Persistent flows are defined as network flows that persist over multiple time intervals and continue to exhibit activity over extended periods,which are critical for identifying long-term behaviors and subtle security...Persistent flows are defined as network flows that persist over multiple time intervals and continue to exhibit activity over extended periods,which are critical for identifying long-term behaviors and subtle security threats.Programmable switches provide line-rate packet processing to meet the requirements of high-speed network environments,yet they are fundamentally limited in computational and memory resources.Accurate and memoryefficient persistent flow detection on programmable switches is therefore essential.However,existing approaches often rely on fixed-window sketches or multiple sketches instances,which either suffer from insufficient temporal precision or incur substantial memory overhead,making them ineffective on programmable switches.To address these challenges,we propose SP-Sketch,an innovative sliding-window-based sketch that leverages a probabilistic update mechanism to emulate slot expiration without maintaining multiple sketch instances.This innovative design significantly reduces memory consumption while preserving high detection accuracy across multiple time intervals.We provide rigorous theoretical analyses of the estimation errors,deriving precise error bounds for the proposed method,and validate our approach through comprehensive implementations on both P4 hardware switches(with Intel Tofino ASIC)and software switches(i.e.,BMv2).Experimental evaluations using real-world traffic traces demonstrate that SP-Sketch outperforms traditional methods,improving accuracy by up to 20%over baseline sliding window approaches and enhancing recall by 5%compared to non-sliding alternatives.Furthermore,SP-Sketch achieves a significant reduction in memory utilization,reducing memory consumption by up to 65%compared to traditional methods,while maintaining a robust capability to accurately track persistent flow behavior over extended time periods.展开更多
The precise computation of nanoelectromechanical switches’(NEMS)multi-physical interactions requires advanced numerical models and is a crucial part of the development of micro-and nano-systems.This paper presents a ...The precise computation of nanoelectromechanical switches’(NEMS)multi-physical interactions requires advanced numerical models and is a crucial part of the development of micro-and nano-systems.This paper presents a novel compound numerical method to study the instability of a functionally graded(FG)beam-type NEMS,considering surface elasticity effects as stated by Gurtin-Murdoch theory in an Euler-Bernoulli beam.The presented method is based on a combination of the Method of Adjoints(MoA)together with the Bézier-based multistep technique.By utilizing the MoA,a boundary value problem(BVP)is turned into an initial value problem(IVP).The resulting IVP is then solved by employing a cost-efficient multi-step process.It is demonstrated that the mentioned method can arrive at a high level of accuracy.Furthermore,it is revealed that the stability of the presented methodology is far better than that of other common multi-step methods,such as Adams-Bashforth,particularly at higher step sizes.Finally,the effects of axially functionally graded(FG)properties on the pull-in phenomenon and the main design parameters of NEMS,including the detachment length,are inspected.It was shown that the main parameter of design is the modulus of elasticity of the material,as Silver(Ag),which had better mechanical properties,showed almost a 6%improvement compared to aluminum(Al).However,by applying the correct amount of material with sturdier surface parameters,such as Aluminum(Al),at certain points,the nanobeams’functionality can be improved even further by around 1.5%.展开更多
Cu metal and its oxides have attracted much attention for photocatalytic CO_(2)reduction reaction(CO_(2)RR),but the stability and effects of Cu oxidation states on CO_(2)RR are not fully understood.Cu^(x+)/Cu^(0)-load...Cu metal and its oxides have attracted much attention for photocatalytic CO_(2)reduction reaction(CO_(2)RR),but the stability and effects of Cu oxidation states on CO_(2)RR are not fully understood.Cu^(x+)/Cu^(0)-loaded graphitic carbon nitride(g-C_(3)N_(4))heterojunctions(Cu-CuO_(x)/g-C_(3)N_(4))are fabricated via a stepwise calcination method for efficient photocatalytic CO_(2)RR.Cu_(2)O is the main component of Cu-CuO_(x)and the mixed valence Cu includes Cu^(0),Cu^(+),and Cu^(2+),which play the role of charge trapping sites and redox catalytic centers during the photocatalytic CO_(2)RR process.The main products were CO and CH_(4)for the CO_(2)RR with production rates of 14.45 and 0.66μmol g^(-1)h^(-1)for CO and CH_(4),which were higher than those for g-C_(3)N_(4)and Cu-CuO_(x),respectively.This photocatalytic CO_(2)RR performance is attributed to the ultrafast switching of“Cu^(x+)−Cu^(0)”and e_(CB^(−))/h_(VB^(+))trapping transformation in Cu-CuO_(x)benefited from the built-in IEF between Cu-CuO_(x)and g-C_(3)N_(4),increasing the efficient photogenerated e_(CB^(−)),and enabling the stability of Cu-CuO_(x)/g-C_(3)N_(4).Cu^(x+)adsorbed by H_(2)O works as the electron trapping site to change to Cu^(0)and switch to the hole trapping site;Cu^(0)works as the hole trapping site to change to Cu^(x+)and switch to the electron trapping site,causing the CO_(2)RR of the adsorbed CO_(2).Moreover,the coordinated Cu^(0)and Cu^(+)species facilitate the activation of the adsorbed CO_(2)and^(∗)CO generation,these adsorbed^(∗)CO on Cu^(0)and Cu^(+)detected by in-situ DRIFTS quickly transformed to^(∗)CHO with a lower energy barrier benefited from the mixed Cu^(0)/Cu^(+)active sites during CORR to produce CH_(4).This finding provides a new insight into the influence of mixed valence Cu during photocatalytic CO_(2)RR.展开更多
Convertible hydrogel supercapacitors have emerged as promising energy storage devices in switches,diodes,and transistors.However,inherent weaknesses in ionic conductivity,mechanical properties,and water retention of h...Convertible hydrogel supercapacitors have emerged as promising energy storage devices in switches,diodes,and transistors.However,inherent weaknesses in ionic conductivity,mechanical properties,and water retention of hydrogel electrolytes seriously hinder their development.Inspired by the hardness conversion of sea cucumber skin,a conductivity and mechanics dual-tunable salt gel electrolyte is successfully designed.The salt gel presents a reversible switching of conductors-insulators and a mechanical regulation between softness and hardness via the dissolution-crystallization transition of sodium acetate trihydrate(SAT).Meanwhile,the salt gels spontaneously grow a layer of“armor”through saturated phase-change salt crystals effectively reducing water evaporation of hydrogel electrolytes.Furthermore,this phase-change soft-rigid conversion strategy will expand the capabilities of gel-based flexible supercapacitors(area capacitance:258.6 mF cm^(-2)),and the capacitance retention rate could still reach 86.9%after 3000 cycles at high temperatures.Moreover,the salt gel supercapacitor is potentially used in over-heat alarm systems.It is anticipated that the strategy of conductivity and mechanics of dual-tunable salt gel would provide a new perspective on the development of energy storage devices,wearable electronics,and flexible robots.展开更多
The thermal switch plays a crucial role in regulating system temperature,protecting devices from overheating,and improving energy efficiency.Achieving a high thermal switching ratio is essential for its practical appl...The thermal switch plays a crucial role in regulating system temperature,protecting devices from overheating,and improving energy efficiency.Achieving a high thermal switching ratio is essential for its practical application.In this study,by utilizing first-principles calculations and semi-classical Boltzmann transport theory,it is found that hole doping with an experimentally achievable concentration of 1.83×10^(14)cm^(-2)can reduce the lattice thermal conductivity of monolayer MoS_(2) from 151.79 W·m^(-1)·K^(-1)to 12.19 W·m^(-1)·K^(-1),achieving a high thermal switching ratio of 12.5.The achieved switching ratio significantly surpasses previously reported values,including those achieved by extreme strain methods.This phenomenon mainly arises from the enhanced lattice anharmonicity,which is primarily contributed by the S atoms.These results indicate that hole doping is an effective method for tuning the lattice thermal conductivity of materials,and demonstrate that monolayer MoS_(2) is a potential candidate material for thermal switches.展开更多
The sampling problem for input-queued (IQ) randomized scheduling algorithms is analyzed.We observe that if the current scheduling decision is a maximum weighted matching (MWM),the MWM for the next slot mostly falls in...The sampling problem for input-queued (IQ) randomized scheduling algorithms is analyzed.We observe that if the current scheduling decision is a maximum weighted matching (MWM),the MWM for the next slot mostly falls in those matchings whose weight is closed to the current MWM.Using this heuristic,a novel randomized algorithm for IQ scheduling,named genetic algorithm-like scheduling algorithm (GALSA),is proposed.Evolutionary strategy is used for choosing sampling points in GALSA.GALSA works with only O(N) samples which means that GALSA has lower complexity than the famous randomized scheduling algorithm,APSARA.Simulation results show that the delay performance of GALSA is quite competitive with respect to that of APSARA.展开更多
A model for theoretical analysis of nonlinear (or high gain) mode of photoconductive semiconductor switches (PCSS's) is proposed.The switching transition of high gain PCSS's can be described with an optically...A model for theoretical analysis of nonlinear (or high gain) mode of photoconductive semiconductor switches (PCSS's) is proposed.The switching transition of high gain PCSS's can be described with an optically activated charge domain. The switching characteristics including rise time,delay and their relationship to electric field strength,optical trigger energies are discussed.The formation and radiation transit,accumulation of the charge domain are related with the triggering and sustaining phases of PCSS's,respectively.The results of the mathematical model on this mechanism agree with experimental results.展开更多
The experiment results of ultrawide band electromagnetic radiation with DC biased GaAs photoconductive semiconductor switch combining double ridge horn antenna triggered by high repeat frequency femto-second laser pul...The experiment results of ultrawide band electromagnetic radiation with DC biased GaAs photoconductive semiconductor switch combining double ridge horn antenna triggered by high repeat frequency femto-second laser pulse are reported.The GaAs switches are insulated by solid multi-layer transparent dielectrics and the distance of two electrodes is 3mm.The electrode material of the switch is ohmic contact through alloy technics with definite proportion of Au/Ge/Ni.This switch and double ridge horn antenna are integrated and the receive antenna is connected with the test instrument.From receiving antenna,ultra fast electrical pulse of 200ps rise time and 500ps pulse width is obtained,the repetition rate of the pulse is about 82MHz and the frequency spectrum is in the range of 4.7MHz~14GHz.The radiation characteristic of the ultrafast electrical pulse is analyzed.展开更多
GaAs PIN diodes optimized for X-band low loss and high isolation switch application are presented. The impact of diode physical characteristics and electrical parameters on switch performance is discussed. A new struc...GaAs PIN diodes optimized for X-band low loss and high isolation switch application are presented. The impact of diode physical characteristics and electrical parameters on switch performance is discussed. A new structure for GaAs PIN diodes is proposed and the fabrication process is described. GaAs PIN diodes with an on-state resistance of 〈2. 2Ω and off-state capacitance -〈20fF in the range of 100MHz to 12.1GHz are obtained.展开更多
Achieving efficient adsorption and desorption processes by controllably tuning the properties of adsorbents at different technical stages is extremely attractive.However,it is difficult for traditional adsorbents to r...Achieving efficient adsorption and desorption processes by controllably tuning the properties of adsorbents at different technical stages is extremely attractive.However,it is difficult for traditional adsorbents to reach the target because of their fixed active sites.Herein,we report on the fabrication of a smart adsorbent,which was achieved by introducing photoresponsive azobenzene derivatives with cis/trans isomers to Ce-doped mesoporous silica.These photoresponsive groups serve as “molecular switches”by sheltering and exposing active sites,leading to efficient adsorption and desorption.Ce is also doped to provide additional active sites in order to enhance the adsorption performance.The results show that the cis isomers effectively shelter the active sites,leading to the selective adsorption of methylene blue(MB)over brilliant blue(BB),while the trans isomers completely expose the active sites,resulting in the convenient release of the adsorbates.Both selective adsorption and efficient desorption can be realized controllably by these smart adsorbents through photostimulation.Moreover,the performance of the obtained materials is well maintained after five cycles.展开更多
A mode for the periodicity and weakening surge in semi-insulating GaAs photoconductive semiconductor switches is proposed based on the transferred-electron effect. It is shown that the periodicity and weakening surge ...A mode for the periodicity and weakening surge in semi-insulating GaAs photoconductive semiconductor switches is proposed based on the transferred-electron effect. It is shown that the periodicity and weakening surge is caused by the interaction between the self-excitation of the resonant circuit and transferred electron oscillation of the switch. The bias electric field (larger than Gunn threshold) across the switch is modulated by the AC elec-tric field,when the instantaneous bias electric field E is swinging below Gunn electric field threshold ET but grea-ter than the sustaining field Es (the minimum electric field required to support the domain) at the time of the do-main reaching the anode, and then the delayed-dipole domain mode of switch is obtained. It is the photon-activated carriers that satisfy the requirement of charge domain formation on carrier concentration and device length prod-uct of 10^12 cm^-2,and the semi-insulating GaAs photoconductive semiconductor switch is essentially a type of pho-ton-activated charge domain device.展开更多
In terms of the coupled mode theory, microring resonance and electro-optic modulation princeple, a reasonable project is proposed for designing an electro-optic switch with the series-coupled multiple microring resona...In terms of the coupled mode theory, microring resonance and electro-optic modulation princeple, a reasonable project is proposed for designing an electro-optic switch with the series-coupled multiple microring resonators. The simulation and optimization are performed at the resonant wavelength of 1550 nm. The results are as follows: the core size of the microring is 1.6 μm×1.6 μm, the confined layer between the core and the electrode is 1.6 μm, the thickness of the electrode is 0.15 μm, the radius of the m...展开更多
The trigger characteristics of a multi-gap gas switch with double insulating layers,a square-groove electrode supporter and a UV pre-ionizing structure are investigated aided by a high sensitivity fiber-bundle array d...The trigger characteristics of a multi-gap gas switch with double insulating layers,a square-groove electrode supporter and a UV pre-ionizing structure are investigated aided by a high sensitivity fiber-bundle array detector, a UV fiber detector, and a framing camera, in addition to standard electrical diagnostics. The fiber-bundle-array detector is used to track the turn-on sequence of each electrode gap at a timing precision of 0.6 ns. Each fiber bundle, including five fibers with different azimuth angles, aims at the whole emitting area of each electrode gap and is fed to a photomultiplier tube. The UV fiber detector with a spectrum response of 260-320 nm,including a fused-quartz fiber of 200 μm in diameter and a solar-blinded photomultiplier tube, is adopted to study the effect of UV pre-ionizing on trigger characteristics. The framing camera,with a capacity of 4 frames per shot and an exposure time of 5 ns, is employed to capture the evolution of channel arcs. Based on the turn-on light signal of each electrode gap, the breakdown delay is divided into statistical delay and formative delay. A decrease in both of them, a smaller switch jitter and more channel arcs are observed with lower gas pressure. An increase in trigger voltage can reduce the statistical delay and its jitter, while higher trigger voltage has a relatively small influence on the formative delay and the number of channel arcs. With the UV pre-ionizing structure at 0.24 MPa gas pressure and 60 kV trigger voltage, the statistical delay and its jitter can be reduced by 1.8 ns and 0.67 ns, while the formative delay and its jitter can only be reduced by 0.5 ns and 0.25 ns.展开更多
In the typhoon adaptive observation based on conditional nonlinear optimal perturbation (CNOP), the ‘on-off’ switch caused by moist physical parameterization in prediction models prevents the conventional adjoint me...In the typhoon adaptive observation based on conditional nonlinear optimal perturbation (CNOP), the ‘on-off’ switch caused by moist physical parameterization in prediction models prevents the conventional adjoint method from providing correct gradient during the optimization process. To address this problem, the capture of CNOP, when the "on-off" switches are included in models, is treated as non-smooth optimization in this study, and the genetic algorithm (GA) is introduced. After detailed algorithm procedures are formulated using an idealized model with parameterization "on-off" switches in the forcing term, the impacts of "on-off" switches on the capture of CNOP are analyzed, and three numerical experiments are conducted to check the effectiveness of GA in capturing CNOP and to analyze the impacts of different initial populations on the optimization result. The result shows that GA is competent for the capture of CNOP in the context of the idealized model with parameterization ‘on-off’ switches in this study. Finally, the advantages and disadvantages of GA in capturing CNOP are analyzed in detail.展开更多
The influence of outside inertial shock combined with RF signal voltages on the properties of a shunt capacitive MEMS switch encapsulated in a low vacuum environment is analyzed considering the damping of the air arou...The influence of outside inertial shock combined with RF signal voltages on the properties of a shunt capacitive MEMS switch encapsulated in a low vacuum environment is analyzed considering the damping of the air around the MEMS switch membrane. An analytical expression that approximately computes the displacement induced by outside shock is obtained. According to the expression, the minimum required mechanical stiffness constant of an MEMS switch beam in some maximum tolerated insertion loss condition and some external inertial shock environment or the insertion loss induced by external inertial shock can also be obtained. The influence is also illustrated with an RF MEMS capacitive switch example,which shows that outside environment factors have to be taken into account when designing RF MEMS capacitive switches working in low vacuum. While encapsulating RF MEMS switches in low vacuum diminishes the air damping and improves the switch speed and operation voltage,the performances of a switch is incident to being influenced by outside environment. This study is very useful for the optimized design of RF MEMS capacitive switches working in low vacuum.展开更多
In this work, a dual-side parabolic structural(DSPS) multimode interference(MMI) thermo–optic(TO) waveguide switch is designed and fabricated by using novel low-loss fluorinated photopolymer materials. Comparing with...In this work, a dual-side parabolic structural(DSPS) multimode interference(MMI) thermo–optic(TO) waveguide switch is designed and fabricated by using novel low-loss fluorinated photopolymer materials. Comparing with the traditional dual-side linear structural(DSLS) MMI device, the effective length of the MMI coupling region proposed can be effectively reduced by 40%. The thermal stability of the waveguide material is analyzed, and the optical characteristics of the switching chip are simulated. The actual performances of the entire MMI switch are measured with an insertion loss of7 dB, switching power of 15 m W and an extinction ratio of 28 dB. In contrast to the traditional MMI optical switch, the new type of parabolic structural MMI TO waveguide switch exhibits lower power consumption and larger extinction ratio. The compact fluorinated polymer MMI TO switches are suitable well for realizing miniaturization, high-properties, and lower cost of photonic integrated circuits.展开更多
Multifunctional switchable materials are attracting tremendous interest because of their great application potential in signal processing,information encryption,and smart devices.Here,we reported an organic-inorganic ...Multifunctional switchable materials are attracting tremendous interest because of their great application potential in signal processing,information encryption,and smart devices.Here,we reported an organic-inorganic hybrid thermochromic ferroelastic crystal,[TMIm][CuCl_(4)](TMIm=1,1,3,3-tetramethylimidazolidinium),which undergoes two reversible phase transitions at 333 K and 419 K,respectively.Intriguingly,these three phases experience a remarkable ferroelastic-paraelastic-ferroelastic(2/m-mmm-2/m)transition,which remains relatively unexplored in ferroelastics.Moreover,the ferroelastic domains can be simultaneously switched under temperature and stress stimuli.Meanwhile,[TMIm][CuCl_(4)]exhibits thermochromic phenomenon,endowing it with extra spectral encryption possibilities during information processing.Combined with dielectric switching behavior,[TMIm][Cu Cl_(4)]are promising for practical applications in memory devices,next-generation sensors,and encryption technology.展开更多
Semi-insulating gallium arsenide (GaAs) photoconductive semiconductor switches (PCSS) have great potential for high voltage switching application, however, the utility is restricted by surface flashover which wouI...Semi-insulating gallium arsenide (GaAs) photoconductive semiconductor switches (PCSS) have great potential for high voltage switching application, however, the utility is restricted by surface flashover which wouId result in breakdown. In this paper, a model of photo-activated charge wave was proposed based on the theory of photo-activated charge domain (PACD) in GaAs PCSS, and moderate suppression of PACD formation by loading the semiconductor surface with dielectric material was investigated theoretically and experimentally. Current as high as 3.7 kA was obtained at 28 kV, implying that this method can effectively inhibit the surface flashover and improve the service life of DC charged GaAs PCSS.展开更多
In this paper, we propose a new design of all fiber optical switches by using a high finesse ring resonator (RR) side coupled Mach-Zehnder interferometer. We will show that by compensating the total loss in the RR the...In this paper, we propose a new design of all fiber optical switches by using a high finesse ring resonator (RR) side coupled Mach-Zehnder interferometer. We will show that by compensating the total loss in the RR the switching power can be decreased greatly and by loss, compensating the bistability effect in RR can be cancelled and the switching performance can be improved. In addition, we will show that by using Erbium doped fiber for fabricating the RR we can obtain switching power threshold in mW range.展开更多
Routing resources are the major bottlenecks in improving the performance and power consumption of the current FPGAs. Recently reported researches have shown that carbon nanotube field effect transistors(CNFETs) have c...Routing resources are the major bottlenecks in improving the performance and power consumption of the current FPGAs. Recently reported researches have shown that carbon nanotube field effect transistors(CNFETs) have considerable potentials for improving the delay and power consumption of the modern FPGAs. In this paper, hybrid CNFET-CMOS architecture is presented for FPGAs and then this architecture is evaluated to be used in modern FPGAs. In addition, we have designed and parameterized the CNFET-based FPGA switches and calibrated them for being utilized in FPGAs at 45 nm, 22 nm and 16 nm technology nodes.Simulation results show that the CNFET-based FPGA switches improve the current FPGAs in terms of performance, power consumption and immunity to process and temperature variations. Simulation results and analyses also demonstrate that the performance of the FPGAs is improved about 30%, on average and the average and leakage power consumptions are reduced more than 6% and 98% respectively when the CNFET switches are used instead of MOSFET FPGA switches. Moreover, this technique leads to more than 20.31%smaller area. It is worth mentioning that the advantages of CNFET-based FPGAs are more considerable when the size of FPGAs grows and also when the technology node becomes smaller.展开更多
基金supported by the National Undergraduate Innovation and Entrepreneurship Training Program of China(Project No.202510559076)at Jinan University,a nationwide initiative administered by the Ministry of Educationthe National Natural Science Foundation of China(NSFC)under Grant No.62172189.
文摘Persistent flows are defined as network flows that persist over multiple time intervals and continue to exhibit activity over extended periods,which are critical for identifying long-term behaviors and subtle security threats.Programmable switches provide line-rate packet processing to meet the requirements of high-speed network environments,yet they are fundamentally limited in computational and memory resources.Accurate and memoryefficient persistent flow detection on programmable switches is therefore essential.However,existing approaches often rely on fixed-window sketches or multiple sketches instances,which either suffer from insufficient temporal precision or incur substantial memory overhead,making them ineffective on programmable switches.To address these challenges,we propose SP-Sketch,an innovative sliding-window-based sketch that leverages a probabilistic update mechanism to emulate slot expiration without maintaining multiple sketch instances.This innovative design significantly reduces memory consumption while preserving high detection accuracy across multiple time intervals.We provide rigorous theoretical analyses of the estimation errors,deriving precise error bounds for the proposed method,and validate our approach through comprehensive implementations on both P4 hardware switches(with Intel Tofino ASIC)and software switches(i.e.,BMv2).Experimental evaluations using real-world traffic traces demonstrate that SP-Sketch outperforms traditional methods,improving accuracy by up to 20%over baseline sliding window approaches and enhancing recall by 5%compared to non-sliding alternatives.Furthermore,SP-Sketch achieves a significant reduction in memory utilization,reducing memory consumption by up to 65%compared to traditional methods,while maintaining a robust capability to accurately track persistent flow behavior over extended time periods.
文摘The precise computation of nanoelectromechanical switches’(NEMS)multi-physical interactions requires advanced numerical models and is a crucial part of the development of micro-and nano-systems.This paper presents a novel compound numerical method to study the instability of a functionally graded(FG)beam-type NEMS,considering surface elasticity effects as stated by Gurtin-Murdoch theory in an Euler-Bernoulli beam.The presented method is based on a combination of the Method of Adjoints(MoA)together with the Bézier-based multistep technique.By utilizing the MoA,a boundary value problem(BVP)is turned into an initial value problem(IVP).The resulting IVP is then solved by employing a cost-efficient multi-step process.It is demonstrated that the mentioned method can arrive at a high level of accuracy.Furthermore,it is revealed that the stability of the presented methodology is far better than that of other common multi-step methods,such as Adams-Bashforth,particularly at higher step sizes.Finally,the effects of axially functionally graded(FG)properties on the pull-in phenomenon and the main design parameters of NEMS,including the detachment length,are inspected.It was shown that the main parameter of design is the modulus of elasticity of the material,as Silver(Ag),which had better mechanical properties,showed almost a 6%improvement compared to aluminum(Al).However,by applying the correct amount of material with sturdier surface parameters,such as Aluminum(Al),at certain points,the nanobeams’functionality can be improved even further by around 1.5%.
基金support of the National Natu-ral Science Foundation of China(No.62004143,22476058,and 22076052)the Key R&D Program of Hubei Province(No.2022BAA084).
文摘Cu metal and its oxides have attracted much attention for photocatalytic CO_(2)reduction reaction(CO_(2)RR),but the stability and effects of Cu oxidation states on CO_(2)RR are not fully understood.Cu^(x+)/Cu^(0)-loaded graphitic carbon nitride(g-C_(3)N_(4))heterojunctions(Cu-CuO_(x)/g-C_(3)N_(4))are fabricated via a stepwise calcination method for efficient photocatalytic CO_(2)RR.Cu_(2)O is the main component of Cu-CuO_(x)and the mixed valence Cu includes Cu^(0),Cu^(+),and Cu^(2+),which play the role of charge trapping sites and redox catalytic centers during the photocatalytic CO_(2)RR process.The main products were CO and CH_(4)for the CO_(2)RR with production rates of 14.45 and 0.66μmol g^(-1)h^(-1)for CO and CH_(4),which were higher than those for g-C_(3)N_(4)and Cu-CuO_(x),respectively.This photocatalytic CO_(2)RR performance is attributed to the ultrafast switching of“Cu^(x+)−Cu^(0)”and e_(CB^(−))/h_(VB^(+))trapping transformation in Cu-CuO_(x)benefited from the built-in IEF between Cu-CuO_(x)and g-C_(3)N_(4),increasing the efficient photogenerated e_(CB^(−)),and enabling the stability of Cu-CuO_(x)/g-C_(3)N_(4).Cu^(x+)adsorbed by H_(2)O works as the electron trapping site to change to Cu^(0)and switch to the hole trapping site;Cu^(0)works as the hole trapping site to change to Cu^(x+)and switch to the electron trapping site,causing the CO_(2)RR of the adsorbed CO_(2).Moreover,the coordinated Cu^(0)and Cu^(+)species facilitate the activation of the adsorbed CO_(2)and^(∗)CO generation,these adsorbed^(∗)CO on Cu^(0)and Cu^(+)detected by in-situ DRIFTS quickly transformed to^(∗)CHO with a lower energy barrier benefited from the mixed Cu^(0)/Cu^(+)active sites during CORR to produce CH_(4).This finding provides a new insight into the influence of mixed valence Cu during photocatalytic CO_(2)RR.
基金National Natural Science Foundation of China(No.52303144)Department of Science and Technology of Jilin Province(Nos YDZJ202301ZYTS295 and 20230508188RC)。
文摘Convertible hydrogel supercapacitors have emerged as promising energy storage devices in switches,diodes,and transistors.However,inherent weaknesses in ionic conductivity,mechanical properties,and water retention of hydrogel electrolytes seriously hinder their development.Inspired by the hardness conversion of sea cucumber skin,a conductivity and mechanics dual-tunable salt gel electrolyte is successfully designed.The salt gel presents a reversible switching of conductors-insulators and a mechanical regulation between softness and hardness via the dissolution-crystallization transition of sodium acetate trihydrate(SAT).Meanwhile,the salt gels spontaneously grow a layer of“armor”through saturated phase-change salt crystals effectively reducing water evaporation of hydrogel electrolytes.Furthermore,this phase-change soft-rigid conversion strategy will expand the capabilities of gel-based flexible supercapacitors(area capacitance:258.6 mF cm^(-2)),and the capacitance retention rate could still reach 86.9%after 3000 cycles at high temperatures.Moreover,the salt gel supercapacitor is potentially used in over-heat alarm systems.It is anticipated that the strategy of conductivity and mechanics of dual-tunable salt gel would provide a new perspective on the development of energy storage devices,wearable electronics,and flexible robots.
基金supported by the National Natural Science Foundation of China(Grant Nos.12104145 and 12374040)。
文摘The thermal switch plays a crucial role in regulating system temperature,protecting devices from overheating,and improving energy efficiency.Achieving a high thermal switching ratio is essential for its practical application.In this study,by utilizing first-principles calculations and semi-classical Boltzmann transport theory,it is found that hole doping with an experimentally achievable concentration of 1.83×10^(14)cm^(-2)can reduce the lattice thermal conductivity of monolayer MoS_(2) from 151.79 W·m^(-1)·K^(-1)to 12.19 W·m^(-1)·K^(-1),achieving a high thermal switching ratio of 12.5.The achieved switching ratio significantly surpasses previously reported values,including those achieved by extreme strain methods.This phenomenon mainly arises from the enhanced lattice anharmonicity,which is primarily contributed by the S atoms.These results indicate that hole doping is an effective method for tuning the lattice thermal conductivity of materials,and demonstrate that monolayer MoS_(2) is a potential candidate material for thermal switches.
文摘The sampling problem for input-queued (IQ) randomized scheduling algorithms is analyzed.We observe that if the current scheduling decision is a maximum weighted matching (MWM),the MWM for the next slot mostly falls in those matchings whose weight is closed to the current MWM.Using this heuristic,a novel randomized algorithm for IQ scheduling,named genetic algorithm-like scheduling algorithm (GALSA),is proposed.Evolutionary strategy is used for choosing sampling points in GALSA.GALSA works with only O(N) samples which means that GALSA has lower complexity than the famous randomized scheduling algorithm,APSARA.Simulation results show that the delay performance of GALSA is quite competitive with respect to that of APSARA.
文摘A model for theoretical analysis of nonlinear (or high gain) mode of photoconductive semiconductor switches (PCSS's) is proposed.The switching transition of high gain PCSS's can be described with an optically activated charge domain. The switching characteristics including rise time,delay and their relationship to electric field strength,optical trigger energies are discussed.The formation and radiation transit,accumulation of the charge domain are related with the triggering and sustaining phases of PCSS's,respectively.The results of the mathematical model on this mechanism agree with experimental results.
文摘The experiment results of ultrawide band electromagnetic radiation with DC biased GaAs photoconductive semiconductor switch combining double ridge horn antenna triggered by high repeat frequency femto-second laser pulse are reported.The GaAs switches are insulated by solid multi-layer transparent dielectrics and the distance of two electrodes is 3mm.The electrode material of the switch is ohmic contact through alloy technics with definite proportion of Au/Ge/Ni.This switch and double ridge horn antenna are integrated and the receive antenna is connected with the test instrument.From receiving antenna,ultra fast electrical pulse of 200ps rise time and 500ps pulse width is obtained,the repetition rate of the pulse is about 82MHz and the frequency spectrum is in the range of 4.7MHz~14GHz.The radiation characteristic of the ultrafast electrical pulse is analyzed.
文摘GaAs PIN diodes optimized for X-band low loss and high isolation switch application are presented. The impact of diode physical characteristics and electrical parameters on switch performance is discussed. A new structure for GaAs PIN diodes is proposed and the fabrication process is described. GaAs PIN diodes with an on-state resistance of 〈2. 2Ω and off-state capacitance -〈20fF in the range of 100MHz to 12.1GHz are obtained.
基金This work was supported by the National Science Fund for Excellent Young Scholars(21722606)the National Natural Science Foundation of China(21676138,21878149,21808110,and 21576137)+1 种基金the China Postdoctoral Science Foundation(2018M632295)the Six Talent Plan(2016XCL031).
文摘Achieving efficient adsorption and desorption processes by controllably tuning the properties of adsorbents at different technical stages is extremely attractive.However,it is difficult for traditional adsorbents to reach the target because of their fixed active sites.Herein,we report on the fabrication of a smart adsorbent,which was achieved by introducing photoresponsive azobenzene derivatives with cis/trans isomers to Ce-doped mesoporous silica.These photoresponsive groups serve as “molecular switches”by sheltering and exposing active sites,leading to efficient adsorption and desorption.Ce is also doped to provide additional active sites in order to enhance the adsorption performance.The results show that the cis isomers effectively shelter the active sites,leading to the selective adsorption of methylene blue(MB)over brilliant blue(BB),while the trans isomers completely expose the active sites,resulting in the convenient release of the adsorbates.Both selective adsorption and efficient desorption can be realized controllably by these smart adsorbents through photostimulation.Moreover,the performance of the obtained materials is well maintained after five cycles.
文摘A mode for the periodicity and weakening surge in semi-insulating GaAs photoconductive semiconductor switches is proposed based on the transferred-electron effect. It is shown that the periodicity and weakening surge is caused by the interaction between the self-excitation of the resonant circuit and transferred electron oscillation of the switch. The bias electric field (larger than Gunn threshold) across the switch is modulated by the AC elec-tric field,when the instantaneous bias electric field E is swinging below Gunn electric field threshold ET but grea-ter than the sustaining field Es (the minimum electric field required to support the domain) at the time of the do-main reaching the anode, and then the delayed-dipole domain mode of switch is obtained. It is the photon-activated carriers that satisfy the requirement of charge domain formation on carrier concentration and device length prod-uct of 10^12 cm^-2,and the semi-insulating GaAs photoconductive semiconductor switch is essentially a type of pho-ton-activated charge domain device.
基金supported by the National Natural ScienceFoundation of China (60706011)the National "973" Project ofChina(2006CB302803)+1 种基金the Fund of Chinese Ministry of Educa-tion (20070183087)the Fund of Science and Technology ofJilin Province of China(20080125).
文摘In terms of the coupled mode theory, microring resonance and electro-optic modulation princeple, a reasonable project is proposed for designing an electro-optic switch with the series-coupled multiple microring resonators. The simulation and optimization are performed at the resonant wavelength of 1550 nm. The results are as follows: the core size of the microring is 1.6 μm×1.6 μm, the confined layer between the core and the electrode is 1.6 μm, the thickness of the electrode is 0.15 μm, the radius of the m...
基金supported by National Natural Science Foundation of China(No.11105109)
文摘The trigger characteristics of a multi-gap gas switch with double insulating layers,a square-groove electrode supporter and a UV pre-ionizing structure are investigated aided by a high sensitivity fiber-bundle array detector, a UV fiber detector, and a framing camera, in addition to standard electrical diagnostics. The fiber-bundle-array detector is used to track the turn-on sequence of each electrode gap at a timing precision of 0.6 ns. Each fiber bundle, including five fibers with different azimuth angles, aims at the whole emitting area of each electrode gap and is fed to a photomultiplier tube. The UV fiber detector with a spectrum response of 260-320 nm,including a fused-quartz fiber of 200 μm in diameter and a solar-blinded photomultiplier tube, is adopted to study the effect of UV pre-ionizing on trigger characteristics. The framing camera,with a capacity of 4 frames per shot and an exposure time of 5 ns, is employed to capture the evolution of channel arcs. Based on the turn-on light signal of each electrode gap, the breakdown delay is divided into statistical delay and formative delay. A decrease in both of them, a smaller switch jitter and more channel arcs are observed with lower gas pressure. An increase in trigger voltage can reduce the statistical delay and its jitter, while higher trigger voltage has a relatively small influence on the formative delay and the number of channel arcs. With the UV pre-ionizing structure at 0.24 MPa gas pressure and 60 kV trigger voltage, the statistical delay and its jitter can be reduced by 1.8 ns and 0.67 ns, while the formative delay and its jitter can only be reduced by 0.5 ns and 0.25 ns.
基金Application investigation of conditional nonlinear optimal perturbation in typhoon adaptive observation (40830955)
文摘In the typhoon adaptive observation based on conditional nonlinear optimal perturbation (CNOP), the ‘on-off’ switch caused by moist physical parameterization in prediction models prevents the conventional adjoint method from providing correct gradient during the optimization process. To address this problem, the capture of CNOP, when the "on-off" switches are included in models, is treated as non-smooth optimization in this study, and the genetic algorithm (GA) is introduced. After detailed algorithm procedures are formulated using an idealized model with parameterization "on-off" switches in the forcing term, the impacts of "on-off" switches on the capture of CNOP are analyzed, and three numerical experiments are conducted to check the effectiveness of GA in capturing CNOP and to analyze the impacts of different initial populations on the optimization result. The result shows that GA is competent for the capture of CNOP in the context of the idealized model with parameterization ‘on-off’ switches in this study. Finally, the advantages and disadvantages of GA in capturing CNOP are analyzed in detail.
文摘The influence of outside inertial shock combined with RF signal voltages on the properties of a shunt capacitive MEMS switch encapsulated in a low vacuum environment is analyzed considering the damping of the air around the MEMS switch membrane. An analytical expression that approximately computes the displacement induced by outside shock is obtained. According to the expression, the minimum required mechanical stiffness constant of an MEMS switch beam in some maximum tolerated insertion loss condition and some external inertial shock environment or the insertion loss induced by external inertial shock can also be obtained. The influence is also illustrated with an RF MEMS capacitive switch example,which shows that outside environment factors have to be taken into account when designing RF MEMS capacitive switches working in low vacuum. While encapsulating RF MEMS switches in low vacuum diminishes the air damping and improves the switch speed and operation voltage,the performances of a switch is incident to being influenced by outside environment. This study is very useful for the optimized design of RF MEMS capacitive switches working in low vacuum.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0402502)the National Natural Science Foundation of China(Grant Nos.61575076,61475061,61605057,and 61675087)the Jilin Provincial Industrial Innovation Special Fund Project,China(Grant No.2016C019)
文摘In this work, a dual-side parabolic structural(DSPS) multimode interference(MMI) thermo–optic(TO) waveguide switch is designed and fabricated by using novel low-loss fluorinated photopolymer materials. Comparing with the traditional dual-side linear structural(DSLS) MMI device, the effective length of the MMI coupling region proposed can be effectively reduced by 40%. The thermal stability of the waveguide material is analyzed, and the optical characteristics of the switching chip are simulated. The actual performances of the entire MMI switch are measured with an insertion loss of7 dB, switching power of 15 m W and an extinction ratio of 28 dB. In contrast to the traditional MMI optical switch, the new type of parabolic structural MMI TO waveguide switch exhibits lower power consumption and larger extinction ratio. The compact fluorinated polymer MMI TO switches are suitable well for realizing miniaturization, high-properties, and lower cost of photonic integrated circuits.
基金supported by the National Natural Science Foundation of China(Nos.21975114,11904151 and 22105094)。
文摘Multifunctional switchable materials are attracting tremendous interest because of their great application potential in signal processing,information encryption,and smart devices.Here,we reported an organic-inorganic hybrid thermochromic ferroelastic crystal,[TMIm][CuCl_(4)](TMIm=1,1,3,3-tetramethylimidazolidinium),which undergoes two reversible phase transitions at 333 K and 419 K,respectively.Intriguingly,these three phases experience a remarkable ferroelastic-paraelastic-ferroelastic(2/m-mmm-2/m)transition,which remains relatively unexplored in ferroelastics.Moreover,the ferroelastic domains can be simultaneously switched under temperature and stress stimuli.Meanwhile,[TMIm][CuCl_(4)]exhibits thermochromic phenomenon,endowing it with extra spectral encryption possibilities during information processing.Combined with dielectric switching behavior,[TMIm][Cu Cl_(4)]are promising for practical applications in memory devices,next-generation sensors,and encryption technology.
基金supported by the Key Project of National Natural Science Foundation of China(No.50837005)the National Science Foundation of China(Nos.10876026,51107099)+3 种基金the Foundation of the State Key Laboratory of Electrical Insulation for Power Equipment (No.EIPE09203)the Natural Science Foundation of Shaanxi Province(No.2010JM7003)the Scientific Research Program Funded by Shaanxi Provincial Education Department(No.11JK0540)the Foundation for Outstanding Doctoral Dissertation of Xi'an University of Technology(105-210904)
文摘Semi-insulating gallium arsenide (GaAs) photoconductive semiconductor switches (PCSS) have great potential for high voltage switching application, however, the utility is restricted by surface flashover which wouId result in breakdown. In this paper, a model of photo-activated charge wave was proposed based on the theory of photo-activated charge domain (PACD) in GaAs PCSS, and moderate suppression of PACD formation by loading the semiconductor surface with dielectric material was investigated theoretically and experimentally. Current as high as 3.7 kA was obtained at 28 kV, implying that this method can effectively inhibit the surface flashover and improve the service life of DC charged GaAs PCSS.
文摘In this paper, we propose a new design of all fiber optical switches by using a high finesse ring resonator (RR) side coupled Mach-Zehnder interferometer. We will show that by compensating the total loss in the RR the switching power can be decreased greatly and by loss, compensating the bistability effect in RR can be cancelled and the switching performance can be improved. In addition, we will show that by using Erbium doped fiber for fabricating the RR we can obtain switching power threshold in mW range.
文摘Routing resources are the major bottlenecks in improving the performance and power consumption of the current FPGAs. Recently reported researches have shown that carbon nanotube field effect transistors(CNFETs) have considerable potentials for improving the delay and power consumption of the modern FPGAs. In this paper, hybrid CNFET-CMOS architecture is presented for FPGAs and then this architecture is evaluated to be used in modern FPGAs. In addition, we have designed and parameterized the CNFET-based FPGA switches and calibrated them for being utilized in FPGAs at 45 nm, 22 nm and 16 nm technology nodes.Simulation results show that the CNFET-based FPGA switches improve the current FPGAs in terms of performance, power consumption and immunity to process and temperature variations. Simulation results and analyses also demonstrate that the performance of the FPGAs is improved about 30%, on average and the average and leakage power consumptions are reduced more than 6% and 98% respectively when the CNFET switches are used instead of MOSFET FPGA switches. Moreover, this technique leads to more than 20.31%smaller area. It is worth mentioning that the advantages of CNFET-based FPGAs are more considerable when the size of FPGAs grows and also when the technology node becomes smaller.