期刊文献+
共找到107篇文章
< 1 2 6 >
每页显示 20 50 100
Application of near surface engineering defect exploration technology based on spatial autocorrelation
1
作者 Du Qingling Feng Jianjun +2 位作者 Yang Yan Zhao Kuanyao Hu Qian 《Episodes》 2025年第2期145-153,共9页
Near-surface geological defects pose a serious threat to human life and infrastructure.Hence,the exploration of geological hazards is essential.Currently,there are various geological hazard exploration methods;however... Near-surface geological defects pose a serious threat to human life and infrastructure.Hence,the exploration of geological hazards is essential.Currently,there are various geological hazard exploration methods;however,those require improvements in terms of economic feasibility,convenience,and lateral resolution.To address this,this study examined an extraction method to determine spatial autocorrelation velocity dispersion curves for application in near-surface exploration. 展开更多
关键词 exploration geological hazards near surface engineering velocity dispersion curves geological hazard exploration spatial autocorrelation geological defects extraction method hazard exploration
在线阅读 下载PDF
A surface engineering strategy for the stabilization of zinc metal anodes with montmorillonite layers toward long-life rechargeable aqueous zinc ion batteries
2
作者 Wenbo Wang Ruifeng Xu +9 位作者 Xu Zhang Peiyu Wang Bao Yang Bingjun Yang Juan Yang Kailimai Su Pengjun Ma Yanan Deng Xianfeng Fan Wanjun Chen 《Journal of Energy Chemistry》 2025年第1期94-105,共12页
Rechargeable aqueous zinc-ion batteries(AZIBs)exhibit appreciable potential in the domain of electrochemical energy storage.However,there are serious challenges for AZIBs,for instance zinc dendrite growth,hydrogen evo... Rechargeable aqueous zinc-ion batteries(AZIBs)exhibit appreciable potential in the domain of electrochemical energy storage.However,there are serious challenges for AZIBs,for instance zinc dendrite growth,hydrogen evolution reaction(HER),and corrosion side reactions.Herein,we propose a surface engineering modification strategy for coating the montmorillonite(MMT)layer onto the surface of the Zn anode to tackle these issues,thereby achieving high cycling stability for rechargeable AZIBs.The results reveal that the MMT layer on the surface of the Zn anode is able to provide ordered zincophilic channels for zinc ions migration,facilitating the reaction kinetics of zinc ions.Density functional theory(DFT)calculations and water contact angle(CA)tests prove that MMT@Zn anode exhibits superior adsorption capacity for Zn^(2+)and better hydrophobicity than the bare Zn anode,thereby achieving excellent cycling stability.Moreover,the MMT@Zn||MMT@Zn symmetric cell holds the stable cycling over 5600 h at 0.5 mA cm^(-2)and 0.125 m A h cm^(-2),even exceeding 1800 h long cycling under harsh conditions of 5 m A cm^(-2)and 1.25 m A h cm^(-2).The MMT@Zn||V_(2)O_(5)full cell reaches over 3000 cycles at 2 A g^(-1)with excellent rate capability.Therefore,this surface engineering modification strategy for enhancing the electrochemical performance of AZIBs represents a promising application. 展开更多
关键词 surface engineering strategy Montmorillonite layer Protection mechanism of Zn anode Cycling stability Aqueous zincionbatteries
在线阅读 下载PDF
Advanced surface engineering of lithium-rich manganese-based cathodes towards next-generation lithium-ion batteries
3
作者 Hao Ge Jinsong Bai +4 位作者 Chaoyue Wang Longhui Xie Wenfeng Li Zhijia Sun Xiaoman Cao 《Journal of Energy Chemistry》 2025年第7期718-734,共17页
Lithium-rich manganese-based cathode materials(LMCMs)have garnered significant attention in power lithium-ion batteries(LIBs)and energy storage systems due to their superior energy density and costeffectiveness.Howeve... Lithium-rich manganese-based cathode materials(LMCMs)have garnered significant attention in power lithium-ion batteries(LIBs)and energy storage systems due to their superior energy density and costeffectiveness.However,the commercial application of LMCMs is hindered by challenges such as low initial coulombic efficiency,severe voltage decay,and inferior cycling performance.Surface structure degradation has been confirmed as a critical factor contributing to the electrochemical performance deterioration of LMCMs.Herein,we review the recent progress in surface engineering of LMCMs towards next-generation LIBs.Besides classical surface coating,mechanism and functions of surface oxygen vacancies for greatly boosting the electrochemical performance of LMCMs are also summarized in detail.Finally,we discuss the emerging trends and propose future research directions of surface engineering of LMCMs for achieving more efficient improvements.This work underscores the indispensable potential of surface engineering in enhancing the surface structure stability and electrochemical performance of LMCMs as promising candidates for next-generation high-energy LIBs.Synergistic integration of surface engineering and single-crystal technology will be a promising modification strategy for significantly promoting the commercialization of LMCMs,and the corresponding synergistic mechanisms urgently need to be studied for rationally designing high-performance electrodes.More efforts will be devoted to understand the surface engineering of LMCMs for the large-scale application of high-energy LIBs. 展开更多
关键词 Lithium-ion batteries Li-rich materials Cathodes surface engineering
在线阅读 下载PDF
Surface Engineering of Borophene as Next-Generation Materials for Energy and Environmental Applications
4
作者 Seyedeh Sadrieh Emadian Silvia Varagnolo +10 位作者 Ajay Kumar Prashant Kumar Pranay Ranjan Viktoriya Pyeshkova Naresh Vangapally Nicholas P.Power Sudhagar Pitchaimuthu Alexander Chroneos Saianand Gopalan Prashant Sonar Satheesh Krishnamurthy 《Energy & Environmental Materials》 2025年第3期208-243,共36页
This review provides an insightful and comprehensive exploration of the emerging 2D material borophene,both pristine and modified,emphasizing its unique attributes and potential for sustainable applications.Borophene... This review provides an insightful and comprehensive exploration of the emerging 2D material borophene,both pristine and modified,emphasizing its unique attributes and potential for sustainable applications.Borophene’s distinctive properties include its anisotropic crystal structures that contribute to its exceptional mechanical and electronic properties.The material exhibits superior electrical and thermal conductivity,surpassing many other 2D materials.Borophene’s unique atomic spin arrangements further diversify its potential application for magnetism.Surface and interface engineering,through doping,functionalization,and synthesis of hybridized and nanocomposite borophene-based systems,is crucial for tailoring borophene’s properties to specific applications.This review aims to address this knowledge gap through a comprehensive and critical analysis of different synthetic and functionalisation methods,to enhance surface reactivity by increasing active sites through doping and surface modifications.These approaches optimize diffusion pathways improving accessibility for catalytic reactions,and tailor the electronic density to tune the optical and electronic behavior.Key applications explored include energy systems(batteries,supercapacitors,and hydrogen storage),catalysis for hydrogen and oxygen evolution reactions,sensors,and optoelectronics for advanced photonic devices.The key to all these applications relies on strategies to introduce heteroatoms for tuning electronic and catalytic properties,employ chemical modifications to enhance stability and leverage borophene’s conductivity and reactivity for advanced photonics.Finally,the review addresses challenges and proposes solutions such as encapsulation,functionalization,and integration with composites to mitigate oxidation sensitivity and overcome scalability barriers,enabling sustainable,commercial-scale applications. 展开更多
关键词 2D materials borophene environmental and energy applications surface engineering
在线阅读 下载PDF
Bioinspired Surface Engineering with Dual Covalent Receptors Incorporated via Precise Post-Imprinting Modification to Enhance the Specific Identification of Adenosine 5′-Monophosphate
5
作者 Pan Wang Tao Cheng +4 位作者 Zhuangxin Wei Lu Liu Yue Wang Xiaohua Tian Jianming Pan 《Engineering》 2025年第2期143-154,共12页
Expanding the specific surface area of substrates and carrying out precise surface engineering of imprinted nanocavities are crucial methods for enhancing the identification efficiency of molecularly imprinted polymer... Expanding the specific surface area of substrates and carrying out precise surface engineering of imprinted nanocavities are crucial methods for enhancing the identification efficiency of molecularly imprinted polymers(MIPs).To implement this synergistic strategy,bioinspired surface engineering was used to incorporate dual covalent receptors via precise post-imprinting modifications(PIMs)onto mesoporous silica nanosheets.The prepared sorbents(denoted as‘‘D-PMIPs”)were utilized to improve the specific identification of adenosine 5-monophosphate(AMP).Significantly,the mesoporous silica nanosheets possess a high surface area of approximately 498.73 m^(2)·g^(-1),which facilitates the formation of abundant specific recognition sites in the D-PMIPs.The dual covalent receptors are valuable for estab-lishing the spatial orientation and arrangement of AMP through multiple cooperative interactions.PIMs enable precise site-specific functionalization within the imprinted cavities,leading to the tailor-made formation of complementary binding sites.The maximum number of high-affinity binding sites(Nmax)of the D-PMIPs is 39.99 lmol·g^(-1),which is significantly higher than that of imprinted sorbents with a sin-gle receptor(i.e.,S-BMIPs or S-PMIPs).The kinetic data of the D-PMIPs can be effectively described by a pseudo-second-order model,indicating that the main binding mechanism involves synergistic chemisorption from boronate affinity and the pyrimidine base.This study suggests that using dual cova-lent receptors and PIMs is a reliable approach for creating imprinted sorbents with high selectivity,allow-ing for the controlled engineering of imprinted sites. 展开更多
关键词 Precise surface engineering Dual covalent receptor Precise post-imprinting modification Specific identification of adenosine 5-monophosphate
在线阅读 下载PDF
Surface engineering of P2-type cathode material targeting long-cycling and high-rate sodium-ion batteries 被引量:1
6
作者 Jun Xiao Yang Xiao +11 位作者 Shijian Wang Zefu Huang Jiayi Li Cheng Gong Guilai Zhang Bing Sun Hong Gao Huiqiao Li Xin Guo Yong Wang Hao Liu Guoxiu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期444-452,I0009,共10页
The widespread interest in layered P2-type Mn-based cathode materials for sodium-ion batteries(SIBs)stems from their cost-effectiveness and abundant resources.However,the inferior cycle stability and mediocre rate per... The widespread interest in layered P2-type Mn-based cathode materials for sodium-ion batteries(SIBs)stems from their cost-effectiveness and abundant resources.However,the inferior cycle stability and mediocre rate performance impede their further development in practical applications.Herein,we devised a wet chemical precipitation method to deposit an amorphous aluminum phosphate(AlPO_(4),denoted as AP)protective layer onto the surface of P2-type Na_(0.55)Ni_(0.1)Co_(0.7)Mn_(0.8)O_(2)(NCM@AP).The resulting NCM@5AP electrode,with a 5 wt%coating,exhibits extended cycle life(capacity retention of78.4%after 200 cycles at 100 mA g^(-1))and superior rate performance(98 mA h g^(-1)at 500 mA g^(-1))compared to pristine NCM.Moreover,our investigation provides comprehensive insights into the phase stability and active Na^(+)ion kinetics in the NCM@5AP composite electrode,shedding light on the underlying mechanisms responsible for the enhanced performance observed in the coated electrode. 展开更多
关键词 Layered metal oxides Sodium-ion batteries P2-type structure surface engineering
在线阅读 下载PDF
Surface engineering on MnO_(2)nanorods by La single atoms to accelerate oxygen reduction kinetics
7
作者 Zhang-Long He Liu-Qi Wang +10 位作者 Min Jiang Jia-Nan Xie Shan Liu Jin-Can Ren Rui Sun Wen-Bin Lv Wei-Bin Guo Yu-Ling Liu Bing Li Qi Liu Hao He 《Rare Metals》 SCIE EI CAS CSCD 2024年第9期4302-4311,共10页
Surface engineering,which modulates the electronic structure and adsorption/desorption properties of electrocatalysts,is one of the key strategies for improving the catalytic performance.Herein,we demonstrate a facile... Surface engineering,which modulates the electronic structure and adsorption/desorption properties of electrocatalysts,is one of the key strategies for improving the catalytic performance.Herein,we demonstrate a facile solid-phase reaction for surface engineering of MnO_(2)to boost the oxygen reduction kinetics.Via reaction with surface hydroxy groups,La single atoms with loading amount up to 2.7 wt%are anchored onto a-MnO_(2)nanorods.After surface engineering,the oxygen reduction reaction(ORR)kinetics is significantly improved with the half-wave potential from 0.70 to 0.84 V,the number of transferred electrons from 2.5 to 3.9 and the limiting current density from 4.8 to 6.0 mA·cm^(-2).In addition,the catalyst delivers superior discharge performance in both alkaline and neutral metal–air batteries.Density functional theory(DFT)calculations reveal that atomic La modulates the surface electronic configuration of MnO_(2),reduces its d-band center and thus lowers the OOH*and O*reaction energy barrier.This work provides a new route for rational design of highly active electrocatalyst and holds great potential for application in various catalytic reactions. 展开更多
关键词 surface engineering Single atoms Electron injection Oxygen reduction reaction Metal-air batteries
原文传递
Surface engineering of TeO_(x) modification on MoVTeNbO creates a high-performance catalyst for oxidation of toluene homologues to aldehydes
8
作者 Changshun Deng Bingqing Ge +10 位作者 Jun Yao Taotao Zhao Chenyang Shen Zhewei Zhang Tao Wang Xiangke Guo Nianhua Xue Xuefeng Guo Luming Peng Yan Zhu Weiping Ding 《Chinese Journal of Catalysis》 CSCD 2024年第11期268-281,共14页
The heterogeneous catalytic oxidation of toluene by O_(2)is an inherently safe and green route for production of benzaldehyde,but after more than fifty years of effort,it remains a great challenge.Here,we report the b... The heterogeneous catalytic oxidation of toluene by O_(2)is an inherently safe and green route for production of benzaldehyde,but after more than fifty years of effort,it remains a great challenge.Here,we report the best heterogeneous catalyst,TeO_(x)/MoVTeNbO,up to now for the green oxidation of toluene by O_(2)to benzaldehyde,balancing the catalyst activity,selectivity,and stability.The deposition of TeO_(x) endows the MoVTeNbO composite oxide with entirely new property for toluene oxidation and the surface engineering mechanism has been fully explained.The discrete TeO_(x) clusters on the surface,shielding the nonselective oxidation sites that interact strongly with the benzene ring of toluene molecule,allows toluene molecule to chemically adsorb to the surface perpendicularly and the methyl is then prone to oxidation to aldehyde on the reshaped selective oxidation sites,where V=O is the main active species responsible for continuously extracting hydrogen from methyl and implanting oxygen to form benzaldehyde.The TeO_(x) clusters participate in this reaction through variable valences and stabilize benzaldehyde by couple interaction with the–CHO group of benzaldehyde,thereby achieving high selectivity to benzaldehyde(>95%).The extended works indicate that the catalytic mechanism is effective in a series of selective oxidation of toluene homologues to corresponding aldehydes. 展开更多
关键词 surface engineering TeO_(x)/MoVTeNbO Toluene oxidation BENZALDEHYDE Molecular oxygen
在线阅读 下载PDF
Attapulgite nanorods assisted surface engineering for separator to achieve high-performance lithium–sulfur batteries 被引量:5
9
作者 Wenhao Sun Xiaogang Sun +5 位作者 Naseem Akhtar Chengming Li Weikun Wang Anbang Wang Kai Wang Yaqin Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期364-374,I0011,共12页
Lithium-sulfur(Li-S)batteries have been recognized as one of the most promising candidates for nextgeneration portable electronic devices,owing to their extremely high energy density and low cost.However,the dissoluti... Lithium-sulfur(Li-S)batteries have been recognized as one of the most promising candidates for nextgeneration portable electronic devices,owing to their extremely high energy density and low cost.However,the dissolution of lithium polysulfides(LiPSs)and consequent"shuttle effect"seriously hinder the practical deployment of Li-S batteries.Herein,multi-metal oxide nanorods named attapulgite are proposed as multifunctional ionic sieve to immobilize LiPSs and further promote the regulation of LiPSs.Attapulgite,consisting of Al,Mg,Fe,Si and O ions,possesses more polar sites to immobilize LiPSs in comparison with single metal oxides.In addition,the catalytic nature(Fe ions)of attapulgite avails the LiPSs conversion reaction,which is further confirmed by the linear sweep voltammetry and electrochemical impedance spectroscopy.Benefited from the synergistic effect of multi-metal oxide and conductive carbon,the Li-S battery with the modified separator delivers remarkable discharge capacities of 1059.4 mAh g-1 and 792.5 mAh g-1 for the first and 200th cycle at 0.5 C,respectively.The work presents an effective way to improve the electrochemical performance of Li-S batteries by employing attapulgite nanorods assisted separator surface engineering. 展开更多
关键词 surface engineering Multi-metal oxide SEPARATOR Shuttle effect Synergistic effect
在线阅读 下载PDF
Atomic-level insights into surface engineering of semiconductors for photocatalytic CO_(2) reduction 被引量:3
10
作者 Hengming Huang Hui Song +2 位作者 Jiahui Kou Chunhua Lu Jinhua Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期309-341,共33页
Photocatalytic conversion of CO_(2)into solar fuels provides a bright route for the green and sustainable development of human society.However,the realization of efficient photocatalytic CO_(2)reduction reaction(CO_(2... Photocatalytic conversion of CO_(2)into solar fuels provides a bright route for the green and sustainable development of human society.However,the realization of efficient photocatalytic CO_(2)reduction reaction(CO_(2)RR)is still challenging owing to the sluggish kinetics or unfavorable thermodynamics for basic chemical processes of CO_(2)RR,such as adsorption,activation,conversion and product desorption.To overcome these shortcomings,recent works have demonstrated that surface engineering of semiconductors,such as introducing surface vacancy,surface doping,and cocatalyst loading,serves as effective or promising strategies for improved photocatalytic CO_(2)RR with high activity and selectivity.The essential reason lies in the activation and reaction pathways can be optimized and regulated through the reconstruction of surface atomic and electronic structures.Herein,in this review,we focus on recent research advances about rational design of semiconductor surface for photocatalytic CO_(2)RR.The surface engineering strategies for improved CO_(2)adsorption,activation,and product selectivity will be reviewed.In addition,theoretical calculations along with in situ characterization techniques will be in the spotlight to clarify the kinetics and thermodynamics of the reaction process.The aim of this review is to provide deep understanding and rational guidance on the design of semiconductors for photocatalytic CO_(2)RR. 展开更多
关键词 CO_(2)reduction PHOTOCATALYSIS surface engineering Activation SELECTIVITY
在线阅读 下载PDF
Electrochemical Carbon Dioxide Reduction to Ethylene:From Mechanistic Understanding to Catalyst Surface Engineering 被引量:4
11
作者 Junpeng Qu Xianjun Cao +7 位作者 Li Gao Jiayi Li Lu Li Yuhan Xie Yufei Zhao Jinqiang Zhang Minghong Wu Hao Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期382-415,共34页
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides a promising way to convert CO_(2)to chemicals.The multicarbon(C_(2+))products,especially ethylene,are of great interest due to their versatile indust... Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides a promising way to convert CO_(2)to chemicals.The multicarbon(C_(2+))products,especially ethylene,are of great interest due to their versatile industrial applications.However,selectively reducing CO_(2)to ethylene is still challenging as the additional energy required for the C–C coupling step results in large overpotential and many competing products.Nonetheless,mechanistic understanding of the key steps and preferred reaction pathways/conditions,as well as rational design of novel catalysts for ethylene production have been regarded as promising approaches to achieving the highly efficient and selective CO_(2)RR.In this review,we first illustrate the key steps for CO_(2)RR to ethylene(e.g.,CO_(2)adsorption/activation,formation of~*CO intermediate,C–C coupling step),offering mechanistic understanding of CO_(2)RR conversion to ethylene.Then the alternative reaction pathways and conditions for the formation of ethylene and competitive products(C_1 and other C_(2+)products)are investigated,guiding the further design and development of preferred conditions for ethylene generation.Engineering strategies of Cu-based catalysts for CO_(2)RR-ethylene are further summarized,and the correlations of reaction mechanism/pathways,engineering strategies and selectivity are elaborated.Finally,major challenges and perspectives in the research area of CO_(2)RR are proposed for future development and practical applications. 展开更多
关键词 Key steps in CO_(2)RR-ethylene Preferable reaction pathways Mechanism understanding surface engineering strategies of Cu-based catalysts
在线阅读 下载PDF
Selective sulfur conversion with surface engineering of electrocatalysts in a lithium-sulfur battery 被引量:3
12
作者 Yuejin Zhu Yinze Zuo +4 位作者 Xuechao Jiao Revanasiddappa Manjunatha Ejikeme Raphael Ezeigwe Wei Yan Jiujun Zhang 《Carbon Energy》 SCIE CSCD 2023年第2期72-84,共13页
The sluggish kinetics of multiphase sulfur conversion with homogeneous and heterogeneous electrochemical processes,causing the“shuttle effect”of soluble polysulfide species(PSs),is the challenges in terms of lithium... The sluggish kinetics of multiphase sulfur conversion with homogeneous and heterogeneous electrochemical processes,causing the“shuttle effect”of soluble polysulfide species(PSs),is the challenges in terms of lithium-sulfur batteries(LSBs).In this paper,a Mn_(3)O_(4-x) catalyst,which has much higher activity for heterogeneous reactions than for homogeneous reactions(namely,preferentialactivity catalysts),is designed by surface engineering with rational oxygen vacancies.Due to the rational design of the electronic structure,the Mn_(3)O_(4-x) catalyst prefers to accelerate the conversion of Li2S4 into Li_(2)S_(2)/Li_(2)S and optimize Li_(2)S deposition,reducing the accumulation of PSs and thus suppressing the“shuttle effect.”Both density functional theory calculations and in situ X-ray diffraction measurements are used to probe the catalytic mechanism and identify the reaction intermediates of MnS and Li_(y)Mn_(z)O_(4-x) for fundamental understanding.The cell with Mn_(3)O_(4-x) delivers an ultralow attenuation rate of 0.028% per cycle over 2000 cycles at 2.5 C.Even with sulfur loadings of 4.93 and 7.10mg cm^(-2) in a lean electrolyte(8.4μL mg s^(-1)),the cell still shows an initial areal capacity of 7.3mAh cm^(-2).This study may provide a new way to develop preferential-activity heterogeneous-reaction catalysts to suppress the“shuttle effect”of the soluble PSs generated during the redox process of LSBs. 展开更多
关键词 electrochemical kinetics heterogeneous catalysis lithium-sulfur batteries Mn3O4-x-catalyzed separator surface engineering
在线阅读 下载PDF
Surface engineering towards high-energy carbon cathode for advanced aqueous zinc-ion hybrid capacitors 被引量:2
13
作者 Xingyuan Gao Huilin Deng +2 位作者 Yuanbin Fang Yuyan Li Xihong Lu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第8期356-359,共4页
Opportunities coexist with challenges for the development of carbon-based cathodes with a high energy density applied for zinc ion hybrid capacitors(ZIHCs).In the present study,a facile and effective surface engineeri... Opportunities coexist with challenges for the development of carbon-based cathodes with a high energy density applied for zinc ion hybrid capacitors(ZIHCs).In the present study,a facile and effective surface engineering approach is demonstrated to greatly improve the energy storage ability of commercial carbon paper(CP)in ZIHC.Benefiting from the introduced oxygen functional groups,larger surface area and improved surface wettability upon air calcination,the assembled aqueous ZIHC with the functionalized carbon paper(FCP)exhibits a much higher areal capacity of 0.22 mAh/cm^(2)at 1 mA/cm^(2),outperforming the counterpart with blank CP by over 5000 times.More importantly,a superior energy density and power density of 130.8μWh/cm^(2)and 7460.5μW/cm^(2),are respectively delivered.Furthermore,more than 90%of the initial capacity is retained over 10000 cycles.This surface engineering strategy to improve the energy storage capability is potentially applicable to developing a wide range of high-energy carbon electrode materials. 展开更多
关键词 Zinc ion hybrid capacitor Carbon cathode Air activation PSEUDOCAPACITANCE surface engineering
原文传递
Surface engineering on segmented copper-iron nanowires arrays 被引量:1
14
作者 Lingling Du Shizheng Zheng +3 位作者 Lijun Zheng Xiaxia Xing Dachi Yang Can Xue 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第8期4017-4020,共4页
Surface engineering that could modulate the surface shape to be endowed with the high specific surface ratio,abundant chemical dangling bonds and improved defects exposure is highly desired and needs further exploring... Surface engineering that could modulate the surface shape to be endowed with the high specific surface ratio,abundant chemical dangling bonds and improved defects exposure is highly desired and needs further exploring.Here,we report a facile strategy of surface engineering on decorating the controllable segmented copper-iron nanowires arrays(Cu-Fe NWs)with their respective hydroxides.Specifically,the pristine segmented Cu-Fe NWs are firstly synthesized via sequentially electrodepositing Cu NWs and Fe NWs inside the nanochannels of anode aluminum oxide(AAO)template.Subsequently,the surface and interface of Cu-Fe NWs are wet-chemically etched,in which the metallic Cu and Fe are partially converted into Cu(OH)_(x)nano-fibrous roots(NFRs)and FeO(OH)_(y)nanoparticles(NPs),and finally decorate around the respective outer-surface of Cu NWs and Fe NWs segments.As one case of the applications in hydrogen evolution reaction(HER),our surface-modified Cu-Fe NWs exhibit improved catalytic activity compared with Fe NWs. 展开更多
关键词 surface engineering SEGMENT Copper-iron nanowires Wet-chemical etching Galvanic reaction
原文传递
Promotion of reactive oxygen species activated by nanosilver surface engineering for resistant bacteria-infected skin tissue therapy 被引量:1
15
作者 Pei-Pei Li Yu Zhang +7 位作者 Chao Wang Shu-Jie Wang Wen-Qing Yan Dou-Xin Xiao Jing Kang De-Zhi Yang Hai-Xia Wu Alideertu Dong 《Rare Metals》 SCIE EI CAS CSCD 2023年第12期4167-4183,共17页
Nanosilver has been regarded as a promising alternative to traditional antibiotics for fighting pathogenassociated infections due to its efficacy toward a broad spectrum of pathogens.However,bacterial resistance to na... Nanosilver has been regarded as a promising alternative to traditional antibiotics for fighting pathogenassociated infections due to its efficacy toward a broad spectrum of pathogens.However,bacterial resistance to nanosilver has emerged recently.In this contribution,a surface engineering strategy based on N-halamine chemistry to address bacterial resistance to nanosilver was proposed.Using 1,3-dichloro-5,5-dimethylhydantoin(DCDMH)as an N-halamine source,AgCI nanodots were deposited on the surface of Ag nano wires(Ag NWs)via in situ redox reaction to prepare AgCl-on-Ag NWs.After in vitro and in vivo tests,AgCl-on-Ag NWs effectively inactivated two antibiotic-resistant bacteria,ampicillinresistant Escherichia coli(AREC)and methicillin-resistant Staphylococcus aureus(MRSA)with the minimum bactericidal concentration(MBC)as low as 10μg·ml~(-1)and exhibited good biosafety against normal cells.The experimental and theoretical tests demonstrated that AgCl-onAg NWs worked on AREC and MAS A by generating high level of reactive oxygen species under visible light irradiation,coupled with the sustained Ag ion release.Meanwhile,the antibacterial mechanism of AgCl-on-Ag NWs against MRSA was verified at the gene level by transcriptome analysis(RNA sequencing).Moreover,the fullthickness defect model verified that AgCl-on-Ag NWs reduced inflammatory cell infiltration and dramatically accelerated wound healing.This work provides a synergistic mechanism based on nanosilver surface engineering to eradicate the resistant bacteria that can alleviate drug resistance and develop an innovative approach for the treatment of bacterial infections. 展开更多
关键词 surface engineering NANOSILVER N-HALAMINE Reactive oxygen species(ROS) Antibiotic resistance
原文传递
Boosting the Performance Gain of Ru/C for Hydrogen Evolution Reaction Via Surface Engineering 被引量:1
16
作者 Xiaobing Bao Yuzhuo Chen +3 位作者 Shanjun Mao Yong Wang Yong Yang Yutong Gong 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期415-424,共10页
The surface properties of catalysts determine the intrinsic activity and adaptability.Ruthenium is regarded as a potential candidate to substitute platinum for water electrolysis due to the low cost and analogous elec... The surface properties of catalysts determine the intrinsic activity and adaptability.Ruthenium is regarded as a potential candidate to substitute platinum for water electrolysis due to the low cost and analogous electronic structures while it suffers from severe dissolution and stability problems.Herein,the modification of Ru/C with atomically dispersed cobalt atoms is achieved via a simple thermal doping method.The newly formed amorphous shell with Ru-Co sites on the Ru/C catalyst improved the hydrogen evolution reaction activity and stability significantly.Impressively,the obtained Co1Ru@Ru/CN_(x)catalyst exhibited an overpotential as low as 30 mV at 10 mA cm^(-2)in an alkaline medium,which is among the best HER catalysts reported so far.The oxygen oxophile Co prevents the fast oxidation and dissolution of Ru species,ensuring outstanding long-term durability up to 70 h.Theoretical calculations reveal that the Ru-Co coordination acts as a more active site for water dissociation than the Ru-Ru.Meanwhile,the"Ru-Co shell/Ru core"structures show high adaptability for the reaction conditions.This simple doping strategy offers prospects for scalable preparation of highly active electrocatalysts. 展开更多
关键词 high performance hydrogen evolution reaction ruthenium catalyst surface engineering
在线阅读 下载PDF
Improving the activity and stability of Ni-based electrodes for solid oxide cells through surface engineering:Recent progress and future perspectives 被引量:4
17
作者 Junxian Pan Yongjian Ye +4 位作者 Mengzhen Zhou Xiang Sun Yihan Ling Keiji Yashiro Yan Chen 《Materials Reports(Energy)》 2021年第2期35-47,共13页
Solid oxide cells(SOCs)have attracted great attention in the past decades because of their high conversion efficiency,low environmental pollution and diversified fuel options.Nickel-based catalysts are the most widely... Solid oxide cells(SOCs)have attracted great attention in the past decades because of their high conversion efficiency,low environmental pollution and diversified fuel options.Nickel-based catalysts are the most widely used fuel electrode materials for SOCs due to the low price and high activity.However,when hydrocarbon fuels are employed,nickel-based electrodes face serious carbon deposition challenges,leading to a rapid decline of cell performance.Great efforts have been devoted to understanding the occurrence of the coking reaction,and to improving the stability of the electrodes in hydrocarbon fuels.In this review,we summarize recent research progress of utilizing surface modification to improve the stability and activity of Ni-based electrodes for SOCs by preventing carbon coking.The review starts with a briefly introduction about the reaction mechanism of carbon deposition,followed by listing several surface modification technologies and their working principles.Then we introduce representative works using surface modification strategies to prevent carbon coking on Ni-based electrodes.Finally,we highlight future direction of improving electrode catalytic activity and anti-coking performance through surface engineering. 展开更多
关键词 Solid oxide cells Ni-based electrodes Carbon coking surface engineering
在线阅读 下载PDF
Nano-surface Engineering for Remanufacturing Application
18
作者 ZHANG Wei(张伟) +3 位作者 XU Bin-shi(徐滨士) ZHANG Shu(张纾) 《Journal of Shanghai Jiaotong university(Science)》 EI 2005年第4期397-401,共5页
As system of a serial of technologies and engineering activities, remanufacturing aims at restoring and rebuilding waste machinery through advanced technologies and industrialized measures under the direction of the p... As system of a serial of technologies and engineering activities, remanufacturing aims at restoring and rebuilding waste machinery through advanced technologies and industrialized measures under the direction of the product total life cycle theory. With the development of surface engineering, nano-surface engineering has been one subject of intensive studies. In addition, nano-surface engineering has become an important means for property reforming and promoting of remanufacturing parts. Many low-dimension and nano-size or nano-structure functional coatings, which can improve materials properties evidently, are deposited by new methods. In this paper, some researches about the new achievement and remanufacturing application of the nano-stmctured coatings by different nano-surface engineering technologies in our laboratory were introduced. Especially, nano-structured DLC multilayer coatings by d.c. plasma CVD, nano-composed Al2O3/Ni, SiC/Ni and Diamond/Ni coatings by brush plating, and nano-composed Al2O3/TiO2 coating by plasma spraying were introduced in detail. 展开更多
关键词 REMANUFACTURING surface engineering chemical vapour deposition (CVD) brush plating plasma spraying
在线阅读 下载PDF
Standardized surface engineering design of shale gas reservoirs
19
作者 Liang Guangchuan Yu Yuhang Peng Xingyu 《Natural Gas Industry B》 2016年第1期90-98,共9页
Due to the special physical properties of shale gas reservoirs,it is necessary to adopt unconventional and standardized technologies for its surface engineering construction.In addition,the surface engineering design ... Due to the special physical properties of shale gas reservoirs,it is necessary to adopt unconventional and standardized technologies for its surface engineering construction.In addition,the surface engineering design of shale gas reservoirs in China faces many difficulties,such as high uncertainty of the gathering and transportation scale,poor adaptability of pipe network and station layout,difficult matching of the process equipments,and boosting production at the late stage.In view of these problems,the surface engineering construction of shale gas reservoirs should follow the principles of“standardized design,modularized construction and skid mounted equipment”.In this paper,standardized surface engineering design technologies for shale gas reservoirs were developed with the“standardized well station layout,universal process,modular function zoning,skid mounted equipment selection,intensive site design,digitized production management”as the core,after literature analysis and technology exploration were carried out.Then its application background and surface technology route were discussed with a typical shale gas field in SichuaneChongqing area as an example.Its surface gathering system was designed in a standardized way,including standardized process,the modularized gathering and transportation station,serialized dehydration unit and intensive layout,and remarkable effects were achieved.A flexible,practical and reliable ground production system was built,and a series of standardized technology and modularized design were completed,including cluster well platform,set station,supporting projects.In this way,a system applicable to domestic shale gas surface engineering construction is developed. 展开更多
关键词 Shale gas UNCONVENTIONAL surface engineering Gathering system surface technology Standardized design Cluster wells INTEGRATION
在线阅读 下载PDF
Talking about the Measures for Strengthening the Quality Management of Oilfield Surface Engineering Construction
20
作者 SUNHang 《外文科技期刊数据库(文摘版)工程技术》 2022年第5期228-231,共4页
Driven by the rapid development of social economy, the problem of resource shortage gradually appeared in our country, which promoted the development of surface engineering in oil field industry. Through relevant inve... Driven by the rapid development of social economy, the problem of resource shortage gradually appeared in our country, which promoted the development of surface engineering in oil field industry. Through relevant investigations, it is found that the construction of oil field surface engineering embodies its own advantages in many aspects, such as saving construction cost and being skilled. However, there are many uncertain factors in the actual construction process, which will not only reduce the construction quality of the ground engineering, but also cause huge hidden dangers for staff safety. If it cannot be effectively controlled, it will affect the social and economic development of our country. Therefore, relevant staff should pay more attention to the oilfield surface engineering construction, continuously optimize the quality management measures, and introduce advanced management modes and concepts, so as to improve the engineering construction quality. In this regard, the paper makes a detailed analysis of the oilfield surface engineering, and at the same time puts forward measures to strengthen its quality management. 展开更多
关键词 oilfield surface engineering CONSTRUCTION quality management
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部