports a strain sensor with synergistic conductive network, consisting of stable carbon nanotube dispersion (CNT) layer and brittle MXene layer by dip-coating and electrostatic self-assembly method, and breathable three-dimensional (3D) flexible substrate of thermoplastic polyurethane (TPU) fibrous membrane prepared through electrospinning technology. The MXene/CNT@PDA-TPU (MC@p-TPU) flexible strain sensor had excellent air permeability, wide operating range (0–450 %), high sensitivity (Gauge Factor, GFmax = 8089.7), ultra-low detection limit (0.05 %), rapid response and recovery times (40 ms/60 ms), and excellent cycle stability and durability (10,000 cycles). Given its superior strain sensing capabilities, this sensor can be applied in physiological signals detection, human motion pattern recognition, and driving exoskeleton robots. In addition, MC@p-TPU fibrous membrane also exhibited excellent photothermal conversion performance and can be used as a wearable photo-heater, which has far-reaching application potential in the photothermal therapy of human joint diseases. 展开更多
关键词 Flexible strain sensors synergistic conductive network Electrospinning fibrous membrane Motion monitoring Human-machine interface
原文传递
High ductility induced by twin-assisted grain rotation and merging in solid-state cold spray additive manufactured Cu 被引量:1
20
作者 Wenya Li Jingwen Yang +2 位作者 Zhengmao Zhang Yingchun Xie Chunjie Huang 《Journal of Materials Science & Technology》 2025年第11期11-15,共5页
1.Introduction.Cold Spray(CS)is a highly advanced solid-state metal depo-sition process that was first developed in the 1980s.This innovative technique involves the high-speed(300-1200 m/s)impact deposition of micron-... 1.Introduction.Cold Spray(CS)is a highly advanced solid-state metal depo-sition process that was first developed in the 1980s.This innovative technique involves the high-speed(300-1200 m/s)impact deposition of micron-sized particles(5-50μm)to fabricate coatings[1-3].CS has been extensively used in a variety of coating applications,such as aerospace,automotive,energy,medical,marine,and others,to provide protection against high temperatures,corrosion,erosion,oxidation,and chemicals[4,5].Nowadays,the technical interest in CS is twofold:(i)as a repair process for damaged components,and(ii)as a solid-state additive manufacturing process.Compared to other fusion-based additive manufacturing(AM)technologies,Cold Spray Additive Manufacturing(CSAM)is a new member of the AM family that can enable the fabrication of deposits without undergoing melting.The chemical composition has been largely preserved from the powder to the deposit due to the minimal oxidation.The significant advantages of CSAM over other additive manufacturing processes include a high production rate,unlimited deposition size,high flexibility,and suitability for repairing damaged parts. 展开更多
关键词 additive manufacturing DUCTILITY cold spray MERGING solid state deposition twin assisted grain rotation
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部