期刊文献+
共找到151篇文章
< 1 2 8 >
每页显示 20 50 100
3D Printing of Tough Hydrogel Scaffolds with Functional Surface Structures for Tissue Regeneration
1
作者 Ke Yao Gaoying Hong +11 位作者 Ximin Yuan Weicheng Kong Pengcheng Xia Yuanrong Li Yuewei Chen Nian Liu Jing He Jue Shi Zihe Hu Yanyan Zhou Zhijian Xie Yong He 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期18-45,共28页
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi... Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries. 展开更多
关键词 3D printing Tough hydrogel scaffold Functional surface structure Tissue regeneration BIOMATERIALS
在线阅读 下载PDF
Surface structuring of case hardened chain pins by cold-sprayed microparticles to modify friction and wear properties 被引量:2
2
作者 S. Buhl K. Schmidt +7 位作者 D. Sappok R. Merz C. Godard E. Kerscher M. Kopnarski B. Sauer S. Antonyuk S. Ripperger 《Particuology》 SCIE EI CAS CSCD 2015年第4期32-40,共9页
This paper presents the results of the application of a cold spray technique for structuring metallic surfaces with microparticles. The resulting changes in surface properties were characterized to observe their influ... This paper presents the results of the application of a cold spray technique for structuring metallic surfaces with microparticles. The resulting changes in surface properties were characterized to observe their influences on the tribological behavior of the structured surface. The spray technique was applied to a technical component, a 16MnCr5 steel chain pin, designed to be mounted in a linear reciprocating tribometer. TiO2 microparticles were used to structure the surface with a homogeneous distribution of singly dispersed particles, rather than a homogeneous closed coating on the surface. Tribometer tests were performed to directly compare structured and unstructured chain pins, and a significantly reduced sliding friction coefficient was observed for the structured pin. The pins were characterized in detail by surface analysis prior to and after application of the tribological load to set the surface parameters and surface chemistry, even on the microscale. It was confirmed that the particle structuring induced changes in the surface properties, and the durability of the changes after tribological loading was evaluated. 展开更多
关键词 Cold spraying surface structuring TiO2 microparticles Driving chain Sliding friction
原文传递
Surface structural engineering of carbonyl iron powder for enhancing microwave absorption and anti-oxidation performance 被引量:2
3
作者 Ming-Lu Huang Cheng-Long Luo +3 位作者 Chang Sun Kun-Yan Zhao Yingqing Ou Ming Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第11期201-209,共9页
Surface structural engineering is desirable in modifying the surface performance of carbonyl iron powder(CIP)to enhance microwave absorption(MA)and anti-oxidation performance.Herein,the surface shape-dependent CIP abs... Surface structural engineering is desirable in modifying the surface performance of carbonyl iron powder(CIP)to enhance microwave absorption(MA)and anti-oxidation performance.Herein,the surface shape-dependent CIP absorbers are designed via surface coating with zinc oxide(ZnO)nanoparticles and then a thermal annealing treatment.The morphology of ZnO nanoparticles which can be easily regulated by controlling the annealing temperature ultimately affects the MA performance of CIP coating with ZnO nanoparticles(CIP@ZnO).The core-shell CIP@ZnO particles with cubic cone ZnO nanoparticles exhibit ex-cellent MA performance and thermal stability in comparison to the original CIP.Specifically,the CIP@ZnO annealed at 350 ℃(CIP@ZnO-350)samples which have the cubic cone ZnO nanoparticles exhibit a min-imum reflection loss(RLmin)of-55.35 dB at a thickness of 2.1 mm and a maximum effective absorp-tion bandwidth(EAB)of 7.09 GHz at a thickness of 2.0 mm.In addition,the antioxidant property of the CIP@ZnO composite particles is abruptly enhanced,which breaks the restriction of the application of CIP at high temperatures.The superior MA performance of CIP@ZnO particles with cubic cone ZnO nanoparti-cles comes from the enhancement in surface shape-dependent multiple microwave scattering,interfacial polarization,and electromagnetic-dielectric synergism between ZnO and CIP. 展开更多
关键词 Microwave absorption Carbonyl iron powder ANTI-OXIDATION Interfacial polarization surface structural engineering
原文传递
Review on the Fabrication of Surface Functional Structures for Enhancing Bioactivity of Titanium and Titanium Alloy Implants 被引量:1
4
作者 Heng Tang Jiaxiang Xu +4 位作者 Bin Guo Yansong Xie Yalong Sun Yanjun Lu Yong Tang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期23-49,共27页
Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and ... Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and infection will occur after titanium alloy implantation due to the low biological activity of titanium alloy surface.The structures with specific functions,which can enhance osseointegration and antibacterial properties,are fabricated on the surface of titanium implants to improve the biological activity between the titanium implants and human tissues.This paper presents a comprehensive review of recent developments and applications of surface functional structure in titanium and titanium alloy implants.The applications of surface functional structure on different titanium and titanium alloy implants are introduced,and their manufacturing technologies are summarized and compared.Furthermore,the fabrication of various surface functional structures used for titanium and titanium alloy implants is reviewed and analyzed in detail.Finally,the challenges affecting the development of surface functional structures applied in titanium and titanium alloy implants are outlined,and recommendations for future research are presented. 展开更多
关键词 surface functional structure Titanium implant Manufacturing technology Bioactivity
在线阅读 下载PDF
Controlled Twill Surface Structure Endowing Nanofiber Composite Membrane Excellent Electromagnetic Interference Shielding
5
作者 Dechang Tao Xin Wen +4 位作者 Chenguang Yang Kun Yan Zhiyao Li Wenwen Wang Dong Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期255-273,共19页
Inspired by the Chinese Knotting weave structure,an electromagnetic interference(EMI)nanofiber composite membrane with a twill surface was prepared.Poly(vinyl alcohol-co-ethylene)(Pva-co-PE)nanofibers and twill nylon ... Inspired by the Chinese Knotting weave structure,an electromagnetic interference(EMI)nanofiber composite membrane with a twill surface was prepared.Poly(vinyl alcohol-co-ethylene)(Pva-co-PE)nanofibers and twill nylon fabric were used as the matrix and filter templates,respectively.A Pva-co-PEMXene/silver nanowire(Pva-co-PE-MXene/AgNW,PM_(x)Ag)membrane was successfully prepared using a template method.When the MXene/AgNW content was only 7.4 wt%(PM_(7.4)Ag),the EMI shielding efficiency(SE)of the composite membrane with the oblique twill structure on the surface was 103.9 dB and the surface twill structure improved the EMI by 38.5%.This result was attributed to the pre-interference of the oblique twill structure in the direction of the incident EM wave,which enhanced the probability of the electromagnetic waves randomly colliding with the MXene nanosheets.Simultaneously,the internal reflection and ohmic and resonance losses were enhanced.The PM_(7.4)Ag membrane with the twill structure exhibited both an outstanding tensile strength of 22.8 MPa and EMI SE/t of 3925.2 dB cm^(-1).Moreover,the PM_(x)Ag nanocomposite membranes demonstrated an excellent thermal management performance,hydrophobicity,non-flammability,and performance stability,which was demonstrated by an EMI SE of 97.3%in a high-temperature environment of 140℃.The successful preparation of surface-twill composite membranes makes it difficult to achieve both a low filler content and a high EMI SE in electromagnetic shielding materials.This strategy provides a new approach for preparing thin membranes with excellent EMI properties. 展开更多
关键词 Twill surface structure MXene/AgNW Nanofiber membrane Electromagnetic interference Flexibility and mechanical properties
在线阅读 下载PDF
Tuning the surface electronic structure of noble metal aerogels to promote the electrocatalytic oxygen reduction
6
作者 Hongxing Yuan Wei Gao +2 位作者 Xinhao Wan Jianqi Ye Dan Wen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期557-564,I0013,共9页
The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received partic... The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received particular attention in deriving valid ORR electrocatalysts.Here,the surface electronic structure of Ptbased noble metal aerogels(NMAs)was modulated by various organic ligands,among which the electron-withdrawing ligand of 4-methylphenylene effectively boosted the ORR electrocatalysis.Theoretical calculations suggested the smaller energy barrier for the transformation of O^(*) to OH^(*) and downshift the d-band center of Pt due to the interaction between 4-methylphenylene and the surface metals,thus enhancing the ORR intrinsic activity.Both Pt3Ni and Pt Pd aerogels with 4-methylphenylene decoration performed significant enhancement in ORR activity and durability in different media.Remarkably,the 4-methylphenylene modified Pt Pd aerogel exhibited the higher halfwave potential of 0.952 V and the mass activity of 10.2 times of commercial Pt/C.This work explained the effect of electronic structure on ORR electrocatalytic properties and would promote functionalized NMAs as efficient ORR electrocatalysts. 展开更多
关键词 Noble metal aerogels surface electronic structure ORR ELECTROCATALYST Organic ligands
在线阅读 下载PDF
Gyroid Triply Periodic Minimal Surface Lattice Structure Enables Improved Superelasticity of CuAlMn Shape Memory Alloy
7
作者 Mengwei Wu Chunmei Ma +1 位作者 Ruiping Liu Huadong Fu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第6期1047-1065,共19页
Improving the shape memory effect and superelasticity of Cu-based shape memory alloys(SMAs)has always been a research hotspot in many countries.This work systematically investigates the effects of Gyroid triply period... Improving the shape memory effect and superelasticity of Cu-based shape memory alloys(SMAs)has always been a research hotspot in many countries.This work systematically investigates the effects of Gyroid triply periodic minimal surface(TPMS)lattice structures with different unit sizes and volume fractions on the manufacturing viability,compressive mechanical response,superelasticity and heating recovery properties of CuAlMn SMAs.The results show that the increased specific surface area of the lattice structure leads to increased powder adhesion,making the manufacturability proportional to the unit size and volume fraction.The compressive response of the CuAlMn SMAs Gyroid TPMS lattice structure is negatively correlated with the unit size and positively correlated with the volume fraction.The superelastic recovery of all CuAlMn SMAs with Gyroid TPMS lattice structures is within 5%when the cyclic cumulative strain is set to be 10%.The lattice structure shows the maximum superelasticity when the unit size is 3.00 mm and the volume fraction is 12%,and after heating recovery,the total recovery strain increases as the volume fraction increases.This study introduces a new strategy to enhance the superelastic properties and expand the applications of CuAlMn SMAs in soft robotics,medical equipment,aerospace and other fields. 展开更多
关键词 Shape memory alloys SUPERELASTICITY Gyroid triply periodic minimal surface(TPMS)lattice structure Selective laser melting(SLM)
原文传递
Underwater persistent bubble-assisted femtosecond laser ablation for hierarchical micro/nanostructuring 被引量:13
8
作者 Dongshi Zhang Bikas Ranjan +1 位作者 Takuo Tanaka Koji Sugioka 《International Journal of Extreme Manufacturing》 2020年第1期135-154,共20页
In this study,we demonstrate a technique termed underwater persistent bubble assisted femtosecond laser ablation in liquids(UPB-fs-LAL)that can greatly expand the boundaries of surface micro/nanostructuring through la... In this study,we demonstrate a technique termed underwater persistent bubble assisted femtosecond laser ablation in liquids(UPB-fs-LAL)that can greatly expand the boundaries of surface micro/nanostructuring through laser ablation because of its capability to create concentric circular macrostructures with millimeter-scale tails on silicon substrates.Long-tailed macrostructures are composed of layered fan-shaped(central angles of 45°–141°)hierarchical micro/nanostructures,which are produced by fan-shaped beams refracted at the mobile bubble interface(.50°light tilt,referred to as the vertical incident direction)during UPB-fs-LAL line-by-line scanning.Marangoni flow generated during UPB-fs-LAL induces bubble movements.Fast scanning(e.g.1mms−1)allows a long bubble movement(as long as 2mm),while slow scanning(e.g.0.1mms−1)prevents bubble movements.When persistent bubbles grow considerably(e.g.hundreds of microns in diameter)due to incubation effects,they become sticky and can cause both gas-phase and liquidphase laser ablation in the central and peripheral regions of the persistent bubbles.This generates low/high/ultrahigh spatial frequency laser-induced periodic surface structures(LSFLs/HSFLs/UHSFLs)with periods of 550–900,100–200,40–100 nm,which produce complex hierarchical surface structures.A period of 40 nm,less than 1/25th of the laser wavelength(1030 nm),is the finest laser-induced periodic surface structures(LIPSS)ever created on silicon.The NIR-MIR reflectance/transmittance of fan-shaped hierarchical structures obtained by UPB-fs-LAL at a small line interval(5μm versus 10μm)is extremely low,due to both their extremely high light trapping capacity and absorbance characteristics,which are results of the structures’additional layers and much finer HSFLs.In the absence of persistent bubbles,only grooves covered with HSFLs with periods larger than 100 nm are produced,illustrating the unique attenuation abilities of laser properties(e.g.repetition rate,energy,incident angle,etc)by persistent bubbles with different curvatures.This research represents a straightforward and cost-effective approach to diversifying the achievable hierarchical micro/nanostructures for a multitude of applications. 展开更多
关键词 hierarchical micro/nanostructures persistent bubble femtosecond laser surface structuring beam refraction fan-shaped microstructure LIPSS
在线阅读 下载PDF
The Formation of Colored Film on Stainless Steel and the Study for Surface Structure
9
作者 张征林 余琨 +2 位作者 王怡红 宋苇 冯东丹 《Journal of Southeast University(English Edition)》 EI CAS 1998年第2期61-66,共6页
This paper discusses the coloration process on the stainless steel and the properties of the film. The compositions, morphology and structure of colored films on stainless steel are studied by using SEM,AES,AFM,STM. ... This paper discusses the coloration process on the stainless steel and the properties of the film. The compositions, morphology and structure of colored films on stainless steel are studied by using SEM,AES,AFM,STM. The diffusion controlled mechanisms of films and calculation formula of surface electropotential difference are discussed. 展开更多
关键词 chemical coloration on stainless steel analysis of surface structure
在线阅读 下载PDF
Research progress of modified metal current collectors in sodium metal anodes
10
作者 Zhenyang Yu Yueyue Gu +6 位作者 Qi Sun Yang Zheng Yifang Zhang Mengmeng Zhang Delin Zhang Zhijia Zhang Yong Jiang 《Chinese Chemical Letters》 2025年第6期195-207,共13页
Sodium metal has been widely studied in the field of batteries due to its high theoretical specific capacity(~1,166 m Ah/g),low redox potential(-2.71 V compared to standard hydrogen electrode),and lowcost advantages.H... Sodium metal has been widely studied in the field of batteries due to its high theoretical specific capacity(~1,166 m Ah/g),low redox potential(-2.71 V compared to standard hydrogen electrode),and lowcost advantages.However,problems such as unstable solid electrolyte interface(SEI),uncontrolled dendrite growth,and side reactions between solid-liquid interfaces have hindered the practical application of sodium metal anodes(SMAs).Currently,lots of strategies have been developed to achieve stabilized sodium metal anodes.Among these strategies,modified metal current collectors(MCCs)stand out due to their unique role in accommodating volumetric fluctuations with superior structure,lowering the energy barrier for sodium nucleation,and providing guided uniform sodium deposition.In this review,we first introduced three common metal-based current collectors applied to SMAs.Then,we summarized strategies to improve sodium deposition behavior by optimally engineering the surface of MCCs,including surface loading,surface structural design,and surface engineering for functional modification.We have followed the latest research progress and summarized surface optimization cases on different MCCs and their applications in battery systems. 展开更多
关键词 Sodium metal anodes Metal current collector surface modification surface structural design Anode-free batteries
原文传递
Effect of Cation Contamination of Gas Diffusion Layer on Water Management and Performance of PEMFCs
11
作者 Huibing Chen Jiashun Zhang +3 位作者 Hanwen Zhang Zhengnan Li Ming Chen Haijiang Wang 《Carbon Energy》 2025年第8期100-113,共14页
The efficient and stable operation of proton exchange membrane fuel cells(PEMFCs)in practical applications can be adversely affected by various contaminants.This study delves into the impact of Cr_(2)(SO_(4))_(3)conta... The efficient and stable operation of proton exchange membrane fuel cells(PEMFCs)in practical applications can be adversely affected by various contaminants.This study delves into the impact of Cr_(2)(SO_(4))_(3)contamination on the gas diffusion layer(GDL)and PEMFC performance,systematically analyzing the physicochemical property changes and their correlation with electrochemical performance.The results indicate that after post-treatment,the GDL surface exhibited exposed carbon fibers,cracks,and large pores in the microporous layer(MPL),with a noticeable detachment of PTFE.There was a marked reduction in C and F element signals,an increase in O element signals,deposition of Cr_(2)(SO_(4))_(3),formation of C=O and C=C bonds,appearance of Cr_(2)(SO_(4))_(3)characteristic peaks,and changes in pore structure—all suggesting significant alterations in the GDL's surface morphology,structure,and chemical composition.The decline in mechanical strength and thermal stability,and increased surface roughness and resistance negatively impacted fuel cell performance.At high current densities,the emergence of water flooding increased mass transfer resistance from 0.1Ωcm^(2)to 1.968Ωcm^(2),with a maximum power density decay rate reaching 71.17%.This study reveals the significant negative impact of Cr_(2)(SO_(4))_(3)contamination on GDL and fuel cell performance,highlighting that changes in surface structure,reduced hydrophobicity,and increased mass transfer resistance are primary causes of performance degradation.The findings provide crucial insights for improving GDL materials,optimizing fuel cell manufacturing and operation processes,and addressing contamination issues in practical applications. 展开更多
关键词 Cr_(2)(SO_(4))_(3)contamination mass transfer resistance performance degradation surface structure water management
在线阅读 下载PDF
Dynamic hydrogen intercalation catalysis
12
作者 Hao Zhang Xiaosong Xiong +1 位作者 Tao Wang Yuping Wu 《Chinese Journal of Catalysis》 2025年第7期1-3,共3页
Intercalation catalysis research involves inserting metal ions,molecules,or ionic liquids into the layered structure of catalysts to adjust their electronic structure and surface properties,thereby optimizing catalyti... Intercalation catalysis research involves inserting metal ions,molecules,or ionic liquids into the layered structure of catalysts to adjust their electronic structure and surface properties,thereby optimizing catalytic reaction efficiency and selectivity[1–3].This technique has achieved significant progress in areas such as electrocatalysis,catalytic cracking,and energy conversion,especially in reactions like hydrogen generation,oxygen reduction,nitrogen reduction,and carbon dioxide reduction[4–6].Intercalation catalysis can enhance catalyst activity and selectivity,but challenges remain regarding stability,reusability,and industrial application.Future research will focus on developing new intercalation materials,optimizing catalyst design,and exploring their potential applications in complex environments[7]. 展开更多
关键词 metal ionsmoleculesor carbon dioxide adjust their electronic structure surface propertiesthereby electrocatalysiscatalytic crackingand intercalation catalysis energy conversionespecially dynamic hydrogen intercalation ionic liquids
在线阅读 下载PDF
An automatic grid generation approach over free-form surface for architectural design 被引量:11
13
作者 苏亮 祝顺来 +1 位作者 肖南 高博青 《Journal of Central South University》 SCIE EI CAS 2014年第6期2444-2453,共10页
An essential step for the realization of free-form surface structures is to create an efficient structural gird that satisfies not only the architectural aesthetics,but also the structural performance.Employing the ma... An essential step for the realization of free-form surface structures is to create an efficient structural gird that satisfies not only the architectural aesthetics,but also the structural performance.Employing the main stress trajectories as the representation of force flows on a free-form surface,an automatic grid generation approach is proposed for the architectural design.The algorithm automatically plots the main stress trajectories on a 3D free-form surface,and adopts a modified advancing front meshing technique to generate the structural grid.Based on the proposed algorithm,an automatic grid generator named "St-Surmesh" is developed for the practical architectural design of free-form surface structure.The surface geometry of one of the Sun Valleys in Expo Axis for the Expo Shanghai 2010 is selected as a numerical example for validating the proposed approach.Comparative studies are performed to demonstrate how different structural grids affect the design of a free-form surface structure. 展开更多
关键词 grid generation free-form surface structure architectural geometry stress trajectory advancing front meshing technique
在线阅读 下载PDF
Large-area straight,regular periodic surface structures produced on fused silica by the interference of two femtosecond laser beams through cylindrical lens 被引量:10
14
作者 Long Chen Kaiqiang Cao +5 位作者 Yanli Li Jukun Liu Shian Zhang Donghai Feng Zhenrong Sun Tianqing Jia 《Opto-Electronic Advances》 SCIE EI 2021年第12期34-42,共9页
Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtos... Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtosecond lasers was used to produce large-area straight LIPSSs on fused silica using cylindrical lenses.Compared with those produced us-ing a single circular or cylindrical lens,the LIPSSs produced by TBI are much straighter and more regular.Depending on the laser fluence and scanning velocity,LIPSSs with grating-like or spaced LIPSSs are produced on the fused silica sur-face.Their structural colors are blue,green,and red,and only green and red,respectively.Grating-like LIPSS patterns oriented in different directions are obtained and exhibit bright and vivid colors,indicating potential applications in surface coloring and anti-counterfeiting logos. 展开更多
关键词 laser-induced periodic surface structures two-beam interference structural coloring fused silica cylindrical lens
在线阅读 下载PDF
Laser cleaning of steel structure surface for paint removal and repaint adhesion 被引量:28
15
作者 Xiaoguang Li Tingting Huang +3 位作者 Ang Wei Chong Rui Zhou Yoo Sang Choo Minghui Hong 《光电工程》 CAS CSCD 北大核心 2017年第3期340-344,共5页
Paint removal from steel structure is executed for shipyards of marine and offshore engineering.Due to environmental unfriendliness and unhealthy drawbacks of sand blasting technique, laser ablation technique is propo... Paint removal from steel structure is executed for shipyards of marine and offshore engineering.Due to environmental unfriendliness and unhealthy drawbacks of sand blasting technique, laser ablation technique is proposed as a substituting method.By absorbing high energy of the 1064 nm pulsed laser, the paint is vaporized quickly.The ablated debris is then collected by using a suction pump.Initial metal surface of the steel is exposed when laser beam irradiates perpendicularly and scans over it.The cleaned surface fulfills the requirements of surface preparation standards ISO 8501 of SA2.The adhesion is further characterized with pull-off test after carrying out painting with Jotamastic 87 aluminum paint.The repainting can be embedded onto the laser cleaned surface to bond much more tightly.The excellent adhesion strength of 20 MPa between repainted coating and the substrate is achieved, which is higher than what is required by shipyards applications. 展开更多
关键词 LASER steel structure surface paint removal repainting adhesion
在线阅读 下载PDF
Soil Microbial Responses to Biochars Varying in Particle Size,Surface and Pore Properties 被引量:13
16
作者 Noraini M.JAAFAR Peta L.CLODE Lynette K.ABBOTT 《Pedosphere》 SCIE CAS CSCD 2015年第5期770-780,共11页
Biochars are known for their heterogeneity, especially in pore and surface structure associated with pyrolysis processes and sources of feedstocks. The surface area of biochar is likely to be an important determinant ... Biochars are known for their heterogeneity, especially in pore and surface structure associated with pyrolysis processes and sources of feedstocks. The surface area of biochar is likely to be an important determinant of the extent of soil microbial attachment, whereas the porous structure of biochar is expected to provide protection for soil microorganisms. Potential interactions between biochars from different sources and with different particle sizes were investigated in relation to soil microbial properties in a short-term incubation study. Three particle size (sieved) fractions (0.5-1.0, 1.0-2.0 and 2.0-4.0 mm) from three woody biochars produced from jarrah wood, jarrah and wandoo wood and Australian wattle branches, respectively, were incubated in soil at 25 ℃ for 56 d. Observation by scanning electron microscopy (SEM) and characterisation of pore and surface area showed that all three woody biochars provided potential habitats for soil microorganisms due to their high porosity and surface areas. The biochars were structurally heterogeneous, varying in porosity and surface structure both within and between the biochar sources. After the 56-d incubation, hyphal colonisation was observed on biochar surfaces and in larger biochar pores. Soil clumping occurred on biochar particles, cementing and covering exposed biochar pores. This may have altered surface area and pore availability for microbial colonisation. Transient changes in soil microbial biomass, without a consistent trend, were observed among biochars during the 56-d incubation. 展开更多
关键词 microbial biomass microbial colonisation microbial habitats porosity scanning electron microscopy surface structure
原文传递
Investigations on femtosecond laser-induced surface modification and periodic micropatterning with anti-friction properties on Ti6Al4V titanium alloy 被引量:4
17
作者 Xinlei PAN Weifeng HE +4 位作者 Zhenbing CAI Xuede WANG Ping LIU Sihai LUO Liucheng ZHOU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第4期521-537,共17页
Titanium alloys have a wide application in aerospace industries as it has greater strength and low density, but it has poor tribological properties. To improve its friction and wear performance, in present work, a fem... Titanium alloys have a wide application in aerospace industries as it has greater strength and low density, but it has poor tribological properties. To improve its friction and wear performance, in present work, a femtosecond laser is used to directly irradiate the Ti6Al4V titanium alloy surface in air conditioning, which results in localized ablation and the formation of periodic microstructures but also a strong pressure wave, propagating the material inside. Through the optimization of processing parameters, surface modification and periodic micropatterning with effective anti-friction properties were successfully induced on the surface. After a treatment of femtosecond laser-induced surface modification(FsLSM), the surface microhardness was improved by 16.6% and compressive residual stress reached-746 MPa. Besides, laser-induced periodic surface structures(LIPSS) with a titanium oxide outer coating were fabricated uniformly on the titanium alloy surface. Rotary ball-on-disk wear experiments revealed that the average coefficient of friction(COF) and wear mass loss of the specimen with Fs LSM treatment were largely reduced by 68.9% and 90% as compared to that of untreated specimens, respectively. It was analyzed that the reason for the remarkable wear resistance was attributed to the comprehensive action of the generation of LIPSS, the titanium oxide outer coating, high amplitude compressive residual stress and gradient grain size distribution on the subsurface during the laser surface treatment. Since the findings here are broadly applicable to a wide spectrum of engineering metals and alloys, the present results offer unique pathways to enhancing the tribological performance of materials. 展开更多
关键词 Femtosecond laser-induced surface modification Laser-induced periodic surface structures Microstructure Titanium alloys Tribological performance
原文传递
Two-dimensional laser-induced periodic surface structures formed on crystalline silicon by GHz burst mode femtosecond laser pulses 被引量:5
18
作者 Shota Kawabata Shi Bai +2 位作者 Kotaro Obata Godai Miyaji Koji Sugioka 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期212-220,共9页
Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that canno... Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that cannot be obtained by the conventional irradiation scheme of femtosecond laser pulses(single-pulse mode).However,most studies using the GHz burst mode femtosecond laser pulses focus on ablation of materials to achieve high-efficiency and high-quality material removal.In this study,we explore the ability of the GHz burst mode femtosecond laser processing to form laser-induced periodic surface structures(LIPSS)on silicon.It is well known that the direction of LIPSS formed by the single-pulse mode with linearly polarized laser pulses is typically perpendicular to the laser polarization direction.In contrast,we find that the GHz burst mode femtosecond laser(wavelength:1030 nm,intra-pulse duration:220 fs,intra-pulse interval time(intra-pulse repetition rate):205 ps(4.88 GHz),burst pulse repetition rate:200 kHz)creates unique two-dimensional(2D)LIPSS.We regard the formation mechanism of 2D LIPSS as the synergetic contribution of the electromagnetic mechanism and the hydrodynamic mechanism.Specifically,generation of hot spots with highly enhanced electric fields by the localized surface plasmon resonance of subsequent pulses in the bursts within the nanogrooves of one-dimensional LIPSS formed by the preceding pulses creates 2D LIPSS.Additionally,hydrodynamic instability including convection flow determines the final structure of 2D LIPSS. 展开更多
关键词 GHz burst laser-induced periodic surface structures(LIPSS) surface nanostructuring 2D nanostructures
在线阅读 下载PDF
Experimental Study on Wear Performance and Oil Film Characteristics of Surface Textured Cylinder Liner in Marine Diesel Engine 被引量:6
19
作者 Zhi-Wei Guo Cheng-Qing Yuan +1 位作者 Xiu-Qin Bai Xin-Ping Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第3期158-167,共10页
It is of a vital importance to reduce the frictional losses in marine diesel engines. Advanced surface textures have provided an e ective solution to friction performance of rubbing pairs due to the rapid development ... It is of a vital importance to reduce the frictional losses in marine diesel engines. Advanced surface textures have provided an e ective solution to friction performance of rubbing pairs due to the rapid development of surface engineering techniques. However,the mechanisms through which textured patterns and texturing methods prove beneficial remains unclear. To address this issue,the tribological system of the cylinder liner?piston ring(CLPR) is investigated in this work. Two types of surface textures(Micro concave,Micro V?groove) are processed on the cylinder specimen using di erent processing methods. Comparative study on the friction coe cients,worn surface texture features and oil film characteristics are performed. The results demonstrate that the processing method of surface texture a ect the performance of the CLPR pairs under the specific testing conditions. In addition the micro V?groove processed by CNCPM is more favorable for improving the wear performances at the low load,while the micro?con?cave processed by CE is more favorable for improving the wear performances at the high load. These findings are in helping to understand the e ect of surface texture on wear performance of CLPR. 展开更多
关键词 Cylinder liner?piston ring(CLPR) surface texture structure Frictional and wear characteristic Oil film characteristic
在线阅读 下载PDF
Surface and Texture Properties of Tb-Doped Ceria-Zirconia Solid Solution Prepared by Sol-Gel Method 被引量:6
20
作者 樊国栋 冯长根 张昭 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第1期42-47,共6页
The three-way catalysts (TWCs) promoters Ce0.6Zr0.4- x TbxO2-y were prepared by sol-gel method. BET surface areas analysis indicated that an increase of the dopant Tb content from x = 0.05 to x = 0.15 favors an incr... The three-way catalysts (TWCs) promoters Ce0.6Zr0.4- x TbxO2-y were prepared by sol-gel method. BET surface areas analysis indicated that an increase of the dopant Tb content from x = 0.05 to x = 0.15 favors an increase of surface area from 66.8 to 80.4 m^2· g^-1 compared with the undoped sample Ce0 .6oZr0.40O2 65.1 m^2·g^- 1 after calcination at 650℃. Transmission electron microscopy (TEM) observation indicated that the doped samples have a higher thermal stability. The XRD and Raman spectra confirmed that the Ce0.6Zr0.4-xTbxO2-y cubic solid solution is formed. XPS analysis revealed that Ce and Tb mainly existed in the form of Ce^4+ and Tb^3 + , and Zr existed in the form of Zr^4+ on the surface of the samples. The doped samples were homogenous in composition ; the introduction of Tb into the CeO2-ZrO2 promoters resuited in the formation of a solid solution, and the concentration of surface lattice oxygen was increased. 展开更多
关键词 Ce0.6Zr0.4 - xTbxO2 - y solid solution three-way catalysts sol-gel method surface and texture structure rare earths
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部