期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Swin-T与ConvNeXt多级融合的皮肤病变分类
1
作者 王泽彤 张俊华 王肖 《生物医学工程学杂志》 EI CAS 北大核心 2024年第3期544-551,共8页
皮肤癌是一个重要的公共卫生问题,计算机辅助诊断技术可以有效地减轻这一负担。在采用计算机辅助诊断时,准确识别皮肤病变类型至关重要。为此,本文提出一种基于Swin-T与ConvNeXt的多级注意力逐级融合模型,采用分层Swin-T与ConvNeXt分别... 皮肤癌是一个重要的公共卫生问题,计算机辅助诊断技术可以有效地减轻这一负担。在采用计算机辅助诊断时,准确识别皮肤病变类型至关重要。为此,本文提出一种基于Swin-T与ConvNeXt的多级注意力逐级融合模型,采用分层Swin-T与ConvNeXt分别提取全局与局部特征,并提出残差通道注意力与空间注意力模块进一步提取有效特征;利用多级注意力机制对多尺度全局与局部特征进行处理;针对浅层特征因离分类器较远而丢失的问题,采用逐级聚合的思想,提出逐级倒置残差融合模块动态调整提取的特征信息。本文通过均衡采样策略以及焦点损失,解决皮肤病变类别不平衡的问题。在ISIC2018、ISIC2019数据集上进行测试,其准确率、精确率、召回率和F1-Score分别是96.01%、93.67%、92.65%、93.11%与92.79%、91.52%、88.90%、90.15%。与Swin-T相比,准确率分别提升了3.60%和1.66%;与ConvNeXt相比,准确率分别提升了2.87%和3.45%。实验表明,本文提出的方法能够准确分类皮肤病变图像,为皮肤癌的诊断提供了新的解决方案。 展开更多
关键词 swin-t ConvNeXt 多级注意力机制 逐级倒置残差融合模块 皮肤病变图像
原文传递
基于窗口自注意力网络与YOLOv5融合的输电线路通道异物检测 被引量:4
2
作者 薛昂 姜恩宇 +2 位作者 张文涛 林顺富 米阳 《上海交通大学学报》 北大核心 2025年第3期413-423,共11页
针对输电线路通道异物检测背景复杂以及小目标情况下检测效果不佳等问题,提出一种基于窗口自注意力网络与YOLOv5模型融合的输电线路通道安全检测算法.首先,选用窗口自注意力(S-T)网络优化主干网络,扩大模型感受视野,增强提取有效信息的... 针对输电线路通道异物检测背景复杂以及小目标情况下检测效果不佳等问题,提出一种基于窗口自注意力网络与YOLOv5模型融合的输电线路通道安全检测算法.首先,选用窗口自注意力(S-T)网络优化主干网络,扩大模型感受视野,增强提取有效信息的能力.其次,改进自适应空间特征融合(ASFF)模块,增强多尺度特征融合能力.最后,考虑到真实框与预测框不匹配的问题,引入结构相似性交并比(SIoU),优化边界误差,提高小目标定位准确性.实验结果表明,本文模型对线路通道多目标入侵检测精度达到90.2%,且提升了小目标检测效果;与主流目标检测算法相比,可以更好地满足输电线路通道中的异物检测需求. 展开更多
关键词 智能化巡检 输电线路通道 目标检测 窗口自注意力网络 自适应空间特征融合
在线阅读 下载PDF
基于增强CT图像和Swin Transformer网络的食管癌T分期智能诊断模型的构建与评估 被引量:7
3
作者 王润媛 陈星材 +7 位作者 吴蔚 姚洁 郭美 马晋峰 曹锡梅 粘永健 吴毅 崔慧林 《陆军军医大学学报》 CAS CSCD 北大核心 2023年第16期1770-1778,共9页
目的基于增强CT图像和Swin Transformer网络,拟构建食管癌T分期智能诊断模型。方法收集2018年1月至2022年4月在陆军军医大学第一附属医院和山西省肿瘤医院胸外科经病理证实为食管癌的150例患者的45000张术前增强CT图像。经过UperNet Swi... 目的基于增强CT图像和Swin Transformer网络,拟构建食管癌T分期智能诊断模型。方法收集2018年1月至2022年4月在陆军军医大学第一附属医院和山西省肿瘤医院胸外科经病理证实为食管癌的150例患者的45000张术前增强CT图像。经过UperNet Swin网络自动分割和肿瘤体积的计算,使用ResNet50、Swin Transformer和VIT 3个网络进行食管癌T分期智能诊断模型的构建。使用精准率、召回率、F1-score、特异度以及阴性预测值(negative predictive value,NPV)等指标在150例内部数据集上评价模型性能,描绘混淆矩阵和ROC曲线。结果在3个食管癌T分期诊断的模型中,Swin Transformer模型结合肿瘤体积、病理信息等特征的分期诊断效果最好,T1~T4期的精准率分别为1.00、0.67、0.83、1.00,AUC为0.861,优于ResNet50和VIT分期诊断模型,它们的精准率分别为0.13、0.27、0.59、0.81和0.03、0.14、0.56、0.75,AUC分别是0.611和0.542。结论与ResNet50和VIT网络比较,Swin Transformer网络能够更精准进行食管癌智能T分期诊断。 展开更多
关键词 深度学习 食管癌 增强CT Swin Transformer T分期诊断
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部