期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
基于ST-YOLOX-S的多尺度煤矸石识别研究
1
作者 于大伟 邵明 +6 位作者 崔萌 姜坤坤 郭东东 王得全 陈彪 石宇含 张亚东 《有色金属(选矿部分)》 2025年第10期63-72,共10页
针对传统煤矸石分选方法存在的时效性及可靠性差等问题,提出了一种基于ST-YOLOX-S的多尺度煤矸石识别方法,利用机器视觉和图像处理技术,通过深度学习模型提取可见光图像特征,实现煤矸石的高效识别。在YOLOX-S的基础上,引入Swin-Transfor... 针对传统煤矸石分选方法存在的时效性及可靠性差等问题,提出了一种基于ST-YOLOX-S的多尺度煤矸石识别方法,利用机器视觉和图像处理技术,通过深度学习模型提取可见光图像特征,实现煤矸石的高效识别。在YOLOX-S的基础上,引入Swin-Transformer建立ST-YOLOX-S模型,以增强全局特征提取能力,并通过多尺度混合扩张卷积技术捕获不同尺度的特征信息,有效解决了煤矸石目标全局特征提取不足、尺度多样性和形态复杂性问题,显著提升了模型的检测性能。在基于选煤厂实际生产环境条件下的自建煤矸石数据集进行试验,结果表明,在95%置信度水平下,ST-YOLOX-S模型的预测精确度达到90.11%,相较于原始YOLOX-S模型提高了7.30个百分点。对比改进后的ST-YOLOX-S算法与其他主流目标检测算法,ST-YOLOX-S算法精确度为0.89%,参数量为7.80 MB,召回率为0.92%,显著优于YOLOV4、YOLOV5、RCNN和EfficientDet及CenterNet算法。消融试验进一步证实了ST-YOLOX-S模型中各个组件的有效性,在添加了多尺度混合扩张卷积和替换Swin-Transformer主干网络之后,YOLOX的精确度、召回率与FPS值分别提高了5.95%、10.84%和25.48%。最后,使用ST-YOLOX-S进行测试,改进后模型在检测目标时出现重框的现象更小,检测的概率值更高,表明其在煤矸石检测中的优越性能和实际应用价值,这对提高煤炭清洁高效利用具有重要意义。 展开更多
关键词 煤矸石分选 深度学习 YOLOX 机器视觉 Swin-Transformer模型
在线阅读 下载PDF
基于改进的YOLOX-Swin Transformer电梯交通模式识别
2
作者 陈柯 陈斌 郭瑞华 《沈阳化工大学学报》 2025年第1期98-104,共7页
群控电梯系统中的交通模式识别和客流量预测模型大多采用时间序列算法,导致基于时间序列的电梯交通模型缺乏时效性.在建模时只能针对特定客流量的楼宇采集数据,导致模型无法应对连续变化的客流量状况.为解决上述问题,提出一种深度学习... 群控电梯系统中的交通模式识别和客流量预测模型大多采用时间序列算法,导致基于时间序列的电梯交通模型缺乏时效性.在建模时只能针对特定客流量的楼宇采集数据,导致模型无法应对连续变化的客流量状况.为解决上述问题,提出一种深度学习算法——基于改进的YOLOX目标检测方法建立群控电梯的交通模式识别模型.该模型加入了自注意力机制Swin Transformer对输入图像进行特征提取,在特征融合阶段加入了Coordinate Attention用于提升检测精度.此外,在原有的SPP模块和IoU计算上进行了改进优化.该模型可以实时检测每个楼层的客流量状况,并且可以随时根据客流量状况选择适合当前的交通模式,增强了群控系统的时效性和识别的准确性. 展开更多
关键词 群控交通模式识别 深度学习 改进YOLOX Swin Transformer 注意力机制
在线阅读 下载PDF
基于SwinT-YOLOX模型的自动扶梯行人安全检测算法 被引量:3
3
作者 侯颖 杨林 +3 位作者 胡鑫 贺顺 宋婉莹 赵谦 《计算机工程》 CAS CSCD 北大核心 2024年第3期277-289,共13页
自动扶梯被广泛应用在公共场合,乘客摔倒事故如果不能被及时发现并处理,会造成严重的人身伤害,因此实现自动扶梯智能化监控管理势在必行。受自动扶梯运行环境复杂、行人多以及局部遮挡情况的影响,传统的人体姿态特征摔倒检测模型效果不... 自动扶梯被广泛应用在公共场合,乘客摔倒事故如果不能被及时发现并处理,会造成严重的人身伤害,因此实现自动扶梯智能化监控管理势在必行。受自动扶梯运行环境复杂、行人多以及局部遮挡情况的影响,传统的人体姿态特征摔倒检测模型效果不佳且检测速度减慢。融合Swin Transformer和YOLOX目标检测算法的优秀策略,提出一种基于SwinT-YOLOX网络模型的自动扶梯行人摔倒检测算法。采用Swin Transformer模型作为骨干网络,颈部网络使用添加注意力机制的YOLOX模型,进一步提升特征图的多样性和表达能力。此外,利用漏斗修正线性单元视觉激活函数构建CBF模块,改进颈部网络和Head网络结构,从而获得更优的特征检测性能。实验结果表明,针对自建扶梯行人摔倒数据库和网络采集实际扶梯行人摔倒事故,与AlphaPose、OpenPose、YOLOv5等算法相比,该算法检测性能明显提高,行人摔倒平均检测精度可以达到95.92%,检测帧率为24.08帧/s,能够快速、精准地检测到乘客摔倒事故发生,监控管理平台立刻采取安全急停措施以保证乘客安全。 展开更多
关键词 自动扶梯 摔倒检测 深度学习 YOLOX模型 Swin Transformer模型 漏斗修正线性单元视觉激活函数
在线阅读 下载PDF
融合Swin Transformer与CNN的露天矿车前障碍物智能检测算法 被引量:9
4
作者 江松 孔若男 +3 位作者 李鹏程 卢才武 章赛 李萌 《金属矿山》 CAS 北大核心 2023年第5期228-236,共9页
随着金属露天矿开采深度不断加大,道路运输条件愈发复杂,无人矿车行驶在道路上面临着各种障碍物的安全隐患,因此对无人矿卡障碍物智能检测提出了更高要求。提出了一种融合Swin Transformer与CNN的露天矿车前障碍物智能检测方法,障碍物... 随着金属露天矿开采深度不断加大,道路运输条件愈发复杂,无人矿车行驶在道路上面临着各种障碍物的安全隐患,因此对无人矿卡障碍物智能检测提出了更高要求。提出了一种融合Swin Transformer与CNN的露天矿车前障碍物智能检测方法,障碍物检测模型需要建立长期依赖关系来处理不断增加的图像数据,Swin Transformer可以关注全局语义信息,有利于长期建模。将Swin Transformer融入YOLOX模型的骨干特征提取网络中,充分利用多头注意力机制,对图像特征进行预处理,在加强特征提取网络中加入CBAM注意力机制模块,使模型在后续的特征提取中能够提取更多的表征信息。该模型使用的数据集均来自实地矿山,并采用数据增强方式进行预处理。经过实地矿山数据对比验证试验,结果表明:该方法能够有效识别背景复杂的金属露天矿区非结构化道路障碍物,检测精度达到91.57%m AP,检测速度达到56.86 fps,具有较好的小目标和多尺度目标检测性能,可以满足无人矿卡在金属露天矿区的高精度检测要求。 展开更多
关键词 金属露天矿 无人矿卡 YOLOX 卷积神经网络 Swin Transformer 障碍物检测
在线阅读 下载PDF
基于改进YOLOX的钢材表面缺陷检测算法 被引量:12
5
作者 熊聪 于安宁 +2 位作者 高兴华 原森浩 曾孝平 《电子测量技术》 北大核心 2023年第9期151-157,共7页
针对工业生产中钢材表面背景复杂导致缺陷检测精度低的问题,本文提出一种基于改进YOLOX的钢材表面缺陷检测算法。首先,引入了Swin Transformer模块来捕获缺陷钢材表面区域全局上下文信息并提取更多差异化特征;其次,采用加权双向特征金... 针对工业生产中钢材表面背景复杂导致缺陷检测精度低的问题,本文提出一种基于改进YOLOX的钢材表面缺陷检测算法。首先,引入了Swin Transformer模块来捕获缺陷钢材表面区域全局上下文信息并提取更多差异化特征;其次,采用加权双向特征金字塔网络(BiFPN),能够方便、快速的进行跨尺度特征融合;最后,对原始目标定位损失函数进行改进,建立了一种融合边界框中心位置的CIoU损失函数从而实现目标框高精度定位。实验表明,算法在NEU-DET数据集上的mAP为80.7%,检测精度相较于原始YOLOX-S网络提高了6.2%,同时也明显高于一些其他主流算法,具有较高的准确率和实用性。 展开更多
关键词 钢材表面 缺陷检测 YOLOX BiFPN Swin Transformer
原文传递
基于改进YOLOX的自然环境下核桃识别算法研究 被引量:1
6
作者 钟正扬 云利军 +1 位作者 杨璇玺 陈载清 《河南农业科学》 北大核心 2024年第1期152-161,共10页
针对现有目标检测算法对自然环境下核桃识别存在漏检、误检等问题,提出了一种基于Swin Transformer多层特征融合改进的YOLOX-S核桃识别算法。首先,在主干特征提取网络中引入基于Swin Transformer的多层特征融合模块,借助Swin Transforme... 针对现有目标检测算法对自然环境下核桃识别存在漏检、误检等问题,提出了一种基于Swin Transformer多层特征融合改进的YOLOX-S核桃识别算法。首先,在主干特征提取网络中引入基于Swin Transformer的多层特征融合模块,借助Swin Transformer的多头注意力机制对小目标的特征信息进行提取并与特征图进行融合,可以有效解决因网络层数加深导致的高层特征图中小目标特征信息丢失问题;其次,为了提高算法的检测精度,引入更高效的Repblock模块对原网络中的CSP模块进行替换;最后,为了提高下采样效果,使用更为优秀的Transition Block模块作为主干特征提取网络的下采样模块。结果表明,改进后的YOLOX-S模型在采集的自然环境下核桃数据集上平均精度AP50达到96.72%,分别比Faster-RCNN、YOLOv5-S、YOLOX-S算法提高7.36、1.38、0.62百分点,检测速度达到46 f/s,模型参数大小为20.55 M。改进后的YOLOX-S算法具有更好的精度,改善了漏检和误检问题,对自然环境下的核桃有更好的识别效果。 展开更多
关键词 核桃识别 Swin Transformer 多层特征融合模块 YOLOX-S 深度学习
在线阅读 下载PDF
基于YOLOX和Swin Transformer的车载红外目标检测 被引量:12
7
作者 楼哲航 罗素云 《红外技术》 CSCD 北大核心 2022年第11期1167-1175,共9页
红外图像因为存在噪声大、对比度不佳等问题,容易导致目标检测时的精度降低,本文结合YOLOX和Swin Transformer,提出了一种改进的YOLOX的模型。改进的模型采用Swin Transformer替换YOLOX中的CSPDarknet主干提取网络,减少YOLOX中Neck和Hea... 红外图像因为存在噪声大、对比度不佳等问题,容易导致目标检测时的精度降低,本文结合YOLOX和Swin Transformer,提出了一种改进的YOLOX的模型。改进的模型采用Swin Transformer替换YOLOX中的CSPDarknet主干提取网络,减少YOLOX中Neck和Head部分的激活函数以及标准化层,以提高特征的提取能力,优化网络结构。对改进的模型在艾瑞光电数据集和FILR数据集上均进行了测试,实验结果显示,改进后的YOLOX网络,在两个数据集上的平均检测精度都有明显提升,更加适合红外图像的目标检测。 展开更多
关键词 目标检测 红外图像 YOLOX Swin Transformer
在线阅读 下载PDF
改进YOLOX Tiny与DeepSort相结合的多目标跟踪算法 被引量:2
8
作者 叶文韬 刘钧 李登峰 《西安工业大学学报》 CAS 2023年第3期248-259,共12页
针对多目标跟踪时有发生误检、漏检等情况,提出了CSD YOLOX Tiny的多目标跟踪算法。在骨干网络中搭建结合三卷积的跨阶段局部Swin Transformer Block结构,提升网络模型对全局和上下文信息的捕获能力。在网络中引入组归一化,加快网络模... 针对多目标跟踪时有发生误检、漏检等情况,提出了CSD YOLOX Tiny的多目标跟踪算法。在骨干网络中搭建结合三卷积的跨阶段局部Swin Transformer Block结构,提升网络模型对全局和上下文信息的捕获能力。在网络中引入组归一化,加快网络模型收敛速度并提升跟踪精度;采用坐标注意力机制对不同通道特征之间的相关信息进行有效整合,提升网络模型对感兴趣区域特征的获取能力。实验结果表明:提出的多目标跟踪算法跟踪精度提升了2.36%,达到56.38%。在保证网络模型参数量较少、计算量较小的情况下,提出的跟踪算法较好地改善误检和漏检问题,相比于YOLOX Tiny DeepSort算法误检、漏检数量分别减少了811、1574个,能满足常规设备实时高效的多目标跟踪任务需求。 展开更多
关键词 多目标跟踪 YOLOX Tiny网络 Swin Transformer网络 组归一化 坐标注意力机制 DeepSort算法
在线阅读 下载PDF
一种改进YOLOX_S的火焰烟雾检测算法 被引量:8
9
作者 谢康康 朱文忠 +1 位作者 肖顺兴 谢林森 《科学技术与工程》 北大核心 2024年第8期3298-3307,共10页
针对目前在火灾预警方面还存在火焰烟雾检测效果差、误报率高等问题,在YOLOX框架下提出改进YOLOX_S目标检测算法。首先在数据集建立方面,采用的数据集包括Bilkent University公开的数据集和部分自建数据集,共计9621张图片。并且通过对... 针对目前在火灾预警方面还存在火焰烟雾检测效果差、误报率高等问题,在YOLOX框架下提出改进YOLOX_S目标检测算法。首先在数据集建立方面,采用的数据集包括Bilkent University公开的数据集和部分自建数据集,共计9621张图片。并且通过对数据集采用Mosaic数据增强的方式,增加数据的多样性。其次对backbone部分采用swin-T骨干网络来代替原来的CSPDarkNet骨干网络,能够更好的捕捉不同尺度下的特征,有效地提升了目标检测的精度。然后对网络模型引入加权双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)特征融合网络,提高检测的效率和网络模型的适应性,在复杂背景下同样可以保持较高的检测精度。最后引入CA注意力机制来加强此算法的特征提取能力。经过对比实验表明,改进后的YOLOX_S的火焰烟雾检测算法具有较高准确性,其mAP@0.5(预测框与真实框重合程度的阈值为0.5时的平均检测精度)达到81.5%,相比原网络提高了5.3%。改进后的YOLOX_S网络模型在火焰烟雾检测方面具有更高准确性和更低的误报率。 展开更多
关键词 YOLOX swin transformer 加权双向特征金字塔网络(BiFPN) 火焰烟雾检测 注意力机制
在线阅读 下载PDF
基于Swin-Transformer的YOLOX交通标志检测 被引量:5
10
作者 嵇文 刘全金 +3 位作者 黄崇文 杨瑞 黄汇磊 徐光豪 《无线电通信技术》 2023年第3期547-555,共9页
交通标志检测是驾驶辅助系统和自动驾驶系统的关键因素之一。在交通标志检测过程中,交通标志距离不同导致目标尺度变化很大,远距离小尺度交通标志对基于卷积网络的目标检测器提出了巨大挑战。YOLOX-Swin算法将Swin-Transformer作为YOLO... 交通标志检测是驾驶辅助系统和自动驾驶系统的关键因素之一。在交通标志检测过程中,交通标志距离不同导致目标尺度变化很大,远距离小尺度交通标志对基于卷积网络的目标检测器提出了巨大挑战。YOLOX-Swin算法将Swin-Transformer作为YOLOX的骨干网络以提取交通标志图像特征,通过移动窗口获取足够的全局上下文信息,并利用多头自注意力机制提取更多差异化特征;利用YOLOX自身的路径增强特征金字塔网络(Path Aggregation Feature Pyramid Network, PAFPN)提取、融合包括交通标志低层信息在内的多尺度特征信息,提升小目标交通标志检测精度。由于小目标交通标志在图像中所占像素较少,同时考虑到Transformer需要的训练样本多于卷积网络,在原本的复制粘贴法上进行改进,增加交通标志样本数量,以进一步提高交通标志检测精度。在TT100K数据集上的测试结果表明,所提目标检测方法较其他几种方法具有更高的交通标志检测精度,能满足交通标志检测准确性和实时性要求。 展开更多
关键词 深度学习 YOLOX Swin-Transformer 小目标检测 复制粘贴法
在线阅读 下载PDF
基于多层注意力机制的口罩佩戴检测算法改进 被引量:1
11
作者 周蕾 陈冠宇 钟海莲 《电子器件》 CAS 北大核心 2023年第6期1652-1660,共9页
针对已有的对于口罩的目标检测算法中存在的问题,如对小目标检测精度低,复杂场景下出现漏检等问题,提出了一种基于多层注意力机制的口罩佩戴检测算法YOLOX-l-sd。通过在骨干网络中添加Swin Transformer的特征层来提升目标检测算法的性能... 针对已有的对于口罩的目标检测算法中存在的问题,如对小目标检测精度低,复杂场景下出现漏检等问题,提出了一种基于多层注意力机制的口罩佩戴检测算法YOLOX-l-sd。通过在骨干网络中添加Swin Transformer的特征层来提升目标检测算法的性能,加入多层注意力机制提高特征提取效果以及减少计算量,采用DIOU损失函数提升模型的精度,采用DW卷积以进一步减少计算量。实验结果表明,相比原YOLOX-l模型,改进后的模型在精度上提高了2.45%,达到了预期的效果。 展开更多
关键词 YOLOX Swin Transformer 口罩检测 多层注意力机制
在线阅读 下载PDF
基于YOLOX-s的农业害虫检测研究 被引量:5
12
作者 张剑飞 柯赛 《计算机技术与发展》 2023年第5期208-213,共6页
针对现有目标检测算法难以应对现代农业环境下多种类害虫高精度检测的问题,提出了一种基于Swin-Transformer和YOLOX-s改进的ST-YOLOX-s目标检测模型,实现对30类常见害虫的有效目标检测工作。为解决YOLOX-s模型对小型目标害虫检测效果不... 针对现有目标检测算法难以应对现代农业环境下多种类害虫高精度检测的问题,提出了一种基于Swin-Transformer和YOLOX-s改进的ST-YOLOX-s目标检测模型,实现对30类常见害虫的有效目标检测工作。为解决YOLOX-s模型对小型目标害虫检测效果不佳的问题,在YOLOX-s模型基础上添加P2特征尺度,提升模型对小型目标害虫的检测能力;为弥补卷积神经网络对通道信息关注薄弱的问题,将高效通道注意力模块添加到YOLOX-s的CSPLayer,强化卷积神经网络的特征提取能力;为探索高效自注意力机制下的模型全局特征学习能力,将添加图属性的层次化Swin-Transformer结合到网络模型,弥补卷积神经网络忽视全局特征的问题;最后通过α-CIoU回归定位损失来实现高精度检测定位。实验表明,ST-YOLOX-s在多种类害虫检测上具有更好的检测性能,最终AP50以及AP50-95检测结果分别达到92.27%和67.32%,相比较YOLOX-s模型检测精度分别提高了2.01%和1.91%。同时ST-YOLOX-s检测模型与其他主流模型相比检测精度也有显著优势。 展开更多
关键词 目标检测 YOLOX-s 害虫检测 Swin-Transformer 注意力机制
在线阅读 下载PDF
Road sub-surface defect detection based on gprMax forward simulation-sample generation and Swin Transformer-YOLOX
13
作者 Longjian LI Li YANG +2 位作者 Zhongyu HAO Xiaoli SUN Gongfa CHEN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第3期334-349,共16页
Training samples for deep learning networks are typically obtained through various field experiments,which require significant manpower,resource and time consumption.However,it is possible to utilize simulated data to... Training samples for deep learning networks are typically obtained through various field experiments,which require significant manpower,resource and time consumption.However,it is possible to utilize simulated data to augment the training samples.In this paper,by comparing the actual experimental model with the simulated model generated by the gprMax[1]forward simulation method,the feasibility of obtaining simulated samples through gprMax simulation is validated.Subsequently,the samples generated by gprMax forward simulation are used for training the network to detect objects in existing real samples.At the same time,aiming at the detection and intelligent recognition of road sub-surface defects,the Swin-YOLOX algorithm is introduced,and the excellence of the detection network,which is improved by augmenting the simulated samples with real samples,is further verified.By comparing the prediction performance of the object detection models,it is observed that the model trained with mixed samples achieved a recall of 94.74%and a mean average precision(maP)of 97.71%,surpassing the model trained only on real samples by 12.95%and 15.64%,respectively.The feasibility and excellence of training the model with mixed samples are confirmed.The potential of using a fusion of simulated and existing real samples instead of repeatedly acquiring new real samples by field experiment is demonstrated by this study,thereby improving detection efficiency,saving resources,and providing a new approach to the problem of multiple interpretations in ground penetrating radar(GPR)data. 展开更多
关键词 ground penetrating radar gprMax forward modeling sample generation swin-yolox object detection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部