针对图像识别中获取全局特征的局限性及难以提升识别准确性的问题,提出一种基于随机增强Swin-Tiny Transformer轻量级模型的图像识别方法.该方法在预处理阶段结合基于随机数据增强(random data augmentation based enhancement,RDABE)...针对图像识别中获取全局特征的局限性及难以提升识别准确性的问题,提出一种基于随机增强Swin-Tiny Transformer轻量级模型的图像识别方法.该方法在预处理阶段结合基于随机数据增强(random data augmentation based enhancement,RDABE)算法对图像特征进行增强,并采用Transformer的自注意力机制,以获得更全面的高层视觉语义信息.通过在玉米病害数据集上优化Swin-Tiny Transformer模型并进行参数微调,在农业领域的玉米病害上验证了该算法的适用性,实现了更精确的病害检测.实验结果表明,基于随机增强的轻量级Swin-Tiny+RDABE模型对玉米病害图像识别准确率达93.5867%.在参数权重一致,与性能优秀的轻量级Transformer、卷积神经网络(CNN)系列模型对比的实验结果表明,改进的模型准确率比Swin-Tiny Transformer,Deit3_Small,Vit_Small,Mobilenet_V3_Small,ShufflenetV2和Efficientnet_B1_Pruned模型提高了1.1877%~4.9881%,且能迅速收敛.展开更多
针对现有深度学习算法在壁画修复时,存在全局语义一致性约束不足及局部特征提取不充分,导致修复后的壁画易出现边界效应和细节模糊等问题,提出一种双向自回归Transformer与快速傅里叶卷积增强的壁画修复方法.首先,设计基于Transformer...针对现有深度学习算法在壁画修复时,存在全局语义一致性约束不足及局部特征提取不充分,导致修复后的壁画易出现边界效应和细节模糊等问题,提出一种双向自回归Transformer与快速傅里叶卷积增强的壁画修复方法.首先,设计基于Transformer结构的全局语义特征修复模块,利用双向自回归机制与掩码语言模型(masked language modeling,MLM),提出改进的多头注意力全局语义壁画修复模块,提高对全局语义特征的修复能力.然后,构建了由门控卷积和残差模块组成的全局语义增强模块,增强全局语义特征一致性约束.最后,设计局部细节修复模块,采用大核注意力机制(large kernel attention,LKA)与快速傅里叶卷积提高细节特征的捕获能力,同时减少局部细节信息的丢失,提升修复壁画局部和整体特征的一致性.通过对敦煌壁画数字化修复实验,结果表明,所提算法修复性能更优,客观评价指标均优于比较算法.展开更多
现有的基于卷积神经网络的超分辨率重建方法由于感受野限制,难以充分利用遥感图像丰富的上下文信息和自相关性,导致重建效果不佳.针对该问题,本文提出了一种基于多重蒸馏与Transformer的遥感图像超分辨率(remote sensing image super-re...现有的基于卷积神经网络的超分辨率重建方法由于感受野限制,难以充分利用遥感图像丰富的上下文信息和自相关性,导致重建效果不佳.针对该问题,本文提出了一种基于多重蒸馏与Transformer的遥感图像超分辨率(remote sensing image super-resolution based on multi-distillation and Transformer,MDT)重建方法.首先结合多重蒸馏和双注意力机制,逐步提取低分辨率图像中的多尺度特征,以减少特征丢失.接着,构建一种卷积调制Transformer来提取图像的全局信息,恢复更多复杂的纹理细节,从而提升重建图像的视觉效果.最后,在上采样过程中添加全局残差路径,提高特征在网络中的传播效率,有效减少了图像的失真与伪影问题.在AID和UCMerced两个数据集上的进行实验,结果表明,本文方法在放大至4倍超分辨率任务上的峰值信噪比和结构相似度分别最高达到了29.10 dB和0.7807,重建图像质量明显提高,并且在细节保留方面达到了更好的视觉效果.展开更多
文摘针对图像识别中获取全局特征的局限性及难以提升识别准确性的问题,提出一种基于随机增强Swin-Tiny Transformer轻量级模型的图像识别方法.该方法在预处理阶段结合基于随机数据增强(random data augmentation based enhancement,RDABE)算法对图像特征进行增强,并采用Transformer的自注意力机制,以获得更全面的高层视觉语义信息.通过在玉米病害数据集上优化Swin-Tiny Transformer模型并进行参数微调,在农业领域的玉米病害上验证了该算法的适用性,实现了更精确的病害检测.实验结果表明,基于随机增强的轻量级Swin-Tiny+RDABE模型对玉米病害图像识别准确率达93.5867%.在参数权重一致,与性能优秀的轻量级Transformer、卷积神经网络(CNN)系列模型对比的实验结果表明,改进的模型准确率比Swin-Tiny Transformer,Deit3_Small,Vit_Small,Mobilenet_V3_Small,ShufflenetV2和Efficientnet_B1_Pruned模型提高了1.1877%~4.9881%,且能迅速收敛.
文摘针对现有深度学习算法在壁画修复时,存在全局语义一致性约束不足及局部特征提取不充分,导致修复后的壁画易出现边界效应和细节模糊等问题,提出一种双向自回归Transformer与快速傅里叶卷积增强的壁画修复方法.首先,设计基于Transformer结构的全局语义特征修复模块,利用双向自回归机制与掩码语言模型(masked language modeling,MLM),提出改进的多头注意力全局语义壁画修复模块,提高对全局语义特征的修复能力.然后,构建了由门控卷积和残差模块组成的全局语义增强模块,增强全局语义特征一致性约束.最后,设计局部细节修复模块,采用大核注意力机制(large kernel attention,LKA)与快速傅里叶卷积提高细节特征的捕获能力,同时减少局部细节信息的丢失,提升修复壁画局部和整体特征的一致性.通过对敦煌壁画数字化修复实验,结果表明,所提算法修复性能更优,客观评价指标均优于比较算法.
文摘现有的基于卷积神经网络的超分辨率重建方法由于感受野限制,难以充分利用遥感图像丰富的上下文信息和自相关性,导致重建效果不佳.针对该问题,本文提出了一种基于多重蒸馏与Transformer的遥感图像超分辨率(remote sensing image super-resolution based on multi-distillation and Transformer,MDT)重建方法.首先结合多重蒸馏和双注意力机制,逐步提取低分辨率图像中的多尺度特征,以减少特征丢失.接着,构建一种卷积调制Transformer来提取图像的全局信息,恢复更多复杂的纹理细节,从而提升重建图像的视觉效果.最后,在上采样过程中添加全局残差路径,提高特征在网络中的传播效率,有效减少了图像的失真与伪影问题.在AID和UCMerced两个数据集上的进行实验,结果表明,本文方法在放大至4倍超分辨率任务上的峰值信噪比和结构相似度分别最高达到了29.10 dB和0.7807,重建图像质量明显提高,并且在细节保留方面达到了更好的视觉效果.