期刊文献+
共找到160篇文章
< 1 2 8 >
每页显示 20 50 100
Neural Architecture Search via Hierarchical Evaluation of Surrogate Models
1
作者 Xiaofeng Liu Yubin Bao Fangling Leng 《Computers, Materials & Continua》 2025年第8期3503-3517,共15页
The rapid development of evolutionary deep learning has led to the emergence of various Neural Architecture Search(NAS)algorithms designed to optimize neural network structures.However,these algorithms often face sign... The rapid development of evolutionary deep learning has led to the emergence of various Neural Architecture Search(NAS)algorithms designed to optimize neural network structures.However,these algorithms often face significant computational costs due to the time-consuming process of training neural networks and evaluating their performance.Traditional NAS approaches,which rely on exhaustive evaluations and large training datasets,are inefficient for solving complex image classification tasks within limited time frames.To address these challenges,this paper proposes a novel NAS algorithm that integrates a hierarchical evaluation strategy based on Surrogate models,specifically using supernet to pre-trainweights and randomforests as performance predictors.This hierarchical framework combines rapid Surrogate model evaluations with traditional,precise evaluations to balance the trade-off between performance accuracy and computational efficiency.The algorithm significantly reduces the time required for model evaluation by predicting the fitness of candidate architectures using a random forest Surrogate model,thus alleviating the need for full training cycles for each architecture.The proposed method also incorporates evolutionary operations such as mutation and crossover to refine the search process and improve the accuracy of the resulting architectures.Experimental evaluations on the CIFAR-10 and CIFAR-100 datasets demonstrate that the proposed hierarchical evaluation strategy reduces the search time and costs compared to traditional methods,while achieving comparable or even superior model performance.The results suggest that this approach can efficiently handle resourceconstrained tasks,providing a promising solution for accelerating the NAS process without compromising the quality of the generated architectures. 展开更多
关键词 Neural architecture search hierarchical evaluation image classification surrogate model
在线阅读 下载PDF
Multi-Objective Optimization for Hydrodynamic Performance of A Semi-Submersible FOWT Platform Based on Multi-Fidelity Surrogate Models and NSGA-Ⅱ Algorithms 被引量:1
2
作者 QIAO Dong-sheng MEI Hao-tian +3 位作者 QIN Jian-min TANG Guo-qiang LU Lin OU Jin-ping 《China Ocean Engineering》 CSCD 2024年第6期932-942,共11页
This study delineates the development of the optimization framework for the preliminary design phase of Floating Offshore Wind Turbines(FOWTs),and the central challenge addressed is the optimization of the FOWT platfo... This study delineates the development of the optimization framework for the preliminary design phase of Floating Offshore Wind Turbines(FOWTs),and the central challenge addressed is the optimization of the FOWT platform dimensional parameters in relation to motion responses.Although the three-dimensional potential flow(TDPF)panel method is recognized for its precision in calculating FOWT motion responses,its computational intensity necessitates an alternative approach for efficiency.Herein,a novel application of varying fidelity frequency-domain computational strategies is introduced,which synthesizes the strip theory with the TDPF panel method to strike a balance between computational speed and accuracy.The Co-Kriging algorithm is employed to forge a surrogate model that amalgamates these computational strategies.Optimization objectives are centered on the platform’s motion response in heave and pitch directions under general sea conditions.The steel usage,the range of design variables,and geometric considerations are optimization constraints.The angle of the pontoons,the number of columns,the radius of the central column and the parameters of the mooring lines are optimization constants.This informed the structuring of a multi-objective optimization model utilizing the Non-dominated Sorting Genetic Algorithm Ⅱ(NSGA-Ⅱ)algorithm.For the case of the IEA UMaine VolturnUS-S Reference Platform,Pareto fronts are discerned based on the above framework and delineate the relationship between competing motion response objectives.The efficacy of final designs is substantiated through the time-domain calculation model,which ensures that the motion responses in extreme sea conditions are superior to those of the initial design. 展开更多
关键词 semi-submersible FOWT platforms Co-Kriging neural network algorithm multi-fidelity surrogate model NSGA-II multi-objective algorithm Pareto optimization
在线阅读 下载PDF
Optimization Design of High-speed Interior Permanent Magnet Motor with High Torque Performance Based on Multiple Surrogate Models 被引量:3
3
作者 Shengnan Wu Xiangde Sun Wenming Tong 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第3期235-240,共6页
In order to obtain better torque performance of high-speed interior permanent magnet motor(HSIPMM) and solve the problem that electromagnetic optimization design is seriously limited by its mechanical strength, a comp... In order to obtain better torque performance of high-speed interior permanent magnet motor(HSIPMM) and solve the problem that electromagnetic optimization design is seriously limited by its mechanical strength, a complete optimization design method is proposed in this paper. The object of optimization design is a 15 kW、20000 r/min HSIPMM whose permanent magnets in rotor is segmented. Eight structural dimensions are selected as its optimization variables. After design of experiment(DOE), multiple surrogate models are fitted, a set of surrogate models with minimum error is selected by using error evaluation indexes to optimize, the NSGA-II algorithm is used to get the optimal solution. The optimal solution is verified by load test on a 15 kW, 20000 r/min HSIPMM prototype. This paper can be used as a reference for the optimization design of HSIPMM. 展开更多
关键词 High-speed interior permanent magnet motor Segmented magnets Multi-objective optimization Multiple surrogate models
在线阅读 下载PDF
Scalable evaluation of demand response potential of HVAC systems:Establishing comprehensive room-centric model library and surrogate models 被引量:1
4
作者 Ziliang Wei Zhuofan Tang +4 位作者 Shuyi Chen Yihu Zhang Zhenyu Wang Yang Geng Borong Lin 《Building Simulation》 2025年第9期2475-2490,共16页
Demand Response(DR)is a critical strategy for managing the integration of renewable energy sources into the power grid,addressing the challenges posed by their intermittent and unpredictable nature.This study introduc... Demand Response(DR)is a critical strategy for managing the integration of renewable energy sources into the power grid,addressing the challenges posed by their intermittent and unpredictable nature.This study introduces a rapid evaluation method for assessing the DR potential of large-scale Heating,Ventilation,and Air Conditioning(HVAC)systems,focusing on the significant role these systems play in energy consumption and grid flexibility.Firstly,the methodology involves constructing a simulation model library that encompasses three dimensions including room type,room location,and internal heat gain mode to reflect the dynamic characteristics of cooling load.Additionally,batch simulations generate DR profiles under various typical weather conditions,and surrogate models are trained for each simulation model,leveraging feature engineering and cross-validation to enhance accuracy.The Multi-Layer Perceptron(MLP)surrogate models achieve high accuracy in predicting DR potential under various scenarios,with R^(2) values exceeding 0.95.This study provides a robust framework that enables load aggregators to accurately estimate the demand response potential of large-scale HVAC systems.It supports the quantification of response capabilities and facilitates participation in bidding processes.Furthermore,it highlights the potential of data-driven models to enable rapid and scalable energy management. 展开更多
关键词 demand response potential HVAC system surrogate model ENERGYPLUS large-scale evaluation
原文传递
Developing surrogate models for the early-stage design of residential blocks using graph neural networks
5
作者 Zhaoji Wu Mingkai Li +5 位作者 Wenli Liu Jack C.P.Cheng Zhe Wang Helen H.L.Kwok Cong Huang Fangli Hou 《Building Simulation》 2025年第3期679-698,共20页
Building simulation based on physical modeling is commonly adopted for performance prediction,but the high time costs hinder its application in the early design stage of buildings.Data-driven surrogate models have bee... Building simulation based on physical modeling is commonly adopted for performance prediction,but the high time costs hinder its application in the early design stage of buildings.Data-driven surrogate models have been proposed as a means to replicate computationally expensive simulation models.However,existing surrogate models for sustainable residential block design are limited in scope,focusing either on individual buildings or on specific cases within multi-block projects.This study leverages graph neural networks to develop optimal surrogate models incorporating inter-building effects to predict multiple indicators of sustainable performance for residential blocks at a region level.A graph schema is proposed to represent the general geometric features and relations among buildings in residential block design.A regional dataset is generated for model training and testing,using real residential zones in Hong Kong.The surrogate models are developed and evaluated,using two kinds of architectures(individual architectures for specific indicators and an integrative architecture)and three different neural networks(graph attention network(GAT),graph convolutional network,and artificial neural network).The results showed that the surrogate models using the individual architectures and GAT outperform the models using other architectures and neural networks.These surrogate models achieve a high prediction accuracy with CV(RMSE)s of 11.79%,7.63%,and 8.00%in terms of energy consumption,indoor thermal comfort,and daylighting,respectively,on the regional test set.Moreover,they enable a significant acceleration of the performance evaluation,reducing the calculation time from 6.346 min to 1.565 ms(243,297 times)per case compared to physics-based simulations. 展开更多
关键词 surrogate model graph neural network building performance prediction sustainable building design residential block
原文传递
Optimizing building retrofit through data analytics:A study of multi-objective optimization and surrogate models derived from energy performance certificates
6
作者 G.R.Araújo Ricardo Gomes +1 位作者 Paulo Ferrão M.Glória Gomes 《Energy and Built Environment》 EI 2024年第6期889-899,共11页
The building stock is responsible for a large share of global energy consumption and greenhouse gas emissions,therefore,it is critical to promote building retrofit to achieve the proposed carbon and energy neutrality ... The building stock is responsible for a large share of global energy consumption and greenhouse gas emissions,therefore,it is critical to promote building retrofit to achieve the proposed carbon and energy neutrality goals.One of the policies implemented in recent years was the Energy Performance Certificate(EPC)policy,which proposes building stock benchmarking to identify buildings that require rehabilitation.However,research shows that these mechanisms fail to engage stakeholders in the retrofit process because it is widely seen as a mandatory and complex bureaucracy.This study makes use of an EPC database to integrate machine learning techniques with multi-objective optimization and develop an interface capable of(1)predicting a building’s,or household’s,energy needs;and(2)providing the user with optimum retrofit solutions,costs,and return on investment.The goal is to provide an open-source,easy-to-use interface that guides the user in the building retrofit process.The energy and EPC prediction models show a coefficient of determination(R2)of 0.84 and 0.79,and the optimization results for one case study EPC with a 2000€budget limit inÉvora,Portugal,show decreases of up to 60%in energy needs and return on investments of up to 7 in 3 years. 展开更多
关键词 Building energy performance Building optimization Multi-Objective surrogate models Building retrofitting
在线阅读 下载PDF
A novel surrogate model with deep learning for predicting spacial-temporal pressure in coalbed methane reservoirs
7
作者 Yukun Dong Xiaodong Zhang +2 位作者 Jiyuan Zhang Kuankuan Wu Shuaiwei Liu 《Natural Gas Industry B》 2025年第2期219-233,共15页
Coalbed methane(CBM)is a vital unconventional energy resource,and predicting its spatiotemporal pressure dynamics is crucial for efficient development strategies.This paper proposes a novel deep learningebased data-dr... Coalbed methane(CBM)is a vital unconventional energy resource,and predicting its spatiotemporal pressure dynamics is crucial for efficient development strategies.This paper proposes a novel deep learningebased data-driven surrogate model,AxialViT-ConvLSTM,which integrates AxialAttention Vision Transformer,ConvLSTM,and an enhanced loss function to predict pressure dynamics in CBM reservoirs.The results showed that the model achieves a mean square error of 0.003,a learned perceptual image patch similarity of 0.037,a structural similarity of 0.979,and an R^(2) of 0.982 between predictions and actual pressures,indicating excellent performance.The model also demonstrates strong robustness and accuracy in capturing spatialetemporal pressure features. 展开更多
关键词 Coalbed methane Spatial-temporal pressure prediction Deep learning surrogate models AxialAttention Vision Transformer ConvLSTM
在线阅读 下载PDF
Integrated optimization of reservoir production and layer configurations using relational and regression machine learning models
8
作者 Qin-Yang Dai Li-Ming Zhang +6 位作者 Kai Zhang Hao Hao Guo-Dong Chen Xia Yan Pi-Yang Liu Bao-Bin Zhang Chen-Yang Wang 《Petroleum Science》 2025年第9期3745-3759,共15页
This study introduces a novel approach to addressing the challenges of high-dimensional variables and strong nonlinearity in reservoir production and layer configuration optimization.For the first time,relational mach... This study introduces a novel approach to addressing the challenges of high-dimensional variables and strong nonlinearity in reservoir production and layer configuration optimization.For the first time,relational machine learning models are applied in reservoir development optimization.Traditional regression-based models often struggle in complex scenarios,but the proposed relational and regression-based composite differential evolution(RRCODE)method combines a Gaussian naive Bayes relational model with a radial basis function network regression model.This integration effectively captures complex relationships in the optimization process,improving both accuracy and convergence speed.Experimental tests on a multi-layer multi-channel reservoir model,the Egg reservoir model,and a real-field reservoir model(the S reservoir)demonstrate that RRCODE significantly reduces water injection and production volumes while increasing economic returns and cumulative oil recovery.Moreover,the surrogate models employed in RRCODE exhibit lightweight characteristics with low computational overhead.These results highlight RRCODE's superior performance in the integrated optimization of reservoir production and layer configurations,offering more efficient and economically viable solutions for oilfield development. 展开更多
关键词 surrogate model Reservoir management Evolutionary algorithm Joint optimization Layer configuration Production optimization Relational learning
原文传递
Output power prediction of stratospheric airship solar array based on surrogate model under global wind field
9
作者 Kangwen SUN Siyu LIU +3 位作者 Yixiang GAO Huafei DU Dongji CHENG Zhiyao WANG 《Chinese Journal of Aeronautics》 2025年第4期221-232,共12页
Stratospheric airships are lighter-than-air vehicles capable of continuous flying for months.The energy balance of the airship is the key to long-duration flights.The stratospheric airship is entirely powered by the s... Stratospheric airships are lighter-than-air vehicles capable of continuous flying for months.The energy balance of the airship is the key to long-duration flights.The stratospheric airship is entirely powered by the solar array.It is necessary to accurately predict the output power of the array for any flight state.Because of the uneven solar radiation received by the solar array,the traditional model based on components has a slow simulation speed.In this study,a data-driven surrogate modeling approach for prediction the output power of the solar array is proposed.The surrogate model is trained using the samples obtained from the high-accuracy simulation model.By using the input parameter preprocessor,the accuracy of the surrogate model in predicting the output power of the solar array is improved to 98.65%.In addition,the predictive speed of the surrogate model is ten million times faster than the traditional simulation model.Finally,the surrogate model is used to predict the energy balance of stratospheric airships flying throughout the year under actual global wind fields. 展开更多
关键词 Stratospheric airship Solar array Output power surrogate model Global wind field Energy balance
原文传递
Corrigendum to“Meta databases of steel frame buildings for surrogate modelling and machine learning-based feature importance analysis”[Journal of Resilient Cities and Structures Volume 3 Issue 1(2024)20-43]
10
作者 Delbaz Samadian Jawad Fayaz +2 位作者 Imrose B.Muhit Annalisa Occhipinti Nashwan Dawood 《Resilient Cities and Structures》 2025年第1期124-124,共1页
The authors regret that the original publication of this paper did not include Jawad Fayaz as a co-author.After further discussions and a thorough review of the research contributions,it was agreed that his significan... The authors regret that the original publication of this paper did not include Jawad Fayaz as a co-author.After further discussions and a thorough review of the research contributions,it was agreed that his significant contributions to the foundational aspects of the research warranted recognition,and he has now been added as a co-author. 展开更多
关键词 machine learning meta databases jawad fayaz surrogate modelling feature importance analysis steel frame buildings
在线阅读 下载PDF
Adaptive surrogate-based optimization with dynamic boundary updating for structural problems
11
作者 Majid ILCHI GHAZAAN Mostafa SHARIFI 《Frontiers of Structural and Civil Engineering》 2025年第8期1355-1372,共18页
This paper introduces dynamic boundary updating-surrogate model-based(DBU-SMB),a novel evolutionary framework for global optimization that integrates dynamic boundary updating(DBU)within a surrogate model-based(SMB)ap... This paper introduces dynamic boundary updating-surrogate model-based(DBU-SMB),a novel evolutionary framework for global optimization that integrates dynamic boundary updating(DBU)within a surrogate model-based(SMB)approach.The method operates in three progressive stages:adaptive sampling,DBU,and refinement.In the first stage,adaptive sampling strategically explores the design space to gather critical information for improving the surrogate model.The second stage incorporates DBU to guide the optimization toward promising regions in the parameter space,enhancing consistency and efficiency.Finally,the refinement stage iteratively improves the optimization results,ensuring a comprehensive exploration of the design space.The proposed DBU-SMB framework is algorithm-agnostic,meaning it does not rely on any specific machine learning model or meta-heuristic algorithm.To demonstrate its effectiveness,we applied DBU-SMB to four highly nonlinear and non-convex optimization problems.The results show a reduction of over 90%in the number of function evaluations compared to traditional methods,while avoiding entrapment in local optima and discovering superior solutions.These findings highlight the efficiency and robustness of DBU-SMB in achieving optimal designs,particularly for large-scale and complex optimization problems. 展开更多
关键词 machine learning surrogate model adaptive sampling XGBoost structural optimization
原文传递
Optimal Control of Unknown Collective Spin Systems via a Neural Network Surrogate
12
作者 Yaofeng Chen Li You 《Chinese Physics Letters》 2025年第10期117-128,共12页
Quantum optimal control(QOC)relies on accurately modeling system dynamics and is often challenged by unknown or inaccessible interactions in real systems.Taking an unknown collective spin system as an example,this wor... Quantum optimal control(QOC)relies on accurately modeling system dynamics and is often challenged by unknown or inaccessible interactions in real systems.Taking an unknown collective spin system as an example,this work introduces a machine-learning-based,data-driven scheme to overcome the challenges encountered,with a trained neural network(NN)assuming the role of a surrogate model that captures the system’s dynamics and subsequently enables QOC to be performed on the NN instead of on the real system.The trained NN surrogate proves effective for practical QOC tasks and is further demonstrated to be adaptable to different experimental conditions,remaining robust across varying system sizes and pulse durations. 展开更多
关键词 neural network quantum optimal control surrogate model trained neural network nn assuming quantum optimal control qoc relies collective spin system optimal control captures system s dynamics
原文传递
Efficient deep-learning-based surrogate model for reservoir production optimization using transfer learning and multi-fidelity data
13
作者 Jia-Wei Cui Wen-Yue Sun +2 位作者 Hoonyoung Jeong Jun-Rong Liu Wen-Xin Zhou 《Petroleum Science》 2025年第4期1736-1756,共21页
In the realm of subsurface flow simulations,deep-learning-based surrogate models have emerged as a promising alternative to traditional simulation methods,especially in addressing complex optimization problems.However... In the realm of subsurface flow simulations,deep-learning-based surrogate models have emerged as a promising alternative to traditional simulation methods,especially in addressing complex optimization problems.However,a significant challenge lies in the necessity of numerous high-fidelity training simulations to construct these deep-learning models,which limits their application to field-scale problems.To overcome this limitation,we introduce a training procedure that leverages transfer learning with multi-fidelity training data to construct surrogate models efficiently.The procedure begins with the pre-training of the surrogate model using a relatively larger amount of data that can be efficiently generated from upscaled coarse-scale models.Subsequently,the model parameters are finetuned with a much smaller set of high-fidelity simulation data.For the cases considered in this study,this method leads to about a 75%reduction in total computational cost,in comparison with the traditional training approach,without any sacrifice of prediction accuracy.In addition,a dedicated well-control embedding model is introduced to the traditional U-Net architecture to improve the surrogate model's prediction accuracy,which is shown to be particularly effective when dealing with large-scale reservoir models under time-varying well control parameters.Comprehensive results and analyses are presented for the prediction of well rates,pressure and saturation states of a 3D synthetic reservoir system.Finally,the proposed procedure is applied to a field-scale production optimization problem.The trained surrogate model is shown to provide excellent generalization capabilities during the optimization process,in which the final optimized net-present-value is much higher than those from the training data ranges. 展开更多
关键词 Subsurface flow simulation surrogate model Transfer learning Multi-fidelity training data Production optimization
原文传递
A surrogate model for estimating rock stress by a hollow inclusion strain cell in a three-layer medium
14
作者 Changkun Qin Wusheng Zhao +2 位作者 Weizhong Chen Peiyao Xie Shuai Zhou 《International Journal of Mining Science and Technology》 2025年第3期363-381,共19页
Accurate acquisition of the rock stress is crucial for various rock engineering applications.The hollow inclusion (HI) technique is widely used for measuring in-situ rock stress.This technique calculates the stress te... Accurate acquisition of the rock stress is crucial for various rock engineering applications.The hollow inclusion (HI) technique is widely used for measuring in-situ rock stress.This technique calculates the stress tensor by measuring strain using an HI strain cell.However,existing analytical solutions for stress calculation based on an HI strain cell in a double-layer medium are not applicable when an HI strain cell is used in a three-layer medium,leading to erroneous stress calculations.To address this issue,this paper presents a method for calculating stress tensors in a three-layer medium using numerical simulations,specifically by obtaining a constitutive matrix that relates strain measurements to stress tensors in a three-layer medium.Furthermore,using Latin hypercube sampling (LHS) and orthogonal experimental design strategies,764 groups of numerical models encompassing various stress measurement scenarios have been established and calculated using FLAC^(3D)software.Finally,a surrogate model based on artificial neural network (ANN) was developed to predict constitutive matrices,achieving a goodness of fit (R^(2)) of 0.999 and a mean squared error (MSE) of 1.254.A software program has been developed from this surrogate model for ease of use in practical engineering applications.The method’s accuracy was verified through numerical simulations,analytical solution and laboratory experiment,demonstrating its effectiveness in calculating stress in a three-layer medium.The surrogate model was applied to calculate mining-induced stress in the roadway roof rock of a coal mine,a typical case for stress measurement in a three-layer medium.Errors in stress calculations arising from the use of existing analytical solutions were corrected.The study also highlights the significant errors associated with using double-layer analytical solutions in a three-layer medium,which could lead to inappropriate engineering design. 展开更多
关键词 Stress measurement Over-coring stress relief method Three-layer medium surrogate model Numerical simulation
在线阅读 下载PDF
A physics knowledge-based surrogate model framework for timedependent slope deformation:Considering water effect and sliding states
15
作者 Wenyu Zhuang Yaoru Liu +3 位作者 Kai Zhang Qingchao Lyu Shaokang Hou Qiang Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5416-5436,共21页
The surrogate model serves as an efficient simulation tool during the slope parameter inversion process.However,the creep constitutive model integrated with dynamic damage evolution poses challenges in development of ... The surrogate model serves as an efficient simulation tool during the slope parameter inversion process.However,the creep constitutive model integrated with dynamic damage evolution poses challenges in development of the required surrogate model.In this study,a novel physics knowledge-based surrogate model framework is proposed.In this framework,a Transformer module is employed to capture straindriven softening-hardening physical mechanisms.Positional encoding and self-attention are utilized to transform the constitutive parameters associated with shear strain,which are not directly time-related,into intermediate latent features for physical loss calculation.Next,a multi-layer stacked GRU(gated recurrent unit)network is built to provide input interfaces for time-dependent intermediate latent features,hydraulic boundary conditions,and water-rock interaction degradation equations,with static parameters introduced via external fully-connected layers.Finally,a combined loss function is constructed to facilitate the collaborative training of physical and data loss,introducing time-dependent weight adjustments to focus the surrogate model on accurate deformation predictions during critical phases.Based on the deformation of a reservoir bank landslide triggered by impoundment and subsequent restabilization,an elasto-viscoplastic constitutive model that considers water effect and sliding state dependencies is developed to validate the proposed surrogate model framework.The results indicate that the framework exhibits good performance in capturing physical mechanisms and predicting creep behavior,reducing errors by about 30 times compared to baseline models such as GRU and LSTM(long short-term memory),meeting the precision requirements for parameter inversion.Ablation experiments also confirmed the effectiveness of the framework.This framework can also serve as a reference for constructing other creep surrogate models that involve non-time-related across dimensions. 展开更多
关键词 Reservoir bank slope Time-dependent deformation Elasto-viscoplastic constitutive model Physics knowledge-based deep learning surrogate model
在线阅读 下载PDF
Multi-Objective Optimization of Marine Winch Based on Surrogate Model and MOGA
16
作者 Chunhuan Jin Linsen Zhu +1 位作者 Quanliang Liu Ji Lin 《Computer Modeling in Engineering & Sciences》 2025年第5期1689-1711,共23页
This study proposes a multi-objective optimization framework for electric winches in fiber-reinforced plastic(FRP)fishing vessels to address critical limitations of conventional designs,including excessive weight,mate... This study proposes a multi-objective optimization framework for electric winches in fiber-reinforced plastic(FRP)fishing vessels to address critical limitations of conventional designs,including excessive weight,material inefficiency,and performance redundancy.By integrating surrogate modeling techniques with a multi-objective genetic algorithm(MOGA),we have developed a systematic approach that encompasses parametric modeling,finite element analysis under extreme operational conditions,and multi-fidelity performance evaluation.Through a 10-t electric winch case study,the methodology’s effectiveness is demonstrated via parametric characterization of structural integrity,stiffness behavior,and mass distribution.The comparative analysis identified optimal surrogate models for predicting key performance metrics,which enabled the construction of a robust multi-objective optimization model.The MOGA-derived Pareto solutions produced a design configuration achieving 7.86%mass reduction,2.01%safety factor improvement,and 23.97%deformation mitigation.Verification analysis confirmed the optimization scheme’s reliability in balancing conflicting design requirements.This research establishes a generalized framework for marine deck machinery modernization,particularly addressing the structural compatibility challenges in FRP vessel retrofitting.The proposed methodology demonstrates significant potential for facilitating sustainable upgrades of fishing vessel equipment through systematic performance optimization. 展开更多
关键词 Marine winch multi-objective optimization surrogate model
在线阅读 下载PDF
Application of surrogate models to stability analysis and transition prediction in hypersonic flows 被引量:2
17
作者 Han Nie Wenping Song +2 位作者 Zhonghua Han Guohua Tu Jianqiang Chen 《Advances in Aerodynamics》 2022年第1期699-720,共22页
To increase the efficiency and robustness of stability-based transition prediction in flow simulations, simplified methods are introduced to substitute direct stability analyses for rapid disturbance growth prediction... To increase the efficiency and robustness of stability-based transition prediction in flow simulations, simplified methods are introduced to substitute direct stability analyses for rapid disturbance growth prediction. For low-speed boundary layers, these methods are mainly established based on self-similar assumptions, which are not applicable to non-similar boundary layers in hypersonic flows. The objective of this article is to investigate the application of surrogate models to stability analysis of non-similar flows over blunt cones, focused on parameterization of boundary-layer (BL) profiles. Firstly, correlations between BL edge and profile parameters are analyzed, along with self-similar flow parameters and discrete points on BL profiles, which present four groups of BL characteristic parameters. Secondly, using these parameters as inputs, surrogate models are built for disturbance growth prediction over an MF-1 blunt cone. Results show that, surrogate models using four BL edge parameters and a BL shape factor {Ue, Te, ρe, ηe, H12} for stability analysis can achieve comparable accuracy with those using 16 discrete BL profile parameters, which are more precise than those using merely self-similar parameters or BL edge parameters. Thirdly, the established surrogate models are validated by stability analysis and transition prediction over the MF-1 blunt cone in flight experiments at the instants of t = 17 s ~ 22 s. Compared with direct linear stability analyses, the mean relative error of predicted disturbance growth rates by surrogate models is 8.0% and the maximum relative error of N factor envelopes is 6.6%, which indicates feasible applications of surrogate models to stability analysis and transition prediction of non-similar boundary layers in hypersonic flows. 展开更多
关键词 surrogate models Stability analysis Transition prediction Hypersonic flows Blunt cone
原文传递
Establishment and application of a surrogate model for human Ebola virus disease in BSL-2 laboratory 被引量:1
18
作者 Wanying Yang Wujian Li +9 位作者 Wujie Zhou Shen Wang Weiqi Wang Zhenshan Wang Na Feng Tiecheng Wang Ying Xie Yongkun Zhao Feihu Yan Xianzhu Xia 《Virologica Sinica》 SCIE CAS CSCD 2024年第3期434-446,共13页
The Ebola virus(EBOV)is a member of the Orthoebolavirus genus,Filoviridae family,which causes severe hemorrhagic diseases in humans and non-human primates(NHPs),with a case fatality rate of up to 90%.The development o... The Ebola virus(EBOV)is a member of the Orthoebolavirus genus,Filoviridae family,which causes severe hemorrhagic diseases in humans and non-human primates(NHPs),with a case fatality rate of up to 90%.The development of countermeasures against EBOV has been hindered by the lack of ideal animal models,as EBOV requires handling in biosafety level(BSL)-4 facilities.Therefore,accessible and convenient animal models are urgently needed to promote prophylactic and therapeutic approaches against EBOV.In this study,a recombinant vesicular stomatitis virus expressing Ebola virus glycoprotein(VSV-EBOV/GP)was constructed and applied as a surrogate virus,establishing a lethal infection in hamsters.Following infection with VSV-EBOV/GP,3-week-old female Syrian hamsters exhibited disease signs such as weight loss,multi-organ failure,severe uveitis,high viral loads,and developed severe systemic diseases similar to those observed in human EBOV patients.All animals succumbed at 2–3 days post-infection(dpi).Histopathological changes indicated that VSV-EBOV/GP targeted liver cells,suggesting that the tissue tropism of VSV-EBOV/GP was comparable to wild-type EBOV(WT EBOV).Notably,the pathogenicity of the VSV-EBOV/GP was found to be species-specific,age-related,gender-associated,and challenge route-dependent.Subsequently,equine anti-EBOV immunoglobulins and a subunit vaccine were validated using this model.Overall,this surrogate model represents a safe,effective,and economical tool for rapid preclinical evaluation of medical countermeasures against EBOV under BSL-2 conditions,which would accelerate technological advances and breakthroughs in confronting Ebola virus disease. 展开更多
关键词 Ebola virus(EBOV) Recombinant vesicular stomatitis virus PATHOGENICITY Syrian hamster surrogate models Vaccine evaluation and drug screening
原文传递
Efficient sampling strategy driven surrogate-based multi-objective optimization for broadband microwave metamaterial absorbers 被引量:1
19
作者 LIU Sixing PEI Changbao +3 位作者 YE Xiaodong WANG Hao WU Fan TAO Shifei 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1388-1396,共9页
Multi-objective optimization(MOO)for the microwave metamaterial absorber(MMA)normally adopts evolutionary algo-rithms,and these optimization algorithms require many objec-tive function evaluations.To remedy this issue... Multi-objective optimization(MOO)for the microwave metamaterial absorber(MMA)normally adopts evolutionary algo-rithms,and these optimization algorithms require many objec-tive function evaluations.To remedy this issue,a surrogate-based MOO algorithm is proposed in this paper where Kriging models are employed to approximate objective functions.An efficient sampling strategy is presented to sequentially capture promising samples in the design region for exact evaluations.Firstly,new sample points are generated by the MOO on surro-gate models.Then,new samples are captured by exploiting each objective function.Furthermore,a weighted sum of the improvement of hypervolume(IHV)and the distance to sampled points is calculated to select the new sample.Compared with two well-known MOO algorithms,the proposed algorithm is vali-dated by benchmark problems.In addition,two broadband MMAs are applied to verify the feasibility and efficiency of the proposed algorithm. 展开更多
关键词 multi-objective optimization(MOO) Kriging model microwave metamaterial absorber(MMA) surrogate models sampling strategy
在线阅读 下载PDF
Meta databases of steel frame buildings for surrogate modelling and machine learning-based feature importance analysis 被引量:1
20
作者 Delbaz Samadian Imrose B.Muhit +1 位作者 Annalisa Occhipinti Nashwan Dawood 《Resilient Cities and Structures》 2024年第1期20-43,共24页
Traditionally,nonlinear time history analysis(NLTHA)is used to assess the performance of structures under fu-ture hazards which is necessary to develop effective disaster risk management strategies.However,this method... Traditionally,nonlinear time history analysis(NLTHA)is used to assess the performance of structures under fu-ture hazards which is necessary to develop effective disaster risk management strategies.However,this method is computationally intensive and not suitable for analyzing a large number of structures on a city-wide scale.Surrogate models offer an efficient and reliable alternative and facilitate evaluating the performance of multiple structures under different hazard scenarios.However,creating a comprehensive database for surrogate mod-elling at the city level presents challenges.To overcome this,the present study proposes meta databases and a general framework for surrogate modelling of steel structures.The dataset includes 30,000 steel moment-resisting frame buildings,representing low-rise,mid-rise and high-rise buildings,with criteria for connections,beams,and columns.Pushover analysis is performed and structural parameters are extracted,and finally,incorporating two different machine learning algorithms,random forest and Shapley additive explanations,sensitivity and explain-ability analyses of the structural parameters are performed to identify the most significant factors in designing steel moment resisting frames.The framework and databases can be used as a validated source of surrogate modelling of steel frame structures in order for disaster risk management. 展开更多
关键词 surrogate models Meta database Pushover analysis Steel moment resisting frames Sensitivity and explainability analyses Machine learning
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部