期刊文献+
共找到681篇文章
< 1 2 35 >
每页显示 20 50 100
Physical Antibacterial Surface Modifications on Titanium-Based Implant Materials
1
作者 Zhang Zhe Liu Hui +2 位作者 Lin Manfeng Cai Zongyuan Zhao Dapeng 《稀有金属材料与工程》 北大核心 2025年第1期84-93,共10页
Infections associated with titanium(Ti)-based implants present significant challenges in clinical treatments,especially when biofilms already form on the implant surface.Many antimicrobial agents,including antibiotics... Infections associated with titanium(Ti)-based implants present significant challenges in clinical treatments,especially when biofilms already form on the implant surface.Many antimicrobial agents,including antibiotics,metallic nanoparticles and antimicrobial peptides,have been extensively used to deal with Ti implant infections.However,these chemical approaches suffer from potential toxicity,antibiotic resistance and poor long-term antibacterial performance.Hence,physical antibacterial surfaces on Ti-based implants have attracted increasing attention.The antibacterial behavior of different surfaces on Ti-based biomaterials against various bacteria only by physical properties of the implants themselves(e.g.,nanotopography)or exogenous physical stimulus(e.g.,photocatalysis)was reviewed,as well as parameters influencing the physical antibacterial processes,such as size,shape and density of the surface nanotextures,and bacterial growth phases.Besides,mechanisms of different fabrication techniques for the physical antibacterial surfaces on Ti-based biomaterials were also summarized. 展开更多
关键词 physical antibacterial behavior surface modification titanium alloy implant material
原文传递
Effects of surface modifications on the physicochemical properties of iron oxide nanoparticles and their performance as anticancer drug carriers 被引量:4
2
作者 Lingling Guo Hong Chen +1 位作者 Nongyue He Yan Deng 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第12期1829-1833,共5页
The feature of the surface coating can affect important properties of iron oxide nanoparticles(IONPs), it is therefore critical for further understanding how these materials react to physiological conditions, which is... The feature of the surface coating can affect important properties of iron oxide nanoparticles(IONPs), it is therefore critical for further understanding how these materials react to physiological conditions, which is still needed to fully exploit the potential of IONPs for their theranostic applications. In this work, we prepared IONPs which surface were modified with citric acid(CA), chitosan(CS) and folic acid conjugated chitosan(FA-g-CS). respectively. Their physicochemical properties were investigated using FT-IR, TEM,powder XRD, VSM, TGA, DLS and zeta potential. We found that CA-IONP dispersion was composed of monocrystalline particles while CS-IONP and FA-g-CS-IONP were composed of polycrystalline aggregates. All IONPs retained the crystalline structure of magnetite and exhibited the superparamagnetic behavior. Their saturation magnetization decreased with the increase in the amount of their organic coatings. Their drug loading capacities, drug release patterns and in vitro anticancer efficiencies were studied by using doxorubicin(DOX) as a model drug. DOX@CS-IONP and DOX@FA-g-CSIONP exhibited lower drug loading while showing higher water dispersity when compared with DOX@CA-IONP. All IONPs were surface charged and they tended to agglomerate in medium with high pH value and ionic strength. In the presence of chitosan or FA-g-CS coatings, their DOX release rate was slowed down compared with that of DOX@CA-IONP. Unloaded IONPs exhibited nearly no cytotoxicity on both cancer cells and normal cells in the presence of chitosan and FA-g-CS when compared with CA-IONP which presented high cytotoxicity. However, DOX@FA-g-CS-IONP showed significantly cytotoxicity on folate receptors(FRs) positive breast cancer cells while exhibiting nearly no cytotoxicity on FRs negative normal cells. Results presented in this study were valuable to the design and fabrication of IONPs-based system for better theranostic applications. 展开更多
关键词 Iron oxide nanoparticles surface modification Physicochemical property Drug delivery CHITOSAN Folic acid
原文传递
Surface modifications of biometallic commercially pure Ti and Ti–13Nb–13Zr alloy by picosecond Nd:YAG laser 被引量:2
3
作者 Slađana Laketić Marko Rakin +3 位作者 MilošMomčilović Jovan Ciganović Đorđe Veljović Ivana Cvijović-Alagić 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第2期285-295,共11页
The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti–13Nb–13Zr alloy in air and argon atmospheres were studied under diffe... The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti–13Nb–13Zr alloy in air and argon atmospheres were studied under different laser output energy values.During the interaction of laser irradiation with the investigated materials,a part of the energy was absorbed on the target surface,influencing surface modifications.Laser beam interaction with the target surface resulted in various morphological alterations,resulting in crater formation and the presence of microcracks and hydrodynamic structures.Moreover,different chemical changes were induced on the target materials’surfaces,resulting in the titanium oxide formation in the irradiation-affected area and consequently increasing the irradiation energy absorption.Given the high energy absorption at the site of interaction,the dimensions of the surface damaged area increased.Consequently,surface roughness increased.The appearance of surface oxides also led to the increased material hardness in the surface-modified area.Observed chemical and morphological changes were pronounced after laser irradiation of the Ti–13Nb–13Zr alloy surface. 展开更多
关键词 commercially pure titanium Ti-13Nb-13Zr alloy surface modification Nd:YAG laser laser-induced damage hard oxidized surface
在线阅读 下载PDF
Current Strategies of Surface Modifications to Polyurethane Biomaterials for Vascular Grafts
4
作者 Huai-Gu Huang Tao Xiang Yue-Xin Chen 《Chinese Medical Sciences Journal》 CAS CSCD 2023年第4期279-285,共7页
As the number of patients suffering from cardiovascular diseases and peripheral vascular diseases rises,the constraints of autologous transplantation remain unavoidable.As a result,artificial vascular grafts must be d... As the number of patients suffering from cardiovascular diseases and peripheral vascular diseases rises,the constraints of autologous transplantation remain unavoidable.As a result,artificial vascular grafts must be developed.Adhesion of proteins,platelets and bacteria on implants can result in stenosis,thrombus formation,and postoperative infection,which can be fatal for an implantation.Polyurethane,as a commonly used biomaterial,has been modified in various ways to deal with the adhesions of proteins,platelets,and bacteria and to stimulate endothelium adhesion.In this review,we briefly summarize the mechanisms behind adhesions,overview the current strategies of surface modifications of polyurethane biomaterials used in vascular grafts,and highlight the challenges that need to be addressed in future studies,aiming to gain a more profound understanding of how to develop artificial polyurethane vascular grafts with an enhanced implantation success rate and reduced side effect. 展开更多
关键词 surface modification POLYURETHANE vascular graft ADHESION
暂未订购
Influence of Different Surface Modifications on the Photovoltaic Performance and Dark Current of Dye-Sensitized Solar Cells
5
作者 徐炜炜 戴松元 +5 位作者 胡林华 张昌能 肖尚峰 罗向东 景为平 王孔嘉 《Plasma Science and Technology》 SCIE EI CAS CSCD 2007年第5期556-559,共4页
The TiO2 nanoporous film photoelectrode, as a crucial component of dye-sensitized solar cells, has been investigated. The photovoltaic properties and the dark current were studied by two surface modification methods. ... The TiO2 nanoporous film photoelectrode, as a crucial component of dye-sensitized solar cells, has been investigated. The photovoltaic properties and the dark current were studied by two surface modification methods. One was to apply a compact layer between the conductive glass substrate and nanoporous TiO2 film. Another was to produce TiO2 nanoparticles among the microstructure by TICl4 treatment. A suitable concentration and number of times for TICl4 treatment were found in our experiment. The dark current is suppressed by surface modifications, leading to a significant improvement in the solar cells performance. An excessive concentration of TICl4 will produce more surface states and introduce a larger dark current reversely. The dye is also regarded as a source of charge recombination in dark to some extent, due to an amount of surface protonations introduced by the interracial link in the conductive glass substrate/dye interface and dye/TiO2 interface. 展开更多
关键词 surface modification dark current dye-sensitized solar cells
在线阅读 下载PDF
A high-energy powder with excellent combustion reaction performance:Surface modification strategy of boron powder based on non-thermal plasma
6
作者 Kangkang Li Jianyong Xu +9 位作者 Xiaoting Lei Mengzhe Yang Jing Liu Luqi Guo Pengfei Cui Dihua Ouyang Chunpei Yu He Cheng Jiahai Ye Wenchao Zhang 《Defence Technology(防务技术)》 2026年第1期289-300,共12页
The presence of a surface oxide film(B_(2)O_(3))on boron(B)particles significantly compromises their combustion efficiency and kinetic performance in fuel-rich solid propellants.This study proposes an innovative conti... The presence of a surface oxide film(B_(2)O_(3))on boron(B)particles significantly compromises their combustion efficiency and kinetic performance in fuel-rich solid propellants.This study proposes an innovative continuous modification strategy combining non-thermal plasma(NTP)etching with fluorocarbon passivation.Characterization and kinetic analysis revealed that reactive plasma species—including atomic hydrogen(H),electronically excited molecular hydrogen(H_(2)^(*)),vibrationally excited molecular hydrogen(H_(2)v),and hydrogen ions(H^(+))—dominate the reduction of B_(2)O_(3)through lowering the transition energy barrier and shifting the reaction spontaneity.Subsequent argon plasma fragmentation of C_(8)F_(18)generates fluorocarbon radicals that form conformal passivation coatings(thickness:7 nm)on purified boron surfaces.The modified boron particles exhibit 37.5℃lower exothermic peak temperature and 27.2%higher heat release(14.8 kJ/g vs.11.6 kJ/g)compared to untreated counterparts.Combustion diagnostics reveal 194%increase in maximum flame height(135.10 mm vs.46.03 mm)and 134%enhancement in flame propagation rate(4.44 cm/s vs.1.90 cm/s).This NTP-based surface engineering approach establishes a scalable pathway for developing highperformance boron-based energetic composites. 展开更多
关键词 Oxide film materials surface modification Boron powder Non-thermal plasma Combustion performance
在线阅读 下载PDF
Surface/Interface Engineering for High‑Resolution Micro‑/Nano‑Photodetectors
7
作者 Jinlin Chang Ting Liu +7 位作者 Xiao Geng Genting Dai Liangliang Yang Mingjun Cheng Linpan Jiang Zhenyuan Sun Jianshe Liu Wei Chen 《Nano-Micro Letters》 2026年第3期499-553,共55页
Photodetectors can convert light energy into electrical signals,so are widely used in photovoltaics,photon counting,monitoring,and imaging.Photodetectors are easy to prepare high-resolution photochips because of their... Photodetectors can convert light energy into electrical signals,so are widely used in photovoltaics,photon counting,monitoring,and imaging.Photodetectors are easy to prepare high-resolution photochips because of their small size unit integration.However,these photodetector units often exhibit poor photoelectric performance due to material defects and inadequate structures,which greatly limit the functions of devices.Designing modification strategies and micro-/nanostructures can compensate for defects,adjust the bandgap,and develop novel quantum structures,which consequently optimize photovoltaic units and revolutionize optoelectronic devices.Here,this paper aims to comprehensively elaborate on the surface/interface engineering scheme of micro-/nano-photodetectors.It starts from the fundamentals of photodetectors,such as principles,types,and parameters,and describes the influence of material selection,manufacturing techniques,and post-processing.Then,we analyse in detail the great influence of surface/interface engineering on the performance of photovoltaic devices,including surface/interface modification and micro-/nanostructural design.Finally,the applications and prospects of optoelectronic devices in various fields such as miniaturization of electronic devices,robotics,and human–computer interaction are shown. 展开更多
关键词 PHOTODETECTORS surface modification HIGH-RESOLUTION Micro-/nanostructures
在线阅读 下载PDF
Quantitative study of protein coronas on gold nano- particles with different surface modifications 被引量:6
8
作者 Menghua Cui Renxiao Liu Zhaoyi Deng Guanglu Ge Ying Liu Liming Xie 《Nano Research》 SCIE EI CAS CSCD 2014年第3期345-352,共8页
Protein coronas provide the biological identity of nanomaterials in vivo. Here we have used dynamic light scattering (DLS) and transmission electron microscopy (TEM) to investigate the adsorption of serum proteins... Protein coronas provide the biological identity of nanomaterials in vivo. Here we have used dynamic light scattering (DLS) and transmission electron microscopy (TEM) to investigate the adsorption of serum proteins, including bovine serum albumin (BSA), transferrin (TRF) and fibrinogen (FIB), on gold nanoparticles (AuNPs) with different surface modifications (citrate, thioglycolic acid, cysteine, polyethylene glycol (PEG, Mw = 2 k and 5 k)). AuNPs with PEG(5 k) surface modification showed no protein adsorption. AuNPs with non-PEG surface modifications showed aggregation with FIB. AuNPs with citrate and thioglycolic acid surface modifications showed 6-8 nm thick BSA and TRF coronas (corres- ponding to monolayer or bilayer proteins), in which the microscopic dissociation constants of BSA and TRF protein coronas are in the range of 104 to 104 M. 展开更多
关键词 protein corona gold nanoparticle dynamic light scattering transmission electronmicroscopy surface modification
原文传递
Microstructure and property modifications in surface layers of a Mg-4Sm-2Al-0.5Mn alloy induced by pulsed electron beam treatments 被引量:4
9
作者 Yingrui Liu Kemin Zhang +3 位作者 Jianxin Zou Ping Yan Xu Zhang Luxia Song 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第1期216-224,共9页
In this work,surface modification of a Mg-4Sm-2Al-0.5Mn alloy with high current pulse electron beam(HCPEB)under different number of pulses were investigated.The evolution in microstructure,composition and phase compon... In this work,surface modification of a Mg-4Sm-2Al-0.5Mn alloy with high current pulse electron beam(HCPEB)under different number of pulses were investigated.The evolution in microstructure,composition and phase components and properties in the surface layer before and after HCPEB treatment were characterized.It was found that the Al 11 Sm 3 and Al 2 Sm phases in the surface layer were gradually dissolved during HCPEB treatment,leading to the formation of a chemical homogeneous melted layers.Besides,deformation bands were formed in the treated layer due to the thermal stress generated during treatment.After 15 pulses treatment,the surface hardness increases to the maximum value of about 62.2 HV,about 61.2%higher than that of the untreated state.Electrochemical results show that the 15 pulses treated sample presents the best corrosion resistance in the 3.5wt%NaCl water solution by showing the highest corrosion potential(E_(corr))of-1.339V SEC and the lowest corrosion current density(I_(corr))of 1.48×10^(-6)A·cm^(-2).The results prove that the surface properties of the Mg-4Sm-2Al-0.5Mn alloy can be significantly improved by the HCPEB treatments under proper conditions. 展开更多
关键词 High current pulsed electron beam(HCPEB) surface modification Mg rare earth alloy MICROSTRUCTURES CORROSION-RESISTANCE
在线阅读 下载PDF
A comprehensive review on surface modifications of black phosphorus using biological macromolecules
10
作者 Chaiqiong Guo Xuhong He +4 位作者 Xuanyu Liu Yuhui Wang Yan Wei Ziwei Liang Di Huang 《Frontiers of Materials Science》 SCIE CSCD 2024年第2期37-59,共23页
Black phosphorus(BP),a novel two dimensional material,exhibits remarkable photoelectric characteristics,ultrahigh photothermal conversion efficiency,substantial specific surface area,high carrier mobility,and tunable ... Black phosphorus(BP),a novel two dimensional material,exhibits remarkable photoelectric characteristics,ultrahigh photothermal conversion efficiency,substantial specific surface area,high carrier mobility,and tunable band gap properties.These attributes have positioned it as a promising candidate in domains such as energy,medicine,and the environment.Nonetheless,its vulnerability to light,oxygen,and water can lead to rapid degradation and loss of crystallinity,thereby limiting its synthesis,preservation,and application.Moreover,BP has demonstrated cytotoxic tendencies,substantially constraining its viability in the realm of biomedicine.Consequently,the imperative for surface modification arises to bolster its stability and biocompatibility,while concurrently expanding its utility spectrum.Biological macromolecules,integral components of living organisms,proffer innate advantages over chemical agents and polymers for the purpose of the BP modifications.This review comprehensively surveys the advancements in utilizing biological macromolecules for the modifications of BP.In doing so,it aims to pave the way for enhanced stability,biocompatibility,and diversified applications of this material. 展开更多
关键词 blackphosphorus tumor therapy BIOCOMPATIBILITY surface modification BIOMACROMOLECULE
原文传递
Advances in magnesium-based bioresorbable cardiovascular stents: Surface engineering and clinical prospects 被引量:2
11
作者 Ganesh Kumar Subham Preetam +5 位作者 Arunima Pandey Nick Birbilis Saad Al-Saadi Pooria Pasbakhsh Mikhail Zheludkevich Poovarasi Balan 《Journal of Magnesium and Alloys》 2025年第3期948-981,共34页
Magnesium(Mg)-based bioresorbable stents represent a potentially groundbreaking advancement in cardiovascular therapy;offering tem-porary vessel support and complete biodegradability—addressing limitations of traditi... Magnesium(Mg)-based bioresorbable stents represent a potentially groundbreaking advancement in cardiovascular therapy;offering tem-porary vessel support and complete biodegradability—addressing limitations of traditional stents like in-stent restenosis and long-term com-plications.However,challenges such as rapid corrosion and suboptimal endothelialisation have hindered their clinical adoption.This review highlights the latest breakthroughs in surface modification,alloying,and coating strategies to enhance the mechanical integrity,corrosion resistance,and biocompatibility of Mg-based stents.Key surface engineering techniques,including polymer and bioactive coatings,are ex-amined for their role in promoting endothelial healing and minimising inflammatory responses.Future directions are proposed,focusing on personalised stent designs to optimize efficacy and long-term outcomes,positioning Mg-based stents as a transformative solution in interventional cardiology. 展开更多
关键词 Magnesium alloy Cardiovascular stent surface modification Corrosion BIOCOMPATIBILITY Biomedical application
暂未订购
Recent Advancements in the Surface Modification of Additively Manufactured Metallic Bone Implants
12
作者 Jianhui Li Haitao Fan +4 位作者 Hui Li Licheng Hua Jianke Du Yong He Yuan Jin 《Additive Manufacturing Frontiers》 2025年第1期97-124,共28页
Additive manufacturing(AM)has revolutionized the production of metal bone implants,enabling unprecedented levels of customization and functionality.Recent advancements in surface-modification technologies have been cr... Additive manufacturing(AM)has revolutionized the production of metal bone implants,enabling unprecedented levels of customization and functionality.Recent advancements in surface-modification technologies have been crucial in enhancing the performance and biocompatibility of implants.Through leveraging the versatility of AM techniques,particularly powder bed fusion,a range of metallic biomaterials,including stainless steel,titanium,and biodegradable alloys,can be utilized to fabricate implants tailored for craniofacial,trunk,and limb bone reconstructions.However,the potential of AM is contingent on addressing intrinsic defects that may hinder implant performance.Techniques such as sandblasting,chemical treatment,electropolishing,heat treatment,and laser technology effectively remove residual powder and improve the surface roughness of these implants.The development of functional coatings,applied via both dry and wet methods,represents a significant advancement in surface modification research.These coatings not only improve mechanical and biological interactions at the implant-bone interface but also facilitate controlled drug release and enhance antimicrobial properties.Addition-ally,micro-and nanoscale surface modifications using chemical and laser techniques can precisely sculpt implant surfaces to promote the desired cellular responses.This detailed exploration of surface engineering offers a wealth of opportunities for creating next-generation implants that are not only biocompatible but also bioactive,laying the foundation for more effective solutions in bone reconstruction. 展开更多
关键词 surface modification Additive manufacturing Bone implants Defect mitigation Coatings MICROSTRUCTURES
暂未订购
Current status and perspectives on design,fabrication,surface modification,and clinical applications of biodegradable magnesium alloys
13
作者 Jianzeng Ren Zhou Jiang +3 位作者 Jianbing He Xiaoying Wang Weihong Jin Zhentao Yu 《Journal of Magnesium and Alloys》 2025年第8期3564-3595,共32页
Biodegradable metals have garnered considerable interest owing to their capacity for self-degradation following the repair of damaged tissues.This review commences with their historical development and clarifies the e... Biodegradable metals have garnered considerable interest owing to their capacity for self-degradation following the repair of damaged tissues.This review commences with their historical development and clarifies the essential prerequisites for their successful clinical translation.Subsequently,a detailed review of magnesium-based materials is presented from five critical areas of alloying,fabrication techniques,purification,surface modification,and structural design,systematically addressing their progress in biodegradation rate retardation,mechanical reinforcement,and biocompatibility enhancement.Furthermore,recent breakthroughs in vivo animal experiments and clinical translation of magnesium alloys are summarized.Finally,this review concludes with a critical assessment of the achievements and challenges encountered in the clinical application of these materials,and proposes practical strategies to address current limitations and guide future research perspectives. 展开更多
关键词 Magnesium-based biodegradable metals ALLOYING Fabrication techniques PURIFICATION surface modification Structural design
在线阅读 下载PDF
Fundamental study on the construction of anti-wear drug delivery system through the design of titanium surface morphology
14
作者 Tong Ding Yanfang Zhang +5 位作者 Yuankun Hou Lei Zhou Jianxing Zhang Tengfei Wu Zhiguo Xing Sefei Yang 《Journal of Materials Science & Technology》 2025年第19期215-227,共13页
The durability of dental implant carrier coatings is of paramount importance for the expeditious and predictable osseointegration process.The present work is based on a bionic micro/nano hierarchy struc-ture,which con... The durability of dental implant carrier coatings is of paramount importance for the expeditious and predictable osseointegration process.The present work is based on a bionic micro/nano hierarchy struc-ture,which consists of titanium surface microstructures and their internal TiO2 nanotubes(TNTs)with drug-carrying capacity.This effectively increases the wear resistance of the drug-carrying coating on the titanium surface.In comparison to untextured samples,the wear volume and wear depth of the optimal texture group are markedly diminished,resulting in a significant enhancement of wear resistance.This improvement was primarily attributed to the smaller contact area of the microstructure.Concurrently,the microstructure serves to safeguard the TNTs from damage during friction.The hydrophilic biomimetic anti-wear micro/nano hierarchies demonstrated the capacity to promote MC3T3-E1 cell adhesion and pro-liferation,while also exhibiting no cytotoxic effects.Moreover,the micro/nano hierarchical structure can be directly applied to the surface of commercialized implants.In simulated clinical conditions,the im-plant was inserted into a fresh Bama porcine mandible,and the structure of the drug-loading coatings remained intact.This structure enhances the abrasion resistance of the drug coating while minimizing alterations to the original treatment process of the implant,which is of great significance in the clinical application of implant-loaded drug delivery. 展开更多
关键词 Titanium implant surface modification Wear resistance Femtosecond laser Anodic oxidation BIOCOMPATIBILITY
原文传递
Suppression of Ag dewetting and sinterability improvement of submicron Ag-coated Cu particles as fillers in sintering paste by surface modification with stearic acid
15
作者 Yeongjung KIM Yong-Sung EOM +1 位作者 Kwang-Seong CHOI Jong-Hyun LEE 《Transactions of Nonferrous Metals Society of China》 2025年第6期2008-2020,共13页
Four types of submicron Ag-coated Cu particles with different Ag contents were prepared as sintering paste fillers,and the Ag contents of the particles were measured to be 10,20,30,and 40 wt.%.Four types of particles(... Four types of submicron Ag-coated Cu particles with different Ag contents were prepared as sintering paste fillers,and the Ag contents of the particles were measured to be 10,20,30,and 40 wt.%.Four types of particles(in order of increasing Ag content:A10,A20,A30,and A40)were surface-modified with stearic acid,to suppress the Ag shell dewetting and improve sinterability.The surface-modified particles were mixed with a polyol-based solvent to fabricate a resin-free paste.Subsequently,the pastes were screen-printed onto a slide glass and sintered at 250°C in a nitrogen atmosphere for 1-10 min to form an electrode.The electrical resistivity of the sintered film as a function of sintering time was measured using a four-point probe.All the four surface-modified Cu@Ag particles with different Ag contents exhibited decreased electrical resistivity.Particularly,the largest difference in values after and before the surface modification was observed for A40 with the highest Ag content;the electrical resistivities of the initial and surface-modified particles were 1.51×10^(-4) and 6.67×10^(-5)Ω·cm,respectively,after sintering for 10 min.The findings of this study confirmed that the surface modification using stearic acid effectively suppressed the dewetting of the Ag shell and improved the sinterability of the submicron Cu@Ag particles. 展开更多
关键词 submicron Ag-coated Cu particle SINTERING DEWETTING surface modification stearic acid electrical resistivity
在线阅读 下载PDF
Effects of picosecond laser ablation and surface modification on the surface/interface characteristics and removal performance of 4H-SiC
16
作者 Qixian Zhang Kangsen Li +3 位作者 Xiong Zhang Rui Gao Chi Fai Cheung Chunjin Wang 《Journal of Materials Science & Technology》 2025年第31期199-216,共18页
Silicon carbide(SiC)is a highly valued material for power semiconductor devices due to its wide bandgap,high thermal conductivity,and high breakdown electric field.However,its high hardness,brittleness,and chemical st... Silicon carbide(SiC)is a highly valued material for power semiconductor devices due to its wide bandgap,high thermal conductivity,and high breakdown electric field.However,its high hardness,brittleness,and chemical stability present substantial challenges for efficient and high-quality processing.This study investigated the effects of picosecond laser surface scanning on 4H-SiC to enhance the material removal performance.The research focused on surface morphology,phase transitions,subsurface/interface characteristics,and material removal mechanisms under varying laser parameters.The results demonstrate that the laser thermal effect decomposes 4H-SiC into amorphous silicon(a-Si),disordered carbon,and graphite,forming a resolidified layer containing Si-O and Si-C-O oxides.Crystalline silicon(c-Si)is produced under high fluences or extensive irradiations.The variation in the resolidified layer thickness with changing laser parameters is revealed.A detailed laser-induced subsurface damage model is developed,encompassing a resolidified layer that includes the above decomposition and oxidation products,and a deformed layer formed primarily under laser-induced stress.The presence of the resolidified layer and the deformed layer leads to a decreased elastic recovery rate and an increased scratching depth,exceeding 2.5 times that of the unmodified condition.Enhanced material removal performance is mainly driven by the resolidified layer at low fluence and by the deformed layer at high fluence.When aligning the total of the ablation depth and the resolidified layer thickness with the subsurface damage depth in the original material,excellent polishing performance is achieved.These findings provide critical insights for understanding the phase evolution,subsurface damage mechanisms,and material removal behavior of 4H-SiC,offering valuable guidance for optimizing the laser surface modification parameters to achieve high-efficiency processing. 展开更多
关键词 Silicon carbide Laser surface modification Laser parameter Phase transition Subsurface damage Ultra-precision machining
原文传递
Immobilization of chitosan nano-hydroxyapatite alendronate composite microspheres on polyetheretherketone surface to enhance osseointegration by inhibiting osteoclastogenesis and promoting osteogenesis
17
作者 Rui Li Ruijie Lu +11 位作者 Libin Yang Jianwen Li Zige Guo Qiquan Yan Mengjun Li Yazhuo Ni Keying Chen Yaoyang Li Bo Xu Mengzhen Cui Zhan Li Zhiying Zhao 《Chinese Chemical Letters》 2025年第4期307-313,共7页
Polyetheretherketone(PEEK)is a desirable candidate to replace conventional metal implants owing to its excellent mechanical properties.However,the intrinsic bioinertness of PEEK results in inferior or delayed osseoint... Polyetheretherketone(PEEK)is a desirable candidate to replace conventional metal implants owing to its excellent mechanical properties.However,the intrinsic bioinertness of PEEK results in inferior or delayed osseointegration,which limits its further clinical application.To address these challenges,one leading strategy is to construct a biofunctionalized surface on PEEK that provides a coordinated osteoblastosteoclast interactions microenvironment.Herein,alendronate(ALN),a common bone absorption inhibitor,was loaded in biomedical inorganic/organic microspheres,consisting of bioactive inorganic nanohydroxyapatite core,and chitosan(CS)shell.Polydopamine(PDA)modification was employed to ensure the adherence of the microspheres to the PEEK surface.The delivery of ALN and Ca^(2+)from these microspheres simultaneously suppressed osteoclastogenesis and promoted osteogenesis,resulting in a coordinated cascade of osteoblast-osteoclast interactions crucial for the per-implant osseointegration.In vitro experiments demonstrated that the PEEK surface exhibited satisfactory biocompatibility and enhanced the proliferation and osteogenic differentiation of rat bone mesenchymal stem cells while inhibiting the osteoclast differentiation.Moreover,the in vivo rat femoral drilling model demonstrated superior osseointegration three months after implantation.By considering the bone remodeling processes,this study proposes a novel biofunctionalized PEEK surface that regulates the activities of both osteoblasts and osteoclasts to promote osseointegration. 展开更多
关键词 POLYETHERETHERKETONE Controlled drug delivery surface modification OSSEOINTEGRATION OSTEOCLASTS
原文传递
Locking Surface Dimensionality for Endurable Interface in Perovskite Photovoltaics
18
作者 Xu Zhang Yixin Luo +10 位作者 Xiaonan Wang Ke Zhao Pengju Shi Yuan Tian Jiazhe Xu Libing Yao Jingyi Sun Qingqing Liu Wei Fan Rui Wang Jingjing Xue 《Carbon Energy》 2025年第4期189-196,共8页
Surface passivation with organic ammoniums improves perovskite solar cell performance by forming 2D/quasi-2D structures or adsorbing onto surfaces.However,complexity from mixed phases can trigger phase transitions,com... Surface passivation with organic ammoniums improves perovskite solar cell performance by forming 2D/quasi-2D structures or adsorbing onto surfaces.However,complexity from mixed phases can trigger phase transitions,compromising stability.The control of surface dimensionality after organic ammonium passivation presents significant importance to device stability.In this study,we developed a poly-fluorination strategy for surface treatment in perovskite solar cells,which enabled a high and durable interfacial phase purity after surface passivation.The locked surface dimensionality of perovskite was achieved through robust interaction between the poly-fluorinated ammoniums and the perovskite surface,along with the steric hindrance imparted by fluorine atoms,reducing its reactivity and penetration capabilities.The high hydrophobicity of the poly-fluorinated surface also aids in moisture resistance of the perovskite layer.The champion device achieved a power conversion efficiency(PCE)of 25.2% with certified 24.6%,with 90% of its initial PCE retained after approximately 1200 h under continuous 1-sun illumination,and over 14,400 h storage stability and superior stability under high-temperature operation. 展开更多
关键词 INTERFACE long-term stability perovskite solar cells poly-fluorination surface modification
在线阅读 下载PDF
Effect of Silica Fiber and Its Composite Properties by SiB_(6)/SiO_(2)Mixed Surface Modification
19
作者 DING Jie DUAN Jinzhe +5 位作者 YAN Xizhuo SHI Minxian HUANG Zhixiong YAN Haibo WANG Qingke LI Kai 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期325-329,共5页
Silica fibers were modified by a specific ratio of SiB6 mixed with silica sol through vacuum impregnation method.The modified fibers were then incorporated into a phenolic resin matrix to prepare fiber-reinforced resi... Silica fibers were modified by a specific ratio of SiB6 mixed with silica sol through vacuum impregnation method.The modified fibers were then incorporated into a phenolic resin matrix to prepare fiber-reinforced resin composites.The influences of the SiB_(6)/SiO_(2)mixed modification on silica fiber properties were analyzed through thermogravimetric analysis(TGA),differential scanning calorimetry(DSC),scanning electron microscopy(SEM),and X-ray diffraction(XRD),respectively.Additionally,the influence of the SiB_(6)/SiO_(2)mixed modification on the mechanical properties of phenolic resin matrix composites was evaluated through mechanical testing.The experimeatal results indicate that the SiB_(6)/SiO_(2)mixed surface modification shows significant improvement in strength at room temperature and high temperatures,and crystallization temperature of silica fiber increases.The SiB_(6)/Silica sol co-modified silica fiber shows potential for future application in thermal protection and other high-temperature conditions. 展开更多
关键词 SiB_6 fiber surface modification silica sol CRYSTALLIZATION silica fiber
原文传递
ROS-neutralizing surface engineering protects immunotoxicity of organic nanoscintillator-directed radiodynamic therapy
20
作者 Kai Li Hui Fang +8 位作者 Feixia Ruan Xiaochun Xie Huicong Zhou Zhenjun Luo Dan Shao Mingqiang Li Qing Yuan Fangman Chen Yu Tao 《Chinese Chemical Letters》 2025年第12期352-357,共6页
Despite the promising potential of organic nanoscintillator-mediated radiodynamic therapy(RDT)in enhancing the effectiveness of immunotherapy,their cutaneous phototoxicity exacerbates the risk for immune-related adver... Despite the promising potential of organic nanoscintillator-mediated radiodynamic therapy(RDT)in enhancing the effectiveness of immunotherapy,their cutaneous phototoxicity exacerbates the risk for immune-related adverse events(irAEs).Herein,we demonstrate that organic nanoscintillators,when combined with checkpoint blockade immunotherapy and exposed to X-ray-induced RDT,can trigger cutaneous irAEs.To address this challenge,we engineered diselenide-bridged silicon coatings on organic nanoscintillators,fine-tuning the steric hindrance of the protective layer by varying its thickness.This strategy enables radiation-triggered reactive oxygen species(ROS)generation while mitigating off-target phototoxicity through neutralizing ROS.By optimizing the steric hindrance to precisely control energy transfer between the organic nanoscintillators and surrounding oxygen molecules,we effectively reduce phototoxicity and mitigate off-tumor effects through engineered surface protection.Under X-ray irradiation exposure,the steric hindrance is rapidly deactivated through the dissociation of the silicon coating,activating RDT and inducing abundant ROS generation within tumor cells.In an orthotopic 4T1 breast cancer model,intravenous administration of these surface-engineered nanoscintillators,combined with anti-programmed death-1(anti-PD-1)antibodies,results in robust anti-tumor immune responses,while minimizing cutaneous irAEs.This work offers valuable insights into how surface engineering can modulate the delicate balance between anti-tumor efficacy and off-tumor toxicity in nanoscintillator-mediated RDT. 展开更多
关键词 Organic nanoscintillator surface modification Radiodynamic therapy ROS Immune-related adverse events
原文传递
上一页 1 2 35 下一页 到第
使用帮助 返回顶部