期刊文献+
共找到200篇文章
< 1 2 10 >
每页显示 20 50 100
Particle swarm optimization-based algorithm of a symplectic method for robotic dynamics and control 被引量:5
1
作者 Zhaoyue XU Lin DU +1 位作者 Haopeng WANG Zichen DENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第1期111-126,共16页
Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this pa... Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this paper, a particle swarm optimization(PSO) method is introduced to solve and control a symplectic multibody system for the first time. It is first combined with the symplectic method to solve problems in uncontrolled and controlled robotic arm systems. It is shown that the results conserve the energy and keep the constraints of the chaotic motion, which demonstrates the efficiency, accuracy, and time-saving ability of the method. To make the system move along the pre-planned path, which is a functional extremum problem, a double-PSO-based instantaneous optimal control is introduced. Examples are performed to test the effectiveness of the double-PSO-based instantaneous optimal control. The results show that the method has high accuracy, a fast convergence speed, and a wide range of applications.All the above verify the immense potential applications of the PSO method in multibody system dynamics. 展开更多
关键词 ROBOTIC DYNAMICS MULTIBODY system symplectic method particle SWARM optimization(PSO)algorithm instantaneous optimal control
在线阅读 下载PDF
Difference Discrete Variational Principles, Euler?Lagrange Cohomology and Symplectic, Multisymplectic Structures III: Application to Symplectic and Multisymplectic Algorithms 被引量:10
2
作者 GUOHan-Ying WUKe 等 《Communications in Theoretical Physics》 SCIE CAS CSCD 2002年第3期257-264,共8页
In the previous papers I and II, we have studied the difference discrete variational principle and the Euler?Lagrange cohomology in the framework of multi-parameter differential approach. We have gotten the difference... In the previous papers I and II, we have studied the difference discrete variational principle and the Euler?Lagrange cohomology in the framework of multi-parameter differential approach. We have gotten the difference discrete Euler?Lagrange equations and canonical ones for the difference discrete versions of classical mechanics and field theory as well as the difference discrete versions for the Euler?Lagrange cohomology and applied them to get the necessary and sufficient condition for the symplectic or multisymplectic geometry preserving properties in both the Lagrangian and Hamiltonian formalisms. In this paper, we apply the difference discrete variational principle and Euler?Lagrange cohomological approach directly to the symplectic and multisymplectic algorithms. We will show that either Hamiltonian schemes or Lagrangian ones in both the symplectic and multisymplectic algorithms are variational integrators and their difference discrete symplectic structure-preserving properties can always be established not only in the solution space but also in the function space if and only if the related closed Euler?Lagrange cohomological conditions are satisfied. 展开更多
关键词 discrete variation Euler-Lagrange cohomology symplectic algorithm multisymplectic algorithm
在线阅读 下载PDF
SYMPLECTIC ALGORITHM IN SOLVING OPTIMAL CONTROL PROBLEMS 被引量:2
3
作者 Zeng Jin(Dept. of Power Machinery Engineering)Sun Weirong Zhou Gang(Dept. of Applied Mathematics) 《Journal of Shanghai Jiaotong university(Science)》 EI 1996年第2期21-24,共4页
A symplectic algorithm is used to solve optimal control problems. Linear and nonlinear examples aregiven. Numerical analyses show that the symplectic algorithm gives satisfactory performance in that it works inlarge s... A symplectic algorithm is used to solve optimal control problems. Linear and nonlinear examples aregiven. Numerical analyses show that the symplectic algorithm gives satisfactory performance in that it works inlarge step and is of high speed and accuracy. This indicates that the symplectic algorithm is more effective andreasonable in solving optimal control problems. 展开更多
关键词 HAMILTON system symplectic algorithm OPTIMAL CONTROL
在线阅读 下载PDF
Pseudospectral method with symplectic algorithm for the solution of time-dependent SchrSdinger equations 被引量:2
4
作者 卞学滨 乔豪学 史庭云 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第7期1822-1826,共5页
A pseudospectral method with symplectic algorithm for the solution of time-dependent Schrodinger equations (TDSE) is introduced. The spatial part of the wavefunction is discretized into sparse grid by pseudospectral... A pseudospectral method with symplectic algorithm for the solution of time-dependent Schrodinger equations (TDSE) is introduced. The spatial part of the wavefunction is discretized into sparse grid by pseudospectral method and the time evolution is given in symplectic scheme. This method allows us to obtain a highly accurate and stable solution of TDSE. The effectiveness and efficiency of this method is demonstrated by the high-order harmonic spectra of one-dimensional atom in strong laser field as compared with previously published work. The influence of the additional static electric field is also investigated. 展开更多
关键词 pseudospectral method symplectic algorithm high-order harmonic generation
原文传递
NUMERICAL METHOD BASED ON HAMILTON SYSTEM AND SYMPLECTIC ALGORITHM TO DIFFERENTIAL GAMES
5
作者 徐自祥 周德云 邓子辰 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第3期341-346,共6页
The resolution of differential games often concerns the difficult problem of two points border value (TPBV), then ascribe linear quadratic differential game to Hamilton system. To Hamilton system, the algorithm of s... The resolution of differential games often concerns the difficult problem of two points border value (TPBV), then ascribe linear quadratic differential game to Hamilton system. To Hamilton system, the algorithm of symplectic geometry has the merits of being able to copy the dynamic structure of Hamilton system and keep the measure of phase plane. From the viewpoint of Hamilton system, the symplectic characters of linear quadratic differential game were probed; as a try, Symplectic-Runge-Kutta algorithm was presented for the resolution of infinite horizon linear quadratic differential game. An example of numerical calculation was given, and the result can illuminate the feasibility of this method. At the same time, it embodies the fine conservation characteristics of symplectic algorithm to system energy. 展开更多
关键词 differential game Hamilton system algorithm of symplectic geometry linear quadratic
在线阅读 下载PDF
Birkhoffian symplectic algorithms derived from Hamiltonian symplectic algorithms
6
作者 孔新雷 吴惠彬 梅凤翔 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期407-411,共5页
In this paper, we focus on the construction of structure preserving algorithms for Birkhoffian systems, based on existing symplectic schemes for the Hamiltonian equations. The key of the method is to seek an invertibl... In this paper, we focus on the construction of structure preserving algorithms for Birkhoffian systems, based on existing symplectic schemes for the Hamiltonian equations. The key of the method is to seek an invertible transformation which drives the Birkhoffian equations reduce to the Hamiltonian equations. When there exists such a transformation, applying the corresponding inverse map to symplectic discretization of the Hamiltonian equations, then resulting difference schemes are verified to be Birkhoftian symplectic for the original Birkhoffian equations. To illustrate the operation process of the method, we construct several desirable algorithms for the linear damped oscillator and the single pendulum with linear dissipation respectively. All of them exhibit excellent numerical behavior, especially in preserving conserved quantities. 展开更多
关键词 Birkhoffian equations Hamiltonian equations symplectic algorithm
原文传递
A Note on Symplectic Algorithm
7
作者 GUO Han-Ying LI Yu-Qi WU Ke 《Communications in Theoretical Physics》 SCIE CAS CSCD 2001年第7期11-18,共8页
We present the symplectic algorithm in the Lagrangian formalism for the Hamiltonian systems by virtue of the noncommutative differential calculus with respect to the discrete time and the Euler-Lagrange cohomological ... We present the symplectic algorithm in the Lagrangian formalism for the Hamiltonian systems by virtue of the noncommutative differential calculus with respect to the discrete time and the Euler-Lagrange cohomological concepts. We also show that the trapezoidal integrator is symplectic in certain sense. 展开更多
关键词 symplectic algorithm LAGRANGIAN formalism EULER-LAGRANGE COHOMOLOGY
在线阅读 下载PDF
GPR Wave Propagation Model in a Complex Geoelectric Structure Using Conformal First-Order Symplectic Euler Algorithm
8
作者 Man Yang Hongyuan Fang +3 位作者 Juan Zhang Fuming Wang Jianwei Lei Heyang Jia 《Computers, Materials & Continua》 SCIE EI 2019年第8期793-816,共24页
Possessing advantages such as high computing efficiency and ease of programming,the Symplectic Euler algorithm can be applied to construct a groundpenetrating radar(GPR)wave propagation numerical model for complex geo... Possessing advantages such as high computing efficiency and ease of programming,the Symplectic Euler algorithm can be applied to construct a groundpenetrating radar(GPR)wave propagation numerical model for complex geoelectric structures.However,the Symplectic Euler algorithm is still a difference algorithm,and for a complicated boundary,ladder grids are needed to perform an approximation process,which results in a certain amount of error.Further,grids that are too dense will seriously decrease computing efficiency.This paper proposes a conformal Symplectic Euler algorithm based on the conformal grid technique,amends the electric/magnetic fieldupdating equations of the Symplectic Euler algorithm by introducing the effective dielectric constant and effective permeability coefficient,and reduces the computing error caused by the ladder approximation of rectangular grids.Moreover,three surface boundary models(the underground circular void model,the undulating stratum model,and actual measurement model)are introduced.By comparing reflection waveforms simulated by the traditional Symplectic Euler algorithm,the conformal Symplectic Euler algorithm and the conformal finite difference time domain(CFDTD),the conformal Symplectic Euler algorithm achieves almost the same level of accuracy as the CFDTD method,but the conformal Symplectic Euler algorithm improves the computational efficiency compared with the CFDTD method dramatically.When the dielectric constants of the two materials vary greatly,the conformal Symplectic Euler algorithm can reduce the pseudo-waves almost by 80% compared with the traditional Symplectic Euler algorithm on average. 展开更多
关键词 symplectic Euler algorithm conformal grid complex geoelectric model ground-penetrating radar pseudo-reflection wave
在线阅读 下载PDF
Seismic wavefield modeling based on time-domain symplectic and Fourier finite-difference method 被引量:1
9
作者 Fang Gang Ba Jing +2 位作者 Liu Xin-xin Zhu Kun Liu Guo-Chang 《Applied Geophysics》 SCIE CSCD 2017年第2期258-269,323,共13页
Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time st... Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps. 展开更多
关键词 symplectic algorithm Fourier finite-difference Hamiltonian system seismic modeling ANISOTROPIC
在线阅读 下载PDF
Symplectic multi-level method for solving nonlinear optimal control problem
10
作者 彭海军 高强 +1 位作者 吴志刚 钟万勰 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第10期1251-1260,共10页
By converting an optimal control problem for nonlinear systems to a Hamiltonian system,a symplecitc-preserving method is proposed.The state and costate variables are approximated by the Lagrange polynomial.The state v... By converting an optimal control problem for nonlinear systems to a Hamiltonian system,a symplecitc-preserving method is proposed.The state and costate variables are approximated by the Lagrange polynomial.The state variables at two ends of the time interval are taken as independent variables.Based on the dual variable principle,nonlinear optimal control problems are replaced with nonlinear equations.Furthermore,in the implementation of the symplectic algorithm,based on the 2N algorithm,a multilevel method is proposed.When the time grid is refined from low level to high level,the initial state and costate variables of the nonlinear equations can be obtained from the Lagrange interpolation at the low level grid to improve efficiency.Numerical simulations show the precision and the efficiency of the proposed algorithm in this paper. 展开更多
关键词 nonlinear optimal control dual variable variational principle multi-level iteration symplectic algorithm
在线阅读 下载PDF
THE PROPERTIES OF A KIND OF RANDOM SYMPLECTIC MATRICES
11
作者 YAN Qing-you(闫庆友) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第5期590-596,共7页
Several important properties of a kind of random symplectic matrix used by A. Bunse-Gerstner and V. Mehrmann are studied and the following results are obtained: 1) It can be transformed to Jordan canonical form by ort... Several important properties of a kind of random symplectic matrix used by A. Bunse-Gerstner and V. Mehrmann are studied and the following results are obtained: 1) It can be transformed to Jordan canonical form by orthogonal similar transformation; 2) Its condition number is a constant; 3) The condition number of it is about 2.618. 展开更多
关键词 symplectic matrix QR-like algorithm EIGENVALUE condition number Jordan canonical form Schur canonical form
在线阅读 下载PDF
基于改进四阶辛-谱元的三维宽频带地震动数值模拟方法
12
作者 巴振宁 寇阔 +1 位作者 赵靖轩 张郁山 《力学学报》 北大核心 2025年第9期2192-2208,共17页
基于确定性物理模型的震源-传播-场地全过程地震动模拟是目前地震工程的重要研究方向,然而随着模拟频率的不断提高,对目前数值模拟方法中显式时间积分算法的计算精度和效率提出了双重挑战.文章提出了一种融合四阶PEFRL(position extende... 基于确定性物理模型的震源-传播-场地全过程地震动模拟是目前地震工程的重要研究方向,然而随着模拟频率的不断提高,对目前数值模拟方法中显式时间积分算法的计算精度和效率提出了双重挑战.文章提出了一种融合四阶PEFRL(position extended Forest-Ruth like)辛积分与谱元法(spectral element method,SEM)的三维高效数值模拟方法,旨在突破现有SEM中在宽频带模拟中精度、稳定性和效率上的瓶颈问题.其中,PEFRL算法通过优化传统Forest-Ruth算法的步进策略,将加速度求解次数由5次降至4次,并采用位移-速度交替更新机制,能够有限降低内存需求与计算成本.将提出的方法针对均匀、多层与盆地半空间模型,分别与二阶的Newmark和四阶的Runge-Kutta时间积分算法计算的结果进行对比.数值实验表明,随着模型复杂和模拟频率的上升,改进后的PEFRL-SEM方法精度提升效果愈加显著.针对半空间模型、多层介质模型与盆地模型模拟的时程结果相位相对误差分别降低16.7%,20.7%和21.3%,能量相对误差分别降低20.6%,22.3%和24.7%;针对10 Hz半空间模型模拟工况,相位相对误差和能量相对误差分别降低55.4%和36.3%,计算效率较LDDRK算法最高可提升约33%.进一步,将该方法成功应用于1994年北岭MW6.7地震的三维宽频带(0~10 Hz)地震动模拟,模拟结果与观测记录在振幅及频谱特征上均表现出良好一致性.该方法有效解决了宽频带地震动场模拟的稳定性与计算效率的问题,显著提升了宽频带强地震动场模拟在地震工程领域的实用性,为区域地震危险性分析与工程抗震评估提供了一种高精度、高效率宽频带地震动模拟方法. 展开更多
关键词 谱元法 辛方法 宽频带模拟 确定性地震动模拟 显式时间积分算法
在线阅读 下载PDF
辛算法在LCN计算中的应用 被引量:1
13
作者 廖新浩 赵长印 刘林 《天文学报》 CSCD 北大核心 1993年第2期198-201,共4页
本文将辛算法应用于LCN的计算,发现辛算法与非辛算法相比有着明显的优点.
关键词 辛算法 lcn 星系模型
在线阅读 下载PDF
一种基于stereo-modeling算子求解波动方程的高精度保辛Nyström方法
14
作者 李静爽 孟康 +1 位作者 张海霞 周艳杰 《地球物理学报》 北大核心 2025年第11期4429-4443,共15页
为了准确而高效地求解波动方程,并实现高精度的地震成像,本文结合高数值精度的stereo-modeling方法(简称STEM)和四阶保辛Nyström方法,发展了兼具二者优点的高精度保辛Nyström方法(简称NS-STEM),并应用于声波方程的波场数值模... 为了准确而高效地求解波动方程,并实现高精度的地震成像,本文结合高数值精度的stereo-modeling方法(简称STEM)和四阶保辛Nyström方法,发展了兼具二者优点的高精度保辛Nyström方法(简称NS-STEM),并应用于声波方程的波场数值模拟以及逆时偏移成像研究中.首先,详细推导了4、8、16阶NS-STEM格式,给出了稳定性条件,并深入分析了单独时间离散、单独空间离散以及方程整体离散对数值频散的影响,同时与基于Lax-Wendroff Correction方法的传统有限差分方法(简称LWC-CFD)进行了对比.然后,对四阶NS-STEM进行了误差分析、长时计算稳定性测试、解析解比较和计算效率对比.多个模型算例表明,NS-STEM方法相较于LWC-CFD方法,在显著降低数值频散、减小数值误差、提高计算效率、保持长时间计算稳定方面更具优势,且与解析解匹配良好,并能有效进行波场数值模拟.最后,利用Sigsbee2B模型进行的逆时偏移成像表明,在粗网格条件下,新发展的NS-STEM方法的成像质量远优于传统方法. 展开更多
关键词 Nyström方法 数值频散 保辛算法 波场模拟 逆时偏移
在线阅读 下载PDF
基于改进SOBI-SGMD算法的次同步振荡模态辨识研究
15
作者 郭成 杨宣铭 +1 位作者 杨灵睿 奚鑫泽 《电力系统保护与控制》 北大核心 2025年第14期100-110,共11页
针对次同步振荡(sub-synchronous oscillation, SSO)信号的准确辨识问题,提出了一种基于动态时间规整(dynamic time warping, DTW)算法改进的辛几何模态分解(symplectic geometry mode decomposition, SGMD)与二阶盲辨识(second order b... 针对次同步振荡(sub-synchronous oscillation, SSO)信号的准确辨识问题,提出了一种基于动态时间规整(dynamic time warping, DTW)算法改进的辛几何模态分解(symplectic geometry mode decomposition, SGMD)与二阶盲辨识(second order blind identification, SOBI)相结合的多通道次同步振荡辨识预警方法。首先,对SSO信号进行SGMD,经对角平均化与自适应重构后分解为初始辛几何模态分量(initial symplectic geometric mode components,ISGMCs),通过DTW算法计算ISGMCs间的最优距离值以度量序列的相似性,自适应筛选出具有独立模态的辛几何分量(symplectic geometry components, SGCs)。其次,将主导的SGCs作为观测信号输入SOBI算法矩阵中,并对观测矩阵联合近似对角化逼近,得到完整的SSO源估计信号,引入最小二乘法改进SOBI算法直接辨识SSO的振荡频率、衰减因子。最后,通过对理想算例与仿真算例的对比分析,验证了所提算法能够精确高效地辨识多通道次同步振荡信号。 展开更多
关键词 辛几何模态分解 二阶盲辨识 次同步振荡 多通道辨识 动态时间规整算法
在线阅读 下载PDF
AdS5-Schwarzschild黑洞弦运动的显式辛算法构造及动力学研究
16
作者 王莹嵘 徐振梦 马大柱 《湖北民族大学学报(自然科学版)》 2025年第4期574-579,共6页
针对低阶非保辛结构算法在模拟黑洞视界附近弦的动力学演化时极易产生假混沌现象的问题,以五维反德西特背景下的史瓦西(five-dimensional anti-de Sitter-Schwarzschild,AdS5-Schwarzschild)黑洞背景为例,提出构造高精度显式辛算法。将... 针对低阶非保辛结构算法在模拟黑洞视界附近弦的动力学演化时极易产生假混沌现象的问题,以五维反德西特背景下的史瓦西(five-dimensional anti-de Sitter-Schwarzschild,AdS5-Schwarzschild)黑洞背景为例,提出构造高精度显式辛算法。将系统的哈密顿函数分解为5个可积的子部分,分别设计了2类四阶显式辛迭代格式。成功构造的显式辛算法不仅严格保持了系统的辛结构,而且有效抑制了低阶非保辛结构算法积累的长期截断误差,大大提高了精度和计算效率。基于显式辛算法提供的高精度且长期稳定的数值解,通过分析庞加莱截面和李雅普诺夫指数图,发现系统所有的稳定轨道均为有序运动,未出现混沌现象。数值实验与理论分析结果一致,说明显式辛算法能够准确地描述弦在强引力场中的长期动力学演化。该研究提供了在强引力天体系统中构造显式辛算法的新路径,具有重要的应用价值。 展开更多
关键词 辛算法 AdS-Schwarzschild黑洞 哈密顿系统 混沌动力学 数值实验
在线阅读 下载PDF
Explicit structure-preserving geometric particle-in-cell algorithm in curvilinear orthogonal coordinate systems and its applications to whole-device 6D kinetic simulations of tokamak physics
17
作者 Jianyuan XIAO Hong QIN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第5期18-41,共24页
Explicit structure-preserving geometric particle-in-cell(PIC)algorithm in curvilinear orthogonal coordinate systems is developed.The work reported represents a further development of the structure-preserving geometric... Explicit structure-preserving geometric particle-in-cell(PIC)algorithm in curvilinear orthogonal coordinate systems is developed.The work reported represents a further development of the structure-preserving geometric PIC algorithm achieving the goal of practical applications in magnetic fusion research.The algorithm is constructed by discretizing the field theory for the system of charged particles and electromagnetic field using Whitney forms,discrete exterior calculus,and explicit non-canonical symplectic integration.In addition to the truncated infinitely dimensional symplectic structure,the algorithm preserves exactly many important physical symmetries and conservation laws,such as local energy conservation,gauge symmetry and the corresponding local charge conservation.As a result,the algorithm possesses the long-term accuracy and fidelity required for first-principles-based simulations of the multiscale tokamak physics.The algorithm has been implemented in the Sym PIC code,which is designed for highefficiency massively-parallel PIC simulations in modern clusters.The code has been applied to carry out whole-device 6 D kinetic simulation studies of tokamak physics.A self-consistent kinetic steady state for fusion plasma in the tokamak geometry is numerically found with a predominately diagonal and anisotropic pressure tensor.The state also admits a steady-state subsonic ion flow in the range of 10 km s-1,agreeing with experimental observations and analytical calculations Kinetic ballooning instability in the self-consistent kinetic steady state is simulated.It is shown that high-n ballooning modes have larger growth rates than low-n global modes,and in the nonlinear phase the modes saturate approximately in 5 ion transit times at the 2%level by the E×B flow generated by the instability.These results are consistent with early and recent electromagnetic gyrokinetic simulations. 展开更多
关键词 curvilinear orthogonal mesh charge-conservative PARTICLE-IN-CELL symplectic algorithm whole-device plasma simulation
在线阅读 下载PDF
参数冻结精细指数积分法在非线性车桥耦合振动分析中的应用 被引量:3
18
作者 张宇 李韶华 任剑莹 《力学学报》 EI CAS CSCD 北大核心 2024年第1期258-272,共15页
描述车桥耦合作用的基本问题是一个时变系统问题,且很多工况下需考虑非线性特性,使得该问题难以得到解析解,甚至数值解也可能很复杂.针对该问题的求解,提出了一种参数冻结精细指数积分法,将其应用于车桥耦合动力学模型的数值分析中.该... 描述车桥耦合作用的基本问题是一个时变系统问题,且很多工况下需考虑非线性特性,使得该问题难以得到解析解,甚至数值解也可能很复杂.针对该问题的求解,提出了一种参数冻结精细指数积分法,将其应用于车桥耦合动力学模型的数值分析中.该方法结合了精细积分和指数积分特点,并将时变系数矩阵在每一积分步参数冻结,用于获得系统振动响应的数值解.考虑汽车轮胎与桥面的力和位移耦合关系、桥面沥青铺装层、桥梁材料黏弹性和几何非线性特性,建立了车桥耦合动力学模型,并应用参数冻结精细指数积分法对该模型进行了求解.通过与近似解析解、辛Runge-Kutta算法以及经典的Newmark-β数值积分法计算结果进行对比,验证了所提出方法计算结果的有效性和准确性.在此基础上,制作了缩尺车桥耦合系统模型,测试了跨中挠度响应,进一步验证了理论建模和所提算法的有效性和实用性.通过数值计算分析了所提算法的数值特性,结果表明:提出的参数冻结精细指数积分法不仅可以处理时变、非线性问题,且具有良好的数值计算精度和长时间数值稳定性;由于精细积分的特点,参数冻结精细指数积分法的计算时间步长可以取的较大,可有效提高计算效率.因此,所提出的参数冻结精细指数积分法预期可成为求解车桥耦合动力学问题的一种新的高效算法. 展开更多
关键词 精细指数积分法 车桥耦合振动 参数冻结 非线性时变系统 辛Runge-Kutta算法
在线阅读 下载PDF
基于SGMD-SE-AVOA-LSTM耦合模型的月径流预测 被引量:6
19
作者 王文川 顾淼 《应用基础与工程科学学报》 CSCD 北大核心 2024年第6期1755-1771,共17页
针对中长期径流时间序列具有强非线性和非平稳性特点、致使模型精准预测较为困难的问题,提出了一种结合辛几何模态分解(SGMD)、样本熵(SE)、非洲秃鹫优化算法(AVOA)和长短期记忆神经网络(LSTM)的新的SGMD-SE-AVOA-LSTM耦合模型.首先,采... 针对中长期径流时间序列具有强非线性和非平稳性特点、致使模型精准预测较为困难的问题,提出了一种结合辛几何模态分解(SGMD)、样本熵(SE)、非洲秃鹫优化算法(AVOA)和长短期记忆神经网络(LSTM)的新的SGMD-SE-AVOA-LSTM耦合模型.首先,采用SGMD和SE对历史径流数据进行预处理;再通过AVOA优化LSTM超参数;最后,将各序列的预测结果叠加重构得到月径流预测值.选取黑河流域的莺落峡水文站、乌江流域的洪家渡水电站的月径流数据进行实例验证,并与LSTM模型、AVOA-LSTM模型、EEMD-LSTM模型、SGMD-SE-LSTM模型和EEMD-AVOA-LSTM模型进行对比,结果表明:在莺落峡水文站SGMD-SE-AVOA-LSTM模型的NSE和R分别达到0.8961和0.9498,与对比模型相比,MAE分别减少了45.26%、18.95%、26.33%、20.09%、14.07%;RMSE分别减少了40.06%、25.74%、31.24%、19.24%、21.65%;在洪家渡水电站SGMD-SE-AVOA-LSTM模型的NSE和R分别达到0.7949和0.8935,与对比模型相比,MAE分别减少了39.87%、17.86%、27.61%、20.48%、13.58%;RMSE分别减少了39.08%、29.10%、31.86%、15.11%、22.66%.因此,本文提出的模型有效加强了LSTM模型的预测精度,为月径流预测提供了一种新的耦合模型. 展开更多
关键词 月径流预测 辛几何模态分解 样本熵 非洲秃鹫优化算法 长短期记忆神经网络 耦合模型 黑河流域 乌江流域
原文传递
一种Birkhoff形式下结构动响应问题的保辛中点格式
20
作者 邱志平 邱宇 《计算力学学报》 CAS CSCD 北大核心 2024年第1期124-128,共5页
结构动响应预测是结构设计的基础,是结构振动控制、载荷识别的前提。本文在辛体系下针对结构动响应问题,提出了一种Birkhoff形式下的保辛中点格式。首先引入状态变量,并基于摄动方法将结构动响应方程转化为线性自治Birkhoff方程的形式,... 结构动响应预测是结构设计的基础,是结构振动控制、载荷识别的前提。本文在辛体系下针对结构动响应问题,提出了一种Birkhoff形式下的保辛中点格式。首先引入状态变量,并基于摄动方法将结构动响应方程转化为线性自治Birkhoff方程的形式,进一步利用中心差分推导出线性自治Birkhoff方程的中点格式,其证明是保辛的。该格式不要求Birkhoff方程系数矩阵非奇异,因此适用于奇数维系统。两个不同数值算例的结果充分验证了本文方法的卓越性,也凸显了相对于传统算法在计算精确度和稳定性方面的明显优势。 展开更多
关键词 结构动响应问题 BIRKHOFF方程 中点格式 保辛算法 摄动法
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部