In recent years,fine-scale gridded population data has been widely adopted for assessing and monitoring the Sustainable Development Goals(SDGs).However,the existing population disaggregation techniques struggle to gen...In recent years,fine-scale gridded population data has been widely adopted for assessing and monitoring the Sustainable Development Goals(SDGs).However,the existing population disaggregation techniques struggle to generate precise population grids for small areas with scarce data.To address this,we have introduced a novel,lightweight population gridding technique that integrates dasymetric mapping and point-based surface modeling,titled three-weight surface modeling.This method comprises three weights,each offering a unique perspective on population spatial heterogeneity.The first weight,termed building-volume weight,is equivalent to the preliminary results of assigning population based on building volume data.The second weight,termed POIcenter weight,comprises POI(Point of Interest)categories and aggregation patterns,aiming to articulate high-density population centers.It is computed using the neighborhood accumulation rule of Spearman’s correlation coefficients between POIs and population size.The third weight,termed POI-distance weight,represents varying decay rates of population with distance from high-density centers.This three-weight surface model facilitates dynamic adjustment of parameters to refine the building-volume weight according to the remaining POI-related weights,thereby generating a more precise population surface.Our analysis of the census population and the disaggregation outcomes from 544 villages in three counties of southern Guizhou Province,China(namely,Huishui,Luodian,and Pingtang)revealed that the three-weight surface model using local parameter groups outperformed individual dasymetric mapping or point-based surface modeling in terms of accuracy.Also,the 10 m population grid generated by this local parameter model(LPTW-POP)presented greater resolution and fewer errors(RMSE of 1109,MAE of 422,and MRE of 0.2630)compared to commonly use gridded population datasets like LandScan,WorldPop,and GHSPOP.展开更多
High accuracy surface modeling (HASM) is a method which can be applied to soil property interpolation. In this paper, we present a method of HASM combined geographic information for soil property interpolation (HAS...High accuracy surface modeling (HASM) is a method which can be applied to soil property interpolation. In this paper, we present a method of HASM combined geographic information for soil property interpolation (HASM-SP) to improve the accuracy. Based on soil types, land use types and parent rocks, HASM-SP was applied to interpolate soil available P, Li, pH, alkali-hydrolyzable N, total K and Cr in a typical red soil hilly region. To evaluate the performance of HASM-SP, we compared its performance with that of ordinary kriging (OK), ordinary kriging combined geographic information (OK-Geo) and stratified kriging (SK). The results showed that the methods combined with geographic information including HASM-SP and OK-Geo obtained a lower estimation bias. HASM-SP also showed less MAEs and RMSEs when it was compared with the other three methods (OK-Geo, OK and SK). Much more details were presented in the HASM-SP maps for soil properties due to the combination of different types of geographic information which gave abrupt boundary for the spatial varia- tion of soil properties. Therefore, HASM-SP can not only reduce prediction errors but also can be accordant with the distribution of geographic information, which make the spatial simula- tion of soil property more reasonable. HASM-SP has not only enriched the theory of high accuracy surface modeling of soil property, but also provided a scientific method for the ap- plication in resource management and environment planning.展开更多
A scheme for an automatic road surface modeling from a noisy point cloud is presented. The normal vectors of the point cloud are estimated by distance-weighted fitting of local plane. Then, an automatic recognition of...A scheme for an automatic road surface modeling from a noisy point cloud is presented. The normal vectors of the point cloud are estimated by distance-weighted fitting of local plane. Then, an automatic recognition of the road surface from noise is performed based on the fuzzy clustering of normal vectors, with which the mean value is calculated and the projecting plane of point cloud is created to obtain the geometric model accordingly. Based on fuzzy clustering of the intensity attributed to each point, different objects on the road surface are assigned different colors for representing abundant appearances. This unsupervised method is demonstrated in the experiment and shows great effectiveness in reconstructing and rendering better road surface.展开更多
A dynamic global vegetation model (DGVM) coupled with a land surface model (LSM) is generally initialized using a spin-up process to derive a physically-consistent initial condition. Spin-up forcing, which is the ...A dynamic global vegetation model (DGVM) coupled with a land surface model (LSM) is generally initialized using a spin-up process to derive a physically-consistent initial condition. Spin-up forcing, which is the atmospheric forcing used to drive the coupled model to equilibrium solutions in the spin-up process, varies across earlier studies. In the present study, the impact of the spin-up forcing in the initialization stage on the fractional coverages (FCs) of plant functional type (PFT) in the subsequent simulation stage are assessed in seven classic climate regions by a modified Community Land Model’s Dynamic Global Vegetation Model (CLM-DGVM). Results show that the impact of spin-up forcing is considerable in all regions except the tropical rainforest climate region (TR) and the wet temperate climate region (WM). In the tropical monsoon climate region (TM), the TR and TM transition region (TR-TM), the dry temperate climate region (DM), the highland climate region (H), and the boreal forest climate region (BF), where FCs are affected by climate non-negligibly, the discrepancies in initial FCs, which represent long-term cumulative response of vegetation to different climate anomalies, are large. Moreover, the large discrepancies in initial FCs usually decay slowly because there are trees or shrubs in the five regions. The intrinsic growth timescales of FCs for tree PFTs and shrub PFTs are long, and the variation of FCs of tree PFTs or shrub PFTs can affect that of grass PFTs.展开更多
Highly detailed surface models and their real-time applications are increasingly popular in architecture,construction and other design and engineering fields.However,new and related problems have emerged concerning th...Highly detailed surface models and their real-time applications are increasingly popular in architecture,construction and other design and engineering fields.However,new and related problems have emerged concerning the efficient management of the resulting large datasets and the seamless integration of heterogeneous data.Moreover,the increasingly common requirements of local high-fidelity modeling combined with large-scale landscapes lead to difficulty in the seamless multi-resolution representation of hybrid triangulated irregular networks(TINs)and Grids.This paper presents a hybrid data structure with high-efficiency and a related organizational method for the seamless integration of multi-resolution models.This approach is characterized by(1)a self-adaptive algorithm for feature-preserving surface partitioning,(2)an efficient hybrid index structure for combined Grid and TIN surfaces,and(3)a view-dependent scheduling strategy with access to Grids of necessary resolution,giving priority to the dynamic loading of TINs.Experiments using typical real design datasets of highway constructions are able to achieve accuracy-preserved and real-time availability of results that prove the validity and efficiency of this approach.展开更多
Canopy interception of incident precipitation, as a critical component of a forest's water budget, can affect the amount of water available to the soil, and ultimately vegetation distribution and function. In this pa...Canopy interception of incident precipitation, as a critical component of a forest's water budget, can affect the amount of water available to the soil, and ultimately vegetation distribution and function. In this paper, a statistical-dynamic approach based on leaf area index and statistical canopy interception is used to parameterize the canopy interception process. The statistical-dynamic canopy interception scheme is implemented into the Community Land Model with dynamic global vegetation model (CLM-DGVM) to improve its dynamic vegetation simulation. The simulation for continental China by the land surface model with the new canopy interception scheme shows that the new one reasonably represents the precipitation intercepted by the canopy. Moreover, the new scheme enhances the water availability in the root zone for vegetation growth, especially in the densely vegetated and semi-arid areas, and improves the model's performance of potential vegetation simulation.展开更多
The new flee-form surface modelling technology for robotic belt grinding simulation presented in this paper is based on discrete surfel elements generated from the surface approximation point set and can facilitate th...The new flee-form surface modelling technology for robotic belt grinding simulation presented in this paper is based on discrete surfel elements generated from the surface approximation point set and can facilitate the simulation implementation. A local process model exploits the advantage of surfel representation to compute the material removal rate and the final surface grinding error can be easily carried out. With the help of this system, robot programmers can improve the path planning and predict potential problems by visualizing the manufacturing process.展开更多
The statistical relationship between soil thermal anomaly and short-term climate change is presented based on a typical case study. Furthermore, possible physical mechanisms behind the relationship are re-vealed throu...The statistical relationship between soil thermal anomaly and short-term climate change is presented based on a typical case study. Furthermore, possible physical mechanisms behind the relationship are re-vealed through using an off-line land surface model with a reasonable soil thermal forcing at the bottom of the soil layer. In the first experiment, the given heat flux is 5 W m<SUP>2</SUP> at the bottom of the soil layer (in depth of 6.3 m) for 3 months, while only a positive ground temperature anomaly of 0.06°C can be found compared to the control run. The anomaly, however, could reach 0.65°C if the soil thermal conductivity was one order of magnitude larger. It could be even as large as 0.81°C assuming the heat flux at bottom is 10 W m<SUP>-2</SUP>. Mean-while, an increase of about 10 W m<SUP>−2</SUP> was detected both for heat flux in soil and sensible heat on land sur-face, which is not neglectable to the short-term climate change. The results show that considerable response in land surface energy budget could be expected when the soil thermal forcing reaches a certain spatial-tem-poral scale. Therefore, land surface models should not ignore the upward heat flux from the bottom of the soil layer. Moreover, integration for a longer period of time and coupled land-atmosphere model are also necessary for the better understanding of this issue.展开更多
In this study,a new parameter optimization method was used to investigate the expansion of conditional nonlinear optimal perturbation (CNOP) in a land surface model (LSM) using long-term enhanced field observation...In this study,a new parameter optimization method was used to investigate the expansion of conditional nonlinear optimal perturbation (CNOP) in a land surface model (LSM) using long-term enhanced field observations at Tongyu station in Jilin Province,China,combined with a sophisticated LSM (common land model,CoLM).Tongyu station is a reference site of the international Coordinated Energy and Water Cycle Observations Project (CEOP) that has studied semiarid regions that have undergone desertification,salination,and degradation since late 1960s.In this study,three key land-surface parameters,namely,soil color,proportion of sand or clay in soil,and leaf-area index were chosen as parameters to be optimized.Our study comprised three experiments:First,a single-parameter optimization was performed,while the second and third experiments performed triple-and six-parameter optimizations,respectively.Notable improvements in simulating sensible heat flux (SH),latent heat flux (LH),soil temperature (TS),and moisture (MS) at shallow layers were achieved using the optimized parameters.The multiple-parameter optimization experiments performed better than the single-parameter experminent.All results demonstrate that the CNOP method can be used to optimize expanded parameters in an LSM.Moreover,clear mathematical meaning,simple design structure,and rapid computability give this method great potential for further application to parameter optimization in LSMs.展开更多
As a GIS tool,visibility analysis is used in many areas to evaluate both visible and non-visible places.Visibility analysis builds on a digital surface model describing the terrain morphology,including the position an...As a GIS tool,visibility analysis is used in many areas to evaluate both visible and non-visible places.Visibility analysis builds on a digital surface model describing the terrain morphology,including the position and shapes of all objects that can sometimes act as visibility barriers.However,some barriers,for example vegetation,may be permeable to a certain degree.Despite extensive research and use of visibility analysis in different areas,standard GIS tools do not take permeability into account.This article presents a new method to calculate visibility through partly permeable obstacles.The method is based on a quasi-Monte Carlo simulation with 100 iterations of visibility calculation.Each iteration result represents 1%of vegetation permeability,which can thus range from 1%to 100%visibility behind vegetation obstacles.The main advantage of the method is greater accuracy of visibility results and easy implementation on any GIS software.The incorporation of the proposed method in GIS software would facilitate work in many fields,such as architecture,archaeology,radio communication,and the military.展开更多
Errors due to split time stepping are discussed for an explicit free–surface ocean model. In commonly used split time stepping, the way of time integration for the barotropic momentum equation is not compatible with ...Errors due to split time stepping are discussed for an explicit free–surface ocean model. In commonly used split time stepping, the way of time integration for the barotropic momentum equation is not compatible with that of the baroclinic one. The baroclinic equation has three–time–level structure because of leapfrog scheme. The barotropic one, however, has two–time–level structure when represented in terms of the baroclinic time level, on which the baroclinic one is integrated. This incompatibility results in the splitting errors as shown in this paper. The proper split time stepping is therefore proposed in such a way that the compatibility is kept between the barotropic and baroclinic equations. Its splitting errors are shown extremely small, so that it is particularly relevant to long–term integration for climate studies. It is applied to a free–surface model for the North Pacific Ocean.展开更多
To develop a sound ozone(O_3) pollution control strategy,it is important to well understand and characterize the source contribution due to the complex chemical and physical formation processes of O_3.Using the "Sh...To develop a sound ozone(O_3) pollution control strategy,it is important to well understand and characterize the source contribution due to the complex chemical and physical formation processes of O_3.Using the "Shunde" city as a pilot summer case study,we apply an innovative response surface modeling(RSM) methodology based on the Community Multi-Scale Air Quality(CMAQ) modeling simulations to identify the O_3 regime and provide dynamic analysis of the precursor contributions to effectively assess the O_3 impacts of volatile organic compound(VOC) control strategy.Our results show that Shunde is a typical VOC-limited urban O_3 polluted city.The "Jiangmen" city,as the main upper wind area during July 2014,its VOCs and nitrogen oxides(NO_x) emissions make up the largest contribution(9.06%).On the contrary,the contribution from local(Shunde) emission is lowest(6.35%) among the seven neighbor regions.The local VOCs industrial source emission has the largest contribution comparing to other precursor emission sectors in Shunde.The results of dynamic source contribution analysis further show that the local NO_x control could slightly increase the ground O_3 under low(10.00%) and medium(40.00%)reduction ratios,while it could start to turn positive to decrease ground O_3 under the high NO_x abatement ratio(75.00%).The real-time assessment of O_3 impacts from VOCs control strategies in Pearl River Delta(PRD) shows that the joint regional VOCs emission control policy will effectively reduce the ground O_3 concentration in Shunde.展开更多
Nitrogen cycling has profound effects on carbon uptake in the terrestrial ecosystem and the response of the biosphere to climate changes.However,nutrient cycling is not taken into account in most land surface models f...Nitrogen cycling has profound effects on carbon uptake in the terrestrial ecosystem and the response of the biosphere to climate changes.However,nutrient cycling is not taken into account in most land surface models for climate change.In this study,a nitrogen model,based on nitrogen transformation processes and nitrogen fluxes exchange between the atmosphere and terrestrial ecosystem,was incorporated into the Atmosphere–Vegetation Interaction Model(AVIM)to simulate the carbon cycle under nitrogen limitation.This new model,AVIM-CN,was evaluated against site-scale eddy covariance–based measurements of an alpine meadow located at Damxung station from the FLUXNET 2015 dataset.Results showed that the annual mean gross primary production simulated by AVIM-CN(0.7073 gC m^-2 d^-1)was in better agreement with the corresponding flux data(0.5407 gC m^-2 d^-1)than the original AVIM(1.1403 gC m^-2 d^-1)at Damxung station.Similarly,ecosystem respiration was also down-regulated,from 1.7695 gC m^-2 d^-1 to 1.0572 gC m^-2 d^-1,after the nitrogen processes were introduced,and the latter was closer to the observed vales(0.8034 gC m^-2 d^-1).Overall,the new results were more consistent with the daily time series of carbon and energy fluxes of observations compared to the former version without nitrogen dynamics.A model that does not incorporate the limitation effects of nitrogen nutrient availability will probably overestimate carbon fluxes by about 40%.展开更多
The modern aircraft Thermal Management System(TMS)faces significant challenges due to increasing thermal loads and limited heat dissipation pathways.To optimize TMS during the conceptual design stage,the development o...The modern aircraft Thermal Management System(TMS)faces significant challenges due to increasing thermal loads and limited heat dissipation pathways.To optimize TMS during the conceptual design stage,the development of a modeling and simulation tool is crucial.In this study,a TMS simulation model library was created using MATLAB/SIMULINK.To simplify the complexity of the Vapor Cycle System(VCS)model,a Response Surface Model(RSM)was constructed using the Monte Carlo method and validated through simulation experiments.Taking the F-22 fighter TMS as an example,a thermal dynamic simulation model was constructed to analyze the variation of thermal response parameters in key subsystems and elucidate their coupling relationships.Furthermore,the impact of total fuel flow and ram air flow on the TMS was investigated.The findings demonstrate the existence of an optimal total fuel flow that achieves a balance between maximizing fuel heat sink utilization and minimizing bleed air demand.The adaptive distribution of fuel and ram air flow was found to enhance aircraft thermal management performance.This study contributes to improving modeling efficiency and enhancing the understanding of the thermal dynamic characteristics of TMS,thereby facilitating further optimization in aircraft TMS design.展开更多
Arbitrary topological curve network has no restriction in topology structure,so it has more powerful representing ability in defining complex surfaces.A complex surface modeling system is presented based on arbitrary ...Arbitrary topological curve network has no restriction in topology structure,so it has more powerful representing ability in defining complex surfaces.A complex surface modeling system is presented based on arbitrary topological curve network and the improved combined subdivision method,its functions including creating and editing curve network,and generating and modifying curve network's interpolated surface.This modeling system can be used to the process of products'concept design,and its applications is also significant to the development of subdivision method.展开更多
It is usually a time-consuming process to real-time set up 3D digital surface model(DSM) of an object with complex surface.On the basis of the architectural survey project of"Chilin Nunnery Reconstruction",t...It is usually a time-consuming process to real-time set up 3D digital surface model(DSM) of an object with complex surface.On the basis of the architectural survey project of"Chilin Nunnery Reconstruction",this paper investigates an easy and feasible way,that is,on project site,applying digital close range photogrammetry and CAD technique to establish the DSM for simulating ancient architectures with complex surface.The method has been proved very effective in practice.展开更多
The design of the cooling system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality ...The design of the cooling system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality of design can be improved greatly. At the same time, it is helpful to confirm the cooling system structure and optimize the process conditions. In this paper, the 3D surface model of mold cavity is used to replace the middle-plane model in the simulation by Boundary Element Method, which break the bottleneck of the application of the injection molding simulation softwares base on the middle-plane model. With the improvements of this paper, a practical and commercial simulation software of injection molding cooling process named as HsCAE3D6.0 is developed.展开更多
The accuracy of Digital Surface Models(DSMs)generated using stereo matching methods varies due to the varying acquisition conditions and configuration parameters of stereo images.It has been a good practice to fuse th...The accuracy of Digital Surface Models(DSMs)generated using stereo matching methods varies due to the varying acquisition conditions and configuration parameters of stereo images.It has been a good practice to fuse these DSMs generated from various stereo pairs to achieve enhanced,in which multiple DSMs are combined through computational approaches into a single,more accurate,and complete DSM.However,accurately characterizing detailed objects and their boundaries still present a challenge since most boundary-ware fusion methods still struggle to achieve sharpened depth discontinuities due to the averaging effects of different DSMs.Therefore,we propose a simple and efficient adaptive image-guided DSM fusion method that applies k-means clustering on small patches of the orthophoto to guide the pixel-level fusion adapted to the most consistent and relevant elevation points.The experiment results show that our proposed method has outperformed comparing methods in accuracy and the ability to preserve sharpened depth edges.展开更多
In this paper, we developed a novel method of combining remote sensing tools at the sub-pixel level for accurate identification of impervious surface time series changes. We examined the use of the red-green-blue impe...In this paper, we developed a novel method of combining remote sensing tools at the sub-pixel level for accurate identification of impervious surface time series changes. We examined the use of the red-green-blue impervious surface model (RGB-IS) in detecting time series internal modification of urban regions by integrating Landsat data collected over four different periods between 1987 and 2009 (i.e., 1987, 2000, 2002, and 2009). The performance of this approach was compared with two conventional methods, namely standard RGB-normalized difference vegetation index (NDVI) and post-classification technique. In contrast to conventional techniques, RGB-IS could monitor between-class changes, within-class changes, and location of these modifications. The proposed method was independent of seasonal changes and was also able to serve as a useful alternative for quick mapping growth hotspots and updating transportation corridor map. The results also showed that Cixi County, Zhejiang Province, China experienced tremendous impervious surface changes, especially along the corridors of newly constructed highways and around urban areas over the past 22 years.展开更多
We introduce an almost-automatic technique for generating 3D car styling surface models based on a single side-view image. Our approach combines the prior knowledge of car styling and deformable curve network model to...We introduce an almost-automatic technique for generating 3D car styling surface models based on a single side-view image. Our approach combines the prior knowledge of car styling and deformable curve network model to obtain an automatic modeling process. Firstly, we define the consistent parameterized curve template for 2D and 3D case respectivelyby analyzingthe characteristic lines for car styling. Then, a semi-automatic extraction from a side-view car image is adopted. Thirdly, statistic morphable model of 3D curve network isused to get the initial solution with sparse point constraints.Withonly afew post-processing operations, the optimized curve network models for creating surfaces are obtained. Finally, the styling surfaces are automatically generated using template-based parametric surface modeling method. More than 50 3D curve network models are constructed as the morphable database. We show that this intelligent modeling toolsimplifiesthe exhausted modeling task, and also demonstratemeaningful results of our approach.展开更多
基金the support of the Natural Science Foundation of Shanghai Municipality(No.24ZR1420500)the Project of Yulin Science,and Technology Light(No.2024-KJZG-KXJ-005)the Project of International Research Center of Big Data for SDGs(No.CBAS2024SDG005).
文摘In recent years,fine-scale gridded population data has been widely adopted for assessing and monitoring the Sustainable Development Goals(SDGs).However,the existing population disaggregation techniques struggle to generate precise population grids for small areas with scarce data.To address this,we have introduced a novel,lightweight population gridding technique that integrates dasymetric mapping and point-based surface modeling,titled three-weight surface modeling.This method comprises three weights,each offering a unique perspective on population spatial heterogeneity.The first weight,termed building-volume weight,is equivalent to the preliminary results of assigning population based on building volume data.The second weight,termed POIcenter weight,comprises POI(Point of Interest)categories and aggregation patterns,aiming to articulate high-density population centers.It is computed using the neighborhood accumulation rule of Spearman’s correlation coefficients between POIs and population size.The third weight,termed POI-distance weight,represents varying decay rates of population with distance from high-density centers.This three-weight surface model facilitates dynamic adjustment of parameters to refine the building-volume weight according to the remaining POI-related weights,thereby generating a more precise population surface.Our analysis of the census population and the disaggregation outcomes from 544 villages in three counties of southern Guizhou Province,China(namely,Huishui,Luodian,and Pingtang)revealed that the three-weight surface model using local parameter groups outperformed individual dasymetric mapping or point-based surface modeling in terms of accuracy.Also,the 10 m population grid generated by this local parameter model(LPTW-POP)presented greater resolution and fewer errors(RMSE of 1109,MAE of 422,and MRE of 0.2630)compared to commonly use gridded population datasets like LandScan,WorldPop,and GHSPOP.
基金Foundation: National Natural Science Foundation of China, No.41001057 China National Science Fund for Distinguished Young Scholars, No.40825003 Project Supported by State Key Laboratory of Earth Surface Processes and Resource Ecology, No.2011-KF-06
文摘High accuracy surface modeling (HASM) is a method which can be applied to soil property interpolation. In this paper, we present a method of HASM combined geographic information for soil property interpolation (HASM-SP) to improve the accuracy. Based on soil types, land use types and parent rocks, HASM-SP was applied to interpolate soil available P, Li, pH, alkali-hydrolyzable N, total K and Cr in a typical red soil hilly region. To evaluate the performance of HASM-SP, we compared its performance with that of ordinary kriging (OK), ordinary kriging combined geographic information (OK-Geo) and stratified kriging (SK). The results showed that the methods combined with geographic information including HASM-SP and OK-Geo obtained a lower estimation bias. HASM-SP also showed less MAEs and RMSEs when it was compared with the other three methods (OK-Geo, OK and SK). Much more details were presented in the HASM-SP maps for soil properties due to the combination of different types of geographic information which gave abrupt boundary for the spatial varia- tion of soil properties. Therefore, HASM-SP can not only reduce prediction errors but also can be accordant with the distribution of geographic information, which make the spatial simula- tion of soil property more reasonable. HASM-SP has not only enriched the theory of high accuracy surface modeling of soil property, but also provided a scientific method for the ap- plication in resource management and environment planning.
基金Supported by the National Natural Science Foundation of China (No.40471089) and the Key Laboratory of Geo-informatics of State Bureau of Surveying and Mapping.
文摘A scheme for an automatic road surface modeling from a noisy point cloud is presented. The normal vectors of the point cloud are estimated by distance-weighted fitting of local plane. Then, an automatic recognition of the road surface from noise is performed based on the fuzzy clustering of normal vectors, with which the mean value is calculated and the projecting plane of point cloud is created to obtain the geometric model accordingly. Based on fuzzy clustering of the intensity attributed to each point, different objects on the road surface are assigned different colors for representing abundant appearances. This unsupervised method is demonstrated in the experiment and shows great effectiveness in reconstructing and rendering better road surface.
基金supported by the Chinese Academy of Sciences under Grant No.KZCX2-YW-219State Key Project for Basic Research Program of China(973)under Grant No.2010CB951801Key Program of National Natural Science Foundation under Grant No.40830103
文摘A dynamic global vegetation model (DGVM) coupled with a land surface model (LSM) is generally initialized using a spin-up process to derive a physically-consistent initial condition. Spin-up forcing, which is the atmospheric forcing used to drive the coupled model to equilibrium solutions in the spin-up process, varies across earlier studies. In the present study, the impact of the spin-up forcing in the initialization stage on the fractional coverages (FCs) of plant functional type (PFT) in the subsequent simulation stage are assessed in seven classic climate regions by a modified Community Land Model’s Dynamic Global Vegetation Model (CLM-DGVM). Results show that the impact of spin-up forcing is considerable in all regions except the tropical rainforest climate region (TR) and the wet temperate climate region (WM). In the tropical monsoon climate region (TM), the TR and TM transition region (TR-TM), the dry temperate climate region (DM), the highland climate region (H), and the boreal forest climate region (BF), where FCs are affected by climate non-negligibly, the discrepancies in initial FCs, which represent long-term cumulative response of vegetation to different climate anomalies, are large. Moreover, the large discrepancies in initial FCs usually decay slowly because there are trees or shrubs in the five regions. The intrinsic growth timescales of FCs for tree PFTs and shrub PFTs are long, and the variation of FCs of tree PFTs or shrub PFTs can affect that of grass PFTs.
基金The work described in this paper was supported by National Natural Science Foundation of China(No.41171311,No.41021061)National Basic Research Program of China(No.2012CB725300).
文摘Highly detailed surface models and their real-time applications are increasingly popular in architecture,construction and other design and engineering fields.However,new and related problems have emerged concerning the efficient management of the resulting large datasets and the seamless integration of heterogeneous data.Moreover,the increasingly common requirements of local high-fidelity modeling combined with large-scale landscapes lead to difficulty in the seamless multi-resolution representation of hybrid triangulated irregular networks(TINs)and Grids.This paper presents a hybrid data structure with high-efficiency and a related organizational method for the seamless integration of multi-resolution models.This approach is characterized by(1)a self-adaptive algorithm for feature-preserving surface partitioning,(2)an efficient hybrid index structure for combined Grid and TIN surfaces,and(3)a view-dependent scheduling strategy with access to Grids of necessary resolution,giving priority to the dynamic loading of TINs.Experiments using typical real design datasets of highway constructions are able to achieve accuracy-preserved and real-time availability of results that prove the validity and efficiency of this approach.
文摘Canopy interception of incident precipitation, as a critical component of a forest's water budget, can affect the amount of water available to the soil, and ultimately vegetation distribution and function. In this paper, a statistical-dynamic approach based on leaf area index and statistical canopy interception is used to parameterize the canopy interception process. The statistical-dynamic canopy interception scheme is implemented into the Community Land Model with dynamic global vegetation model (CLM-DGVM) to improve its dynamic vegetation simulation. The simulation for continental China by the land surface model with the new canopy interception scheme shows that the new one reasonably represents the precipitation intercepted by the canopy. Moreover, the new scheme enhances the water availability in the root zone for vegetation growth, especially in the densely vegetated and semi-arid areas, and improves the model's performance of potential vegetation simulation.
基金Project supported by the Deutsche Forschungsgemeinschaft (DFG)as a part of the research group 366 (Simulation-Aided Offline ProcessDesign and Optimization in Manufacturing Sculptured Surfaces)
文摘The new flee-form surface modelling technology for robotic belt grinding simulation presented in this paper is based on discrete surfel elements generated from the surface approximation point set and can facilitate the simulation implementation. A local process model exploits the advantage of surfel representation to compute the material removal rate and the final surface grinding error can be easily carried out. With the help of this system, robot programmers can improve the path planning and predict potential problems by visualizing the manufacturing process.
基金This paper is jointly sponsored by China NKBRSF Project G1999043400,National Natural Science Foundationof China under Grant Nos.49835010and 40075019,and China Post Doctoral Science Foundation.
文摘The statistical relationship between soil thermal anomaly and short-term climate change is presented based on a typical case study. Furthermore, possible physical mechanisms behind the relationship are re-vealed through using an off-line land surface model with a reasonable soil thermal forcing at the bottom of the soil layer. In the first experiment, the given heat flux is 5 W m<SUP>2</SUP> at the bottom of the soil layer (in depth of 6.3 m) for 3 months, while only a positive ground temperature anomaly of 0.06°C can be found compared to the control run. The anomaly, however, could reach 0.65°C if the soil thermal conductivity was one order of magnitude larger. It could be even as large as 0.81°C assuming the heat flux at bottom is 10 W m<SUP>-2</SUP>. Mean-while, an increase of about 10 W m<SUP>−2</SUP> was detected both for heat flux in soil and sensible heat on land sur-face, which is not neglectable to the short-term climate change. The results show that considerable response in land surface energy budget could be expected when the soil thermal forcing reaches a certain spatial-tem-poral scale. Therefore, land surface models should not ignore the upward heat flux from the bottom of the soil layer. Moreover, integration for a longer period of time and coupled land-atmosphere model are also necessary for the better understanding of this issue.
基金supported by National Natural Science Foundation of China (Grant Nos. 40775050,40975049,and 40810059003)National Basic Research Program of China (Grant No.2011CB952002)
文摘In this study,a new parameter optimization method was used to investigate the expansion of conditional nonlinear optimal perturbation (CNOP) in a land surface model (LSM) using long-term enhanced field observations at Tongyu station in Jilin Province,China,combined with a sophisticated LSM (common land model,CoLM).Tongyu station is a reference site of the international Coordinated Energy and Water Cycle Observations Project (CEOP) that has studied semiarid regions that have undergone desertification,salination,and degradation since late 1960s.In this study,three key land-surface parameters,namely,soil color,proportion of sand or clay in soil,and leaf-area index were chosen as parameters to be optimized.Our study comprised three experiments:First,a single-parameter optimization was performed,while the second and third experiments performed triple-and six-parameter optimizations,respectively.Notable improvements in simulating sensible heat flux (SH),latent heat flux (LH),soil temperature (TS),and moisture (MS) at shallow layers were achieved using the optimized parameters.The multiple-parameter optimization experiments performed better than the single-parameter experminent.All results demonstrate that the CNOP method can be used to optimize expanded parameters in an LSM.Moreover,clear mathematical meaning,simple design structure,and rapid computability give this method great potential for further application to parameter optimization in LSMs.
基金This work was financially supported by project 133/2016/RPP-TO-1/b“Teaching of advanced techniques for geodata processing for follow-up study of geoinformatics”.
文摘As a GIS tool,visibility analysis is used in many areas to evaluate both visible and non-visible places.Visibility analysis builds on a digital surface model describing the terrain morphology,including the position and shapes of all objects that can sometimes act as visibility barriers.However,some barriers,for example vegetation,may be permeable to a certain degree.Despite extensive research and use of visibility analysis in different areas,standard GIS tools do not take permeability into account.This article presents a new method to calculate visibility through partly permeable obstacles.The method is based on a quasi-Monte Carlo simulation with 100 iterations of visibility calculation.Each iteration result represents 1%of vegetation permeability,which can thus range from 1%to 100%visibility behind vegetation obstacles.The main advantage of the method is greater accuracy of visibility results and easy implementation on any GIS software.The incorporation of the proposed method in GIS software would facilitate work in many fields,such as architecture,archaeology,radio communication,and the military.
基金Hundred Talent Program of Chinese Academy of Sciences under Grant No. 0300YQ000101. Partly supported by the National Natural Sci
文摘Errors due to split time stepping are discussed for an explicit free–surface ocean model. In commonly used split time stepping, the way of time integration for the barotropic momentum equation is not compatible with that of the baroclinic one. The baroclinic equation has three–time–level structure because of leapfrog scheme. The barotropic one, however, has two–time–level structure when represented in terms of the baroclinic time level, on which the baroclinic one is integrated. This incompatibility results in the splitting errors as shown in this paper. The proper split time stepping is therefore proposed in such a way that the compatibility is kept between the barotropic and baroclinic equations. Its splitting errors are shown extremely small, so that it is particularly relevant to long–term integration for climate studies. It is applied to a free–surface model for the North Pacific Ocean.
基金Financial support for this work is provided by the Shunde Environment ProtectionTransportation and Urban Administration Bureau(no.0851-1361FS02CL51)+5 种基金the Guangdong Provincial Science and Technology Plan Projects(no.2014A050503019)Guangzhou Environmental Protection Bureau(no.x2hjB2150020)supported by the funding of State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complexthe project of Atmospheric Haze Collaboration Control Technology Design(no.XDB05030400)from Chinese Academy of Sciencesthe Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(U1501501)(the second phase)the Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal(no.b2152120)
文摘To develop a sound ozone(O_3) pollution control strategy,it is important to well understand and characterize the source contribution due to the complex chemical and physical formation processes of O_3.Using the "Shunde" city as a pilot summer case study,we apply an innovative response surface modeling(RSM) methodology based on the Community Multi-Scale Air Quality(CMAQ) modeling simulations to identify the O_3 regime and provide dynamic analysis of the precursor contributions to effectively assess the O_3 impacts of volatile organic compound(VOC) control strategy.Our results show that Shunde is a typical VOC-limited urban O_3 polluted city.The "Jiangmen" city,as the main upper wind area during July 2014,its VOCs and nitrogen oxides(NO_x) emissions make up the largest contribution(9.06%).On the contrary,the contribution from local(Shunde) emission is lowest(6.35%) among the seven neighbor regions.The local VOCs industrial source emission has the largest contribution comparing to other precursor emission sectors in Shunde.The results of dynamic source contribution analysis further show that the local NO_x control could slightly increase the ground O_3 under low(10.00%) and medium(40.00%)reduction ratios,while it could start to turn positive to decrease ground O_3 under the high NO_x abatement ratio(75.00%).The real-time assessment of O_3 impacts from VOCs control strategies in Pearl River Delta(PRD) shows that the joint regional VOCs emission control policy will effectively reduce the ground O_3 concentration in Shunde.
基金supported by a project of the National Key Research and Development Program of China [grant number2016YFA0602501]a project of the National Natural Science Foundation of China [grant numbers 41630532 and41575093]
文摘Nitrogen cycling has profound effects on carbon uptake in the terrestrial ecosystem and the response of the biosphere to climate changes.However,nutrient cycling is not taken into account in most land surface models for climate change.In this study,a nitrogen model,based on nitrogen transformation processes and nitrogen fluxes exchange between the atmosphere and terrestrial ecosystem,was incorporated into the Atmosphere–Vegetation Interaction Model(AVIM)to simulate the carbon cycle under nitrogen limitation.This new model,AVIM-CN,was evaluated against site-scale eddy covariance–based measurements of an alpine meadow located at Damxung station from the FLUXNET 2015 dataset.Results showed that the annual mean gross primary production simulated by AVIM-CN(0.7073 gC m^-2 d^-1)was in better agreement with the corresponding flux data(0.5407 gC m^-2 d^-1)than the original AVIM(1.1403 gC m^-2 d^-1)at Damxung station.Similarly,ecosystem respiration was also down-regulated,from 1.7695 gC m^-2 d^-1 to 1.0572 gC m^-2 d^-1,after the nitrogen processes were introduced,and the latter was closer to the observed vales(0.8034 gC m^-2 d^-1).Overall,the new results were more consistent with the daily time series of carbon and energy fluxes of observations compared to the former version without nitrogen dynamics.A model that does not incorporate the limitation effects of nitrogen nutrient availability will probably overestimate carbon fluxes by about 40%.
文摘The modern aircraft Thermal Management System(TMS)faces significant challenges due to increasing thermal loads and limited heat dissipation pathways.To optimize TMS during the conceptual design stage,the development of a modeling and simulation tool is crucial.In this study,a TMS simulation model library was created using MATLAB/SIMULINK.To simplify the complexity of the Vapor Cycle System(VCS)model,a Response Surface Model(RSM)was constructed using the Monte Carlo method and validated through simulation experiments.Taking the F-22 fighter TMS as an example,a thermal dynamic simulation model was constructed to analyze the variation of thermal response parameters in key subsystems and elucidate their coupling relationships.Furthermore,the impact of total fuel flow and ram air flow on the TMS was investigated.The findings demonstrate the existence of an optimal total fuel flow that achieves a balance between maximizing fuel heat sink utilization and minimizing bleed air demand.The adaptive distribution of fuel and ram air flow was found to enhance aircraft thermal management performance.This study contributes to improving modeling efficiency and enhancing the understanding of the thermal dynamic characteristics of TMS,thereby facilitating further optimization in aircraft TMS design.
基金Project supported by the Fundamental Research Foundations for the Central Universities (Grant No.2009B30514)
文摘Arbitrary topological curve network has no restriction in topology structure,so it has more powerful representing ability in defining complex surfaces.A complex surface modeling system is presented based on arbitrary topological curve network and the improved combined subdivision method,its functions including creating and editing curve network,and generating and modifying curve network's interpolated surface.This modeling system can be used to the process of products'concept design,and its applications is also significant to the development of subdivision method.
文摘It is usually a time-consuming process to real-time set up 3D digital surface model(DSM) of an object with complex surface.On the basis of the architectural survey project of"Chilin Nunnery Reconstruction",this paper investigates an easy and feasible way,that is,on project site,applying digital close range photogrammetry and CAD technique to establish the DSM for simulating ancient architectures with complex surface.The method has been proved very effective in practice.
基金Supported by NationalNatural Science FoundationCouncil of the People’s Republic of China (20490224)
文摘The design of the cooling system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality of design can be improved greatly. At the same time, it is helpful to confirm the cooling system structure and optimize the process conditions. In this paper, the 3D surface model of mold cavity is used to replace the middle-plane model in the simulation by Boundary Element Method, which break the bottleneck of the application of the injection molding simulation softwares base on the middle-plane model. With the improvements of this paper, a practical and commercial simulation software of injection molding cooling process named as HsCAE3D6.0 is developed.
基金John Hopkins University Applied Physics Lab to support the Imagery of the 2019 DFC datasets
文摘The accuracy of Digital Surface Models(DSMs)generated using stereo matching methods varies due to the varying acquisition conditions and configuration parameters of stereo images.It has been a good practice to fuse these DSMs generated from various stereo pairs to achieve enhanced,in which multiple DSMs are combined through computational approaches into a single,more accurate,and complete DSM.However,accurately characterizing detailed objects and their boundaries still present a challenge since most boundary-ware fusion methods still struggle to achieve sharpened depth discontinuities due to the averaging effects of different DSMs.Therefore,we propose a simple and efficient adaptive image-guided DSM fusion method that applies k-means clustering on small patches of the orthophoto to guide the pixel-level fusion adapted to the most consistent and relevant elevation points.The experiment results show that our proposed method has outperformed comparing methods in accuracy and the ability to preserve sharpened depth edges.
基金Project (No. 2006BAJ05A02) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plan Period of China
文摘In this paper, we developed a novel method of combining remote sensing tools at the sub-pixel level for accurate identification of impervious surface time series changes. We examined the use of the red-green-blue impervious surface model (RGB-IS) in detecting time series internal modification of urban regions by integrating Landsat data collected over four different periods between 1987 and 2009 (i.e., 1987, 2000, 2002, and 2009). The performance of this approach was compared with two conventional methods, namely standard RGB-normalized difference vegetation index (NDVI) and post-classification technique. In contrast to conventional techniques, RGB-IS could monitor between-class changes, within-class changes, and location of these modifications. The proposed method was independent of seasonal changes and was also able to serve as a useful alternative for quick mapping growth hotspots and updating transportation corridor map. The results also showed that Cixi County, Zhejiang Province, China experienced tremendous impervious surface changes, especially along the corridors of newly constructed highways and around urban areas over the past 22 years.
基金Supported by National Natural Science Foundation of China(Nos.11472073,61173102 and 61370143)
文摘We introduce an almost-automatic technique for generating 3D car styling surface models based on a single side-view image. Our approach combines the prior knowledge of car styling and deformable curve network model to obtain an automatic modeling process. Firstly, we define the consistent parameterized curve template for 2D and 3D case respectivelyby analyzingthe characteristic lines for car styling. Then, a semi-automatic extraction from a side-view car image is adopted. Thirdly, statistic morphable model of 3D curve network isused to get the initial solution with sparse point constraints.Withonly afew post-processing operations, the optimized curve network models for creating surfaces are obtained. Finally, the styling surfaces are automatically generated using template-based parametric surface modeling method. More than 50 3D curve network models are constructed as the morphable database. We show that this intelligent modeling toolsimplifiesthe exhausted modeling task, and also demonstratemeaningful results of our approach.