期刊文献+
共找到11,413篇文章
< 1 2 250 >
每页显示 20 50 100
Millimeter-wave modeling based on transformer model for InP high electron mobility transistor
1
作者 ZHANG Ya-Xue ZHANG Ao GAO Jian-Jun 《红外与毫米波学报》 北大核心 2025年第4期534-539,共6页
In this paper,the small-signal modeling of the Indium Phosphide High Electron Mobility Transistor(InP HEMT)based on the Transformer neural network model is investigated.The AC S-parameters of the HEMT device are train... In this paper,the small-signal modeling of the Indium Phosphide High Electron Mobility Transistor(InP HEMT)based on the Transformer neural network model is investigated.The AC S-parameters of the HEMT device are trained and validated using the Transformer model.In the proposed model,the eight-layer transformer encoders are connected in series and the encoder layer of each Transformer consists of the multi-head attention layer and the feed-forward neural network layer.The experimental results show that the measured and modeled S-parameters of the HEMT device match well in the frequency range of 0.5-40 GHz,with the errors versus frequency less than 1%.Compared with other models,good accuracy can be achieved to verify the effectiveness of the proposed model. 展开更多
关键词 transformer model neural network high electron mobility transistor(HEMT) small signal model
在线阅读 下载PDF
基于特征融合Swin-Tiny Transformer的γ能谱识别方法
2
作者 顾威 孟献才 洪兵 《哈尔滨商业大学学报(自然科学版)》 2025年第2期161-168,共8页
核素识别作为当前核安全研究方向的焦点,其检测的准确性对于安全防护具有重要意义.为了解决放射性核素识别速度慢,准确率不高的问题,提出一种基于特征融合Swin-Tiny Transformer轻量级模型的核素识别方法.通过NaI探测器测量^(133)Ba、^(... 核素识别作为当前核安全研究方向的焦点,其检测的准确性对于安全防护具有重要意义.为了解决放射性核素识别速度慢,准确率不高的问题,提出一种基于特征融合Swin-Tiny Transformer轻量级模型的核素识别方法.通过NaI探测器测量^(133)Ba、^(60)Co、^(152)Eu、^(137)Cs等4种单个放射性核素的能谱数据,制作训练数据集;预处理阶段,采用格拉姆角场法、希尔伯特曲线法与Chirplet变换法将γ能谱信息转化二维图像,并运用特征融合方法更加凸显γ能谱信息特征;设计残差分组卷积模块,通过两个分支分别提取图像的局部和全局特征,并使用残差连接将分支信息进行有效聚合;使用利用NaI探测器采集以上4种放射性核素的混合γ能谱作为测试数据集进行识别验证.实验结果表明,模型的平均识别准确率达到了99.87%,F_(1)分数为99.88%,与其他算法相比,该算法不仅有效提高了放射源的安全防护,避免了辐射威胁,同时在保证识别速度的前提下,进一步提升了识别的准确性. 展开更多
关键词 核素识别 特征融合 残差分组卷积 格拉姆角场法 swin-tiny transformer CHIRPLET
在线阅读 下载PDF
A transformer-based model for predicting and analyzing light olefin yields in methanol-to-olefins process
3
作者 Yuping Luo Wenyang Wang +2 位作者 Yuyan Zhang Muxin Chen Peng Shao 《Chinese Journal of Chemical Engineering》 2025年第7期266-276,共11页
This study introduces an innovative computational framework leveraging the transformer architecture to address a critical challenge in chemical process engineering:predicting and optimizing light olefin yields in indu... This study introduces an innovative computational framework leveraging the transformer architecture to address a critical challenge in chemical process engineering:predicting and optimizing light olefin yields in industrial methanol-to-olefins(MTO)processes.Our approach integrates advanced machine learning techniques with chemical engineering principles to tackle the complexities of non-stationary,highly volatile production data in large-scale chemical manufacturing.The framework employs the maximal information coefficient(MIC)algorithm to analyze and select the significant variables from MTO process parameters,forming a robust dataset for model development.We implement a transformer-based time series forecasting model,enhanced through positional encoding and hyperparameter optimization,significantly improving predictive accuracy for ethylene and propylene yields.The model's interpretability is augmented by applying SHapley additive exPlanations(SHAP)to quantify and visualize the impact of reaction control variables on olefin yields,providing valuable insights for process optimization.Experimental results demonstrate that our model outperforms traditional statistical and machine learning methods in accuracy and interpretability,effectively handling nonlinear,non-stationary,highvolatility,and long-sequence data challenges in olefin yield prediction.This research contributes to chemical engineering by providing a novel computerized methodology for solving complex production optimization problems in the chemical industry,offering significant potential for enhancing decisionmaking in MTO system production control and fostering the intelligent transformation of manufacturing processes. 展开更多
关键词 Methanol-to-Olefins transformer Explainable AI Mathematical modeling model-predictive control Numerical analysis
在线阅读 下载PDF
Enhancing Multi-Class Cyberbullying Classification with Hybrid Feature Extraction and Transformer-Based Models
4
作者 Suliman Mohamed Fati Mohammed A.Mahdi +4 位作者 Mohamed A.G.Hazber Shahanawaj Ahamad Sawsan A.Saad Mohammed Gamal Ragab Mohammed Al-Shalabi 《Computer Modeling in Engineering & Sciences》 2025年第5期2109-2131,共23页
Cyberbullying on social media poses significant psychological risks,yet most detection systems over-simplify the task by focusing on binary classification,ignoring nuanced categories like passive-aggressive remarks or... Cyberbullying on social media poses significant psychological risks,yet most detection systems over-simplify the task by focusing on binary classification,ignoring nuanced categories like passive-aggressive remarks or indirect slurs.To address this gap,we propose a hybrid framework combining Term Frequency-Inverse Document Frequency(TF-IDF),word-to-vector(Word2Vec),and Bidirectional Encoder Representations from Transformers(BERT)based models for multi-class cyberbullying detection.Our approach integrates TF-IDF for lexical specificity and Word2Vec for semantic relationships,fused with BERT’s contextual embeddings to capture syntactic and semantic complexities.We evaluate the framework on a publicly available dataset of 47,000 annotated social media posts across five cyberbullying categories:age,ethnicity,gender,religion,and indirect aggression.Among BERT variants tested,BERT Base Un-Cased achieved the highest performance with 93%accuracy(standard deviation across±1%5-fold cross-validation)and an average AUC of 0.96,outperforming standalone TF-IDF(78%)and Word2Vec(82%)models.Notably,it achieved near-perfect AUC scores(0.99)for age and ethnicity-based bullying.A comparative analysis with state-of-the-art benchmarks,including Generative Pre-trained Transformer 2(GPT-2)and Text-to-Text Transfer Transformer(T5)models highlights BERT’s superiority in handling ambiguous language.This work advances cyberbullying detection by demonstrating how hybrid feature extraction and transformer models improve multi-class classification,offering a scalable solution for moderating nuanced harmful content. 展开更多
关键词 Cyberbullying classification multi-class classification BERT models machine learning TF-IDF Word2Vec social media analysis transformer models
在线阅读 下载PDF
Combining transformer and 3DCNN models to achieve co-design of structures and sequences of antibodies in a diffusional manner
5
作者 Yue Hu Feng Tao +3 位作者 Jiajie Xu Wen-Jun Lan Jing Zhang Wei Lan 《Journal of Pharmaceutical Analysis》 2025年第6期1406-1408,共3页
AlphaPanda(AlphaFold2[1]inspired protein-specific antibody design in a diffusional manner)is an advanced algorithm for designing complementary determining regions(CDRs)of the antibody targeted the specific epitope,com... AlphaPanda(AlphaFold2[1]inspired protein-specific antibody design in a diffusional manner)is an advanced algorithm for designing complementary determining regions(CDRs)of the antibody targeted the specific epitope,combining transformer[2]models,3DCNN[3],and diffusion[4]generative models. 展开更多
关键词 advanced algorithm diffusion generative models dcnn epitope targeting antibody design complementary determining regions complementary determining regions cdrs transformer models
在线阅读 下载PDF
ExplainableDetector:Exploring transformer-based language modeling approach for SMS spam detection with explainability analysis
6
作者 Mohammad Amaz Uddin Muhammad Nazrul Islam +2 位作者 Leandros Maglaras Helge Janicke Iqbal H.Sarker 《Digital Communications and Networks》 2025年第5期1504-1518,共15页
Short Message Service(SMS)is a widely used and cost-effective communication medium that has unfortunately become a frequent target for unsolicited messages-commonly known as SMS spam.With the rapid adoption of smartph... Short Message Service(SMS)is a widely used and cost-effective communication medium that has unfortunately become a frequent target for unsolicited messages-commonly known as SMS spam.With the rapid adoption of smartphones and increased Internet connectivity,SMS spam has emerged as a prevalent threat.Spammers have recognized the critical role SMS plays in today’s modern communication,making it a prime target for abuse.As cybersecurity threats continue to evolve,the volume of SMS spam has increased substantially in recent years.Moreover,the unstructured format of SMS data creates significant challenges for SMS spam detection,making it more difficult to successfully combat spam attacks.In this paper,we present an optimized and fine-tuned transformer-based Language Model to address the problem of SMS spam detection.We use a benchmark SMS spam dataset to analyze this spam detection model.Additionally,we utilize pre-processing techniques to obtain clean and noise-free data and address class imbalance problem by leveraging text augmentation techniques.The overall experiment showed that our optimized fine-tuned BERT(Bidirectional Encoder Representations from Transformers)variant model RoBERTa obtained high accuracy with 99.84%.To further enhance model transparency,we incorporate Explainable Artificial Intelligence(XAI)techniques that compute positive and negative coefficient scores,offering insight into the model’s decision-making process.Additionally,we evaluate the performance of traditional machine learning models as a baseline for comparison.This comprehensive analysis demonstrates the significant impact language models can have on addressing complex text-based challenges within the cybersecurity landscape. 展开更多
关键词 CYBERSECURITY Machine learning Large language model Spam detection Text analytics Explainable AI Fine-tuning transformer
在线阅读 下载PDF
Dynamic Thermal Modelling for Core-Type High-Frequency Transformers Based on Air-Solid Surface Nusselt Number Calibration
7
作者 Lujia Wang Qiao Liang +4 位作者 Mengdi Yang Hailong Zhang Ting Chen Chenliang Ji Jianwen Zhang 《High Voltage》 2025年第5期1336-1345,共10页
Quickly and accurately obtaining the internal temperature distribution of a transformer plays a key role in predicting its operating conditions and simplifying the maintenance process.A reasonable equivalent thermal c... Quickly and accurately obtaining the internal temperature distribution of a transformer plays a key role in predicting its operating conditions and simplifying the maintenance process.A reasonable equivalent thermal circuit model is a relatively reliable method of obtaining the internal temperature distribution.However,thermal circuit models without targeted consideration of operating conditions and parameter corrections usually limit the accuracy of the results.This paper proposed a five-node transient thermal circuit model with the introduction of nonlinear thermal resistance,which considered the internal structure and winding layout of the core-type high-frequency transformer.The Nusselt number,a crucial variable in heat convection calculations and directly related to the accuracy of thermal resistance parameters,was calibrated on the basis of the distribution of external cooling air.After parameter calibration,the maximum computational error of the hotspot temperature is reduced by 5.48%compared with that of the uncalibrated model.Finally,an experimental platform for temperature monitoring was established to validate the five-node model and its ability to track the temperature change at each reference point after calibrating the Nusselt number. 展开更多
关键词 parameter corrections obtaining internal temperature distribution predicting its operating conditions core type high frequency transformers dynamic thermal modelling simplifying maintenance processa air solid surface Nusselt number circuit models
在线阅读 下载PDF
基于Transformer的时间序列预测方法综述 被引量:4
8
作者 陈嘉俊 刘波 +2 位作者 林伟伟 郑剑文 谢家晨 《计算机科学》 北大核心 2025年第6期96-105,共10页
时间序列预测作为分析历史数据以预测未来趋势的关键技术,已广泛应用于金融、气象等领域。然而,传统方法如自回归移动平均模型和指数平滑法等在处理非线性模式、捕捉长期依赖性时存在局限。最近,基于Transformer的方法因其自注意力机制... 时间序列预测作为分析历史数据以预测未来趋势的关键技术,已广泛应用于金融、气象等领域。然而,传统方法如自回归移动平均模型和指数平滑法等在处理非线性模式、捕捉长期依赖性时存在局限。最近,基于Transformer的方法因其自注意力机制,在自然语言处理与计算机视觉领域取得突破,也开始拓展至时间序列预测领域并取得显著成果。因此,探究如何将Transformer高效运用于时间序列预测,成为推动该领域发展的关键。首先,介绍了时间序列的特性,阐述了时间序列预测的常见任务类别及评估指标。接着,深入解析Transformer的基本架构,并挑选了近年来在时间序列预测中广受关注的Transfo-rmer衍生模型,从模块及架构层面进行分类,并分别从问题解决、创新点及局限性3个维度进行比较和分析。最后,进一步探讨了时间序列预测Transformer在未来可能的研究方向。 展开更多
关键词 时间序列 transformer模型 深度学习 注意力机制 预测
在线阅读 下载PDF
基于转置Transformer模型的电化学储能自适应SOH估计方法 被引量:1
9
作者 李鹏 葛儒哲 +3 位作者 董存 孙树敏 张元欣 王士柏 《高电压技术》 北大核心 2025年第6期2945-2953,I0015,共10页
为了保障锂离子电池运行的可靠性和安全性,及时监测其健康状况,在Autoformer模型和iTransformer模型的基础上,结合线性回归模型,提出了一种基于转置Transformer的自适应特征感知电池健康状态融合估计模型。首先,从充电曲线中提取健康因... 为了保障锂离子电池运行的可靠性和安全性,及时监测其健康状况,在Autoformer模型和iTransformer模型的基础上,结合线性回归模型,提出了一种基于转置Transformer的自适应特征感知电池健康状态融合估计模型。首先,从充电曲线中提取健康因子。其次,将容量退化分解为退化趋势部分和容量再生部分,利用线性回归模型预测电池容量的退化趋势,利用转置Transformer模型估计电池容量再生部分,两部分组合以获得电池容量退化的估计结果。最后,利用注意力权重对模型赋予可解释性。研究结果表明:此方法在NASA锂电池老化数据集上的仿真实验中,预测误差明显小于其他时序预测模型,验证了所提方法的预测精确性与可靠性。论文为电池健康状态精确估计的进一步深入研究提供了参考。 展开更多
关键词 锂离子电池 健康状态 深度学习 注意力机制 转置transformer模型 可解释性
原文传递
双向自回归Transformer与快速傅里叶卷积增强的壁画修复 被引量:1
10
作者 陈永 张世龙 杜婉君 《湖南大学学报(自然科学版)》 北大核心 2025年第4期1-15,共15页
针对现有深度学习算法在壁画修复时,存在全局语义一致性约束不足及局部特征提取不充分,导致修复后的壁画易出现边界效应和细节模糊等问题,提出一种双向自回归Transformer与快速傅里叶卷积增强的壁画修复方法.首先,设计基于Transformer... 针对现有深度学习算法在壁画修复时,存在全局语义一致性约束不足及局部特征提取不充分,导致修复后的壁画易出现边界效应和细节模糊等问题,提出一种双向自回归Transformer与快速傅里叶卷积增强的壁画修复方法.首先,设计基于Transformer结构的全局语义特征修复模块,利用双向自回归机制与掩码语言模型(masked language modeling,MLM),提出改进的多头注意力全局语义壁画修复模块,提高对全局语义特征的修复能力.然后,构建了由门控卷积和残差模块组成的全局语义增强模块,增强全局语义特征一致性约束.最后,设计局部细节修复模块,采用大核注意力机制(large kernel attention,LKA)与快速傅里叶卷积提高细节特征的捕获能力,同时减少局部细节信息的丢失,提升修复壁画局部和整体特征的一致性.通过对敦煌壁画数字化修复实验,结果表明,所提算法修复性能更优,客观评价指标均优于比较算法. 展开更多
关键词 壁画修复 双向自回归transformer 掩码语言模型 快速傅里叶卷积 语义增强
在线阅读 下载PDF
基于局部时序建模与Transformer的机器人运动技能学习
11
作者 朱晓庆 南博睿 +5 位作者 宫婉儒 毕兰越 郑忻宜 朱晓宇 吴通 张川 《北京理工大学学报》 北大核心 2025年第9期968-978,共11页
为了提高机器人运动技能学习的效率和精度,提出一种基于序列特征处理的动作决策Transformer模型,命名为门控机制Transformer(gated mechanism Transformer,GMT).模型以GPT-2为核心,结合门控机制提取隐藏状态特征,通过自回归建模捕捉时... 为了提高机器人运动技能学习的效率和精度,提出一种基于序列特征处理的动作决策Transformer模型,命名为门控机制Transformer(gated mechanism Transformer,GMT).模型以GPT-2为核心,结合门控机制提取隐藏状态特征,通过自回归建模捕捉时间依赖关系,解决机器人运动数据中深层特征难以提取的问题.同时,利用参数共享策略细化预测特征完成动作推理.GMT在MuJoCo平台的三个机器人运动技能任务中进行了验证.实验结果表明,GMT在学习效率和精度方面较Decision Transformer最高提升28.5%.研究表明,GMT能够高效建模机器人运动序列特征,为机器人动作决策提供新的技术方案. 展开更多
关键词 机器人运动 局部时序建模 transformer 门控机制 自回归建模
在线阅读 下载PDF
基于小波变换增强位置编码Transformer的空域流量预测
12
作者 唐卫贞 刘波 +1 位作者 黄洲升 田齐齐 《现代电子技术》 北大核心 2025年第8期127-132,共6页
随着全球化进程的加快和航空技术的发展,对空中交通流量预测的精度要求也越来越高。为提高空中交通流量预测精度,减轻空中交通管制员的压力,提出一种增强位置编码的Transformer模型。利用小波变换对原始空域流量数据进行分析,通过信噪... 随着全球化进程的加快和航空技术的发展,对空中交通流量预测的精度要求也越来越高。为提高空中交通流量预测精度,减轻空中交通管制员的压力,提出一种增强位置编码的Transformer模型。利用小波变换对原始空域流量数据进行分析,通过信噪比选出性能最优的小波基函数,再进一步计算出小波系数并将其融入位置编码,以增强模型对时间序列数据的理解能力。实验结果表明,所提模型能够准确捕捉空中交通流量数据中的非平稳性和突变特征,其RMSE和MAPE评估指标较原始Transformer模型分别降低了29.9与2.9%,较LSTM模型分别降低了34.5与3.4%。该模型不仅提升了空域流量预测的准确性,也证实了小波变换在增强模型时间序列数据理解中的有效性,且为交通流量管理提供了一种新的技术方案。 展开更多
关键词 空域流量预测 增强位置编码 transformer模型 小波变换 LSTM模型 小波基函数
在线阅读 下载PDF
结合MoE与Transformer的生态翻译模型优化研究
13
作者 李玲 雷宏友 《自动化与仪器仪表》 2025年第4期178-181,186,共5页
生态翻译过程是译者进行适应与选择的过程,翻译原则是多维度的选择性适应以及适应性选择。虽然目前Transformer模型在生态翻译领域取得了显著的成果,然而在面对生态翻译中的复杂语义和多模态信息时,Transformer模型仍存在容量瓶颈和破... 生态翻译过程是译者进行适应与选择的过程,翻译原则是多维度的选择性适应以及适应性选择。虽然目前Transformer模型在生态翻译领域取得了显著的成果,然而在面对生态翻译中的复杂语义和多模态信息时,Transformer模型仍存在容量瓶颈和破坏模块化结构的问题。为此,研究提出结合专家混合与Transformer的生态翻译模型优化方法,通过引入专家混合机制,旨在提升模型对多样化输入的处理能力与翻译质量。研究结果表明,在Europarl数据集上,所提模型的翻译准确率总体保持在94%以上;在ParaCrawl数据集中,所提模型的准确率同样稳定在95%以上,且具有较强的稳定性,验证了此次研究的有效性。此次研究为生态翻译模型的优化提供了更广阔的思路和经验指导。 展开更多
关键词 生态翻译模型 transformer 专家混合 模型优化 神经机器翻译
原文传递
基于时间融合Transformer的港池基坑开挖诱发形变的智能预测模型
14
作者 黄雨 刘侃侃 +4 位作者 程天笑 朱艳 熊敏 赵翠珠 彭铭 《应用基础与工程科学学报》 北大核心 2025年第5期1287-1296,共10页
大型港池工程的基坑开挖阶段是整个建设过程中安全风险最高的环节.为提高形变预测精度并保障施工安全,提出一种基于时间融合Transformer(TFT)的多源信息融合预测模型.该模型在某超大型港池项目中引入历史形变数据与关键工程特征,构建混... 大型港池工程的基坑开挖阶段是整个建设过程中安全风险最高的环节.为提高形变预测精度并保障施工安全,提出一种基于时间融合Transformer(TFT)的多源信息融合预测模型.该模型在某超大型港池项目中引入历史形变数据与关键工程特征,构建混合深度学习框架,实现对未来形变趋势的精准预测.实验结果表明,模型在预测精度方面表现优异,平均绝对误差(MAE)为0.3755mm,均方误差(MSE)为0.2597mm^(2),平均绝对百分比误差(MAPE)为0.7971%.通过消融实验,验证了模型在实际工程中的适用性与有效性,为类似大型水工结构的变形监测提供了可靠的技术解决方案. 展开更多
关键词 港池工程 滨海软土 深度学习 形变预测 时间融合transformer模型 工程结构信息
原文传递
一种基于FastText-Transformer的微博作者身份识别
15
作者 蔡满春 陈政 何泉 《中国人民公安大学学报(自然科学版)》 2025年第1期54-59,共6页
随着网络文本的快速增长和社交媒体的普及,识别文本作者身份的需求日益增加,对来源追溯、网络安全以及社会管理等领域具有重要意义。而针对自媒体庞大且语义灵活的中文网络短文本作者身份识别仍然存在很大挑战。为实现自动化特征提取,... 随着网络文本的快速增长和社交媒体的普及,识别文本作者身份的需求日益增加,对来源追溯、网络安全以及社会管理等领域具有重要意义。而针对自媒体庞大且语义灵活的中文网络短文本作者身份识别仍然存在很大挑战。为实现自动化特征提取,提高识别准确率,通过基于深度学习框架和改进FastText模型,提升词向量表示质量,将FastText模型输出的词向量输入到改进的Transformer Encoder模型中,提升了分类质量。实验结果表明提出的算法模型对微博数据集文本作者身份识别准确率达92.3%,可以实现微博作者身份识别。 展开更多
关键词 作者识别 FastText模型 transformer模型
在线阅读 下载PDF
基于时间卷积-Transformer模型的多场景地铁短时进站客流预测
16
作者 王小敏 张悦晗 《同济大学学报(自然科学版)》 北大核心 2025年第11期1737-1745,共9页
为更好地预测不同场景下城市轨道交通短期进站客流,提出一种基于时间卷积-Transformer组合深度学习模型的多场景进站客流预测方法。该方法考虑时序特征等客流内部特征及日期属性等周期影响因素,通过特征嵌入层构造多因素客流特征输入矩... 为更好地预测不同场景下城市轨道交通短期进站客流,提出一种基于时间卷积-Transformer组合深度学习模型的多场景进站客流预测方法。该方法考虑时序特征等客流内部特征及日期属性等周期影响因素,通过特征嵌入层构造多因素客流特征输入矩阵,利用时序卷积网络TCN和因果注意力Transformer两个模块并行提取并学习客流数据的局部与全局信息,然后由全连接层构成的预测层输出预测结果。利用上海体育场站客流数据和相关信息验证模型的有效性,并与多个对比模型的预测结果进行比较。实验结果表明:TCN-Transformer模型能够更好地捕捉不同场景下的进站客流特征,具有更好的预测精度和泛化能力。与其他几种模型相比,本文模型的均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)至少分别降低8.42%、7.32%和6.18%。 展开更多
关键词 城市交通 短时客流预测 组合深度学习模型 时序卷积网络 transformer模型
在线阅读 下载PDF
Transformer在脑肿瘤MRI图像分割中的研究进展
17
作者 陈雷 李光宇 +2 位作者 杨锋 蔡婧欣 高梦谣 《磁共振成像》 北大核心 2025年第8期181-187,200,共8页
脑肿瘤精准分割至关重要,但传统卷积神经网络因局部感受野限制难以建模磁共振成像(magnetic resonance imaging,MRI)中的长距离依赖,影响对异质性高、边界模糊肿瘤的分割精度。Transformer凭借全局自注意力机制为此提供了新思路。本文... 脑肿瘤精准分割至关重要,但传统卷积神经网络因局部感受野限制难以建模磁共振成像(magnetic resonance imaging,MRI)中的长距离依赖,影响对异质性高、边界模糊肿瘤的分割精度。Transformer凭借全局自注意力机制为此提供了新思路。本文综述了Transformer在脑肿瘤MRI分割中的进展,重点分析了Transformer模型在层次化注意力、编解码结构、残差连接等关键技术上的改进,探讨了多模态融合、模态缺失应对、轻量化设计及注意力机制本身的创新策略;尽管Transformer显著提升了精度,仍面临数据稀缺、模态缺失鲁棒性、类别不平衡、计算成本高和可解释性不足等挑战,未来需聚焦数据高效利用、模态弹性建模、拓扑感知优化、轻量化与可解释性增强等方向。本文系统梳理了Transfomer在脑肿瘤MRI图像分割领域的研究现状,总结了目前研究的局限性并指出未来的研究方向,本文旨在为深入理解其技术演进、核心挑战与发展方向提供系统性参考。 展开更多
关键词 transformer模型 脑肿瘤分割 磁共振成像 多模态 注意力机制 轻量化设计
暂未订购
PAM结合TCN优化Transformer的光伏功率预测研究
18
作者 张红 李峰 +2 位作者 马彦宏 姬文宣 郑启鹏 《计算机工程》 北大核心 2025年第10期140-149,共10页
准确的光伏功率预测对于提高电网稳定性和用电效率至关重要。针对现有研究难以同时考虑光伏功率长期依赖性和短期变化模式的缺陷,提出一种金字塔注意力模块(PAM)结合时间卷积网络(TCN)优化Transformer的光伏功率预测方法Solarformer。... 准确的光伏功率预测对于提高电网稳定性和用电效率至关重要。针对现有研究难以同时考虑光伏功率长期依赖性和短期变化模式的缺陷,提出一种金字塔注意力模块(PAM)结合时间卷积网络(TCN)优化Transformer的光伏功率预测方法Solarformer。基于多种特征选择机制筛选输入特征,增强对光伏数据特征的表征能力;利用粗粒度构造模块和PAM优化Transformer编码器,在多尺度上捕获光伏功率的长期时间依赖特征;利用光伏功率日出日落效应约束机制和TCN优化Transformer解码器,增强光伏功率的短期变化特征,以更好地捕捉其短期变化模式。在澳大利亚Sanyo数据集上进行实验,结果表明,Solarformer能够有效提高光伏功率的预测精度,相比DLinear模型,其均方根误差(RMSE)、平均绝对误差(MAE)和对称平均绝对百分比误差(SMAPE)分别降低了约7.45%、6.99%和14.10%。 展开更多
关键词 光伏功率预测 transformer模型 金字塔注意力模块 约束机制 时间卷积网络
在线阅读 下载PDF
基于随机增强Swin-Tiny Transformer的玉米病害识别及应用 被引量:5
19
作者 吴叶辉 李汝嘉 +4 位作者 季荣彪 李亚东 孙晓海 陈娇娇 杨建平 《吉林大学学报(理学版)》 CAS 北大核心 2024年第2期381-390,共10页
针对图像识别中获取全局特征的局限性及难以提升识别准确性的问题,提出一种基于随机增强Swin-Tiny Transformer轻量级模型的图像识别方法.该方法在预处理阶段结合基于随机数据增强(random data augmentation based enhancement,RDABE)... 针对图像识别中获取全局特征的局限性及难以提升识别准确性的问题,提出一种基于随机增强Swin-Tiny Transformer轻量级模型的图像识别方法.该方法在预处理阶段结合基于随机数据增强(random data augmentation based enhancement,RDABE)算法对图像特征进行增强,并采用Transformer的自注意力机制,以获得更全面的高层视觉语义信息.通过在玉米病害数据集上优化Swin-Tiny Transformer模型并进行参数微调,在农业领域的玉米病害上验证了该算法的适用性,实现了更精确的病害检测.实验结果表明,基于随机增强的轻量级Swin-Tiny+RDABE模型对玉米病害图像识别准确率达93.5867%.在参数权重一致,与性能优秀的轻量级Transformer、卷积神经网络(CNN)系列模型对比的实验结果表明,改进的模型准确率比Swin-Tiny Transformer,Deit3_Small,Vit_Small,Mobilenet_V3_Small,ShufflenetV2和Efficientnet_B1_Pruned模型提高了1.1877%~4.9881%,且能迅速收敛. 展开更多
关键词 swin-tiny transformer模型 数据增强 迁移学习 玉米病害识别 图像分类
在线阅读 下载PDF
基于VMD和改进Transformer模型的镍镉蓄电池SOH预测研究
20
作者 于天剑 冯恩来 +1 位作者 伍珣 张庆东 《铁道科学与工程学报》 北大核心 2025年第7期3266-3279,共14页
动车组镍镉电池容量表现出非线性特性和“记忆效应”等特征,严重影响传统动车组电池健康状态(state of health,SOH)预测模型的准确性。为准确预测动车组的SOH并提高其蓄电池管理系统的效率和可靠性,基于变分模态分解(variational mode d... 动车组镍镉电池容量表现出非线性特性和“记忆效应”等特征,严重影响传统动车组电池健康状态(state of health,SOH)预测模型的准确性。为准确预测动车组的SOH并提高其蓄电池管理系统的效率和可靠性,基于变分模态分解(variational mode decomposition,VMD)和改进的Transformer模型,提出一种综合预测框架。首先,通过白鲸优化算法(beluga whale optimization,BWO)对VMD的超参数进行优化,利用VMD分解重构准确捕捉电池在其整个生命周期中的容量退化特性,消除蓄电池记忆效应对SOH预测研究带来的不良影响;其次,在Transformer编码模块中嵌入了长短时记忆网络自编码模块(long short-term memory network autoencoder,LSTM Autoencoder),以有效提取电池健康退化的短期特征信息并压缩数据维度,从而降低模型复杂度;最后,将Transformer解码层替换为全连接神经网络,以降低模型复杂度和减少预测误差累积现象,从而提高模型的预测性能和运行效率。并且在验证方案中,以实际动车组蓄电池为研究对象,通过消融实验以及横向对比实验双向证明研究算法具有最高的预测精度,输出预测结果在均方根误差、平均绝对误差相较于其他模型平均降低了60.83%和62.14%,在决定系数上平均提升了6.73%,具有高度的准确性和鲁棒性。可以实现对电池SOH实现精确的预测,对电池健康状态进行有效监控,为电池检修工作提供数据支撑和方法支持。 展开更多
关键词 镍镉蓄电池 SOH预测 变分模态分解 长短时记忆网络自编码器 改进transformer模型
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部