This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as o...This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel ViT.Leveraging awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and understanding.These techniques mitigated overfitting,stabilized training,and improved generalization capabilities.The LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,respectively.The findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature extraction.The additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial applications.For instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often misclassify.This study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are key.Future research may focus on enhancing LMViT’s computational efficiency for deployment in real-time quality control systems.展开更多
The detection of surface defects in concrete bridges using deep learning is of significant importance for reducing operational risks,saving maintenance costs,and driving the intelligent transformation of bridge defect...The detection of surface defects in concrete bridges using deep learning is of significant importance for reducing operational risks,saving maintenance costs,and driving the intelligent transformation of bridge defect detection.In contrast to the subjective and inefficient manual visual inspection,deep learning-based algorithms for concrete defect detection exhibit remarkable advantages,emerging as a focal point in recent research.This paper comprehensively analyzes the research progress of deep learning algorithms in the field of surface defect detection in concrete bridges in recent years.It introduces the early detection methods for surface defects in concrete bridges and the development of deep learning.Subsequently,it provides an overview of deep learning-based concrete bridge surface defect detection research from three aspects:image classification,object detection,and semantic segmentation.The paper summarizes the strengths and weaknesses of existing methods and the challenges they face.Additionally,it analyzes and prospects the development trends of surface defect detection in concrete bridges.展开更多
The service life of internal combustion engines is significantly influenced by surface defects in cylinder liners.To address the limitations of traditional detection methods,we propose an enhanced YOLOv8 model with Sw...The service life of internal combustion engines is significantly influenced by surface defects in cylinder liners.To address the limitations of traditional detection methods,we propose an enhanced YOLOv8 model with Swin Transformer as the backbone network.This approach leverages Swin Transformer's multi-head self-attention mechanism for improved feature extraction of defects spanning various scales.Integrated with the YOLOv8 detection head,our model achieves a mean average precision of 85.1%on our dataset,outperforming baseline methods by 1.4%.The model's effectiveness is further demonstrated on a steel-surface defect dataset,indicating its broad applicability in industrial surface defect detection.Our work highlights the potential of combining Swin Transformer and YOLOv8 for accurate and efficient defect detection.展开更多
A novel dual-branch decoding fusion convolutional neural network model(DDFNet)specifically designed for real-time salient object detection(SOD)on steel surfaces is proposed.DDFNet is based on a standard encoder–decod...A novel dual-branch decoding fusion convolutional neural network model(DDFNet)specifically designed for real-time salient object detection(SOD)on steel surfaces is proposed.DDFNet is based on a standard encoder–decoder architecture.DDFNet integrates three key innovations:first,we introduce a novel,lightweight multi-scale progressive aggregation residual network that effectively suppresses background interference and refines defect details,enabling efficient salient feature extraction.Then,we propose an innovative dual-branch decoding fusion structure,comprising the refined defect representation branch and the enhanced defect representation branch,which enhance accuracy in defect region identification and feature representation.Additionally,to further improve the detection of small and complex defects,we incorporate a multi-scale attention fusion module.Experimental results on the public ESDIs-SOD dataset show that DDFNet,with only 3.69 million parameters,achieves detection performance comparable to current state-of-the-art models,demonstrating its potential for real-time industrial applications.Furthermore,our DDFNet-L variant consistently outperforms leading methods in detection performance.The code is available at https://github.com/13140W/DDFNet.展开更多
Aiming at the problems of low detection efficiency and difficult positioning of traditional steel surface defect detection methods,a lightweight steel surface defect detection model based on you only look once version...Aiming at the problems of low detection efficiency and difficult positioning of traditional steel surface defect detection methods,a lightweight steel surface defect detection model based on you only look once version 7(YOLOv7)is proposed.First,a cascading style sheets(CSS)block module is proposed,which uses more lightweight operations to obtain redundant information in the feature map,reduces the amount of computation,and effectively improves the detection speed.Secondly,the improved spatial pyramid pooling with cross stage partial convolutions(SPPCSPC)structure is adopted to ensure that the model can also pay attention to the defect location information while predicting the defect category information,obtain richer defect features.In addition,the convolution operation in the original model is simplified,which significantly reduces the size of the model and helps to improve the detection speed.Finally,using efficient intersection over union(EIOU)loss to focus on high-quality anchors,speed up convergence and improve positioning accuracy.Experiments were carried out on the Northeastern University-defect(NEU-DET)steel surface defect dataset.Compared with the original YOLOv7 model,the number of parameters of this model was reduced by 40%,the frames per second(FPS)reached 112,and the average accuracy reached 79.1%,the detection accuracy and speed have been improved,which can meet the needs of steel surface defect detection.展开更多
Detecting surface defects on unused rails is crucial for evaluating rail quality and durability to ensure the safety of rail transportation.However,existing detection methods often struggle with challenges such as com...Detecting surface defects on unused rails is crucial for evaluating rail quality and durability to ensure the safety of rail transportation.However,existing detection methods often struggle with challenges such as complex defect morphology,texture similarity,and fuzzy edges,leading to poor accuracy and missed detections.In order to resolve these problems,we propose MSCM-Net(Multi-Scale Cross-Modal Network),a multiscale cross-modal framework focused on detecting rail surface defects.MSCM-Net introduces an attention mechanism to dynamically weight the fusion of RGB and depth maps,effectively capturing and enhancing features at different scales for each modality.To further enrich feature representation and improve edge detection in blurred areas,we propose a multi-scale void fusion module that integrates multi-scale feature information.To improve cross-modal feature fusion,we develop a cross-enhanced fusion module that transfers fused features between layers to incorporate interlayer information.We also introduce a multimodal feature integration module,which merges modality-specific features from separate decoders into a shared decoder,enhancing detection by leveraging richer complementary information.Finally,we validate MSCM-Net on the NEU RSDDS-AUG RGB-depth dataset,comparing it against 12 leading methods,and the results show that MSCM-Net achieves superior performance on all metrics.展开更多
In response to themissed and false detections that are easily caused by the large variety of and significant differences among aluminum surface defects,a detection algorithm based on an improved You Only Look Once(YOL...In response to themissed and false detections that are easily caused by the large variety of and significant differences among aluminum surface defects,a detection algorithm based on an improved You Only Look Once(YOLO)v8n network is proposed.First,a C2f_DWR_DRB module is constructed by introducing a dilation-wise residual(DWR)module and a dilated reparameterization block(DRB)to replace the C2f module at the high level of the backbone network,enriching the gradient flow information and increasing the effective receptive field(ERF).Second,an efficient local attention(ELA)mechanism is fused with the high-level screening-feature pyramid networks(HS-FPN)module,and an ELA_HSFPN is designed to replace the original feature fusion module,enhancing the ability of the network to cope with multiscale detection tasks.Moreover,a lightweight shared convolutional detection head(SCDH)is introduced to reduce the number of parameters and the computational complexity of the module while enhancing the performance and generalizability of the model.Finally,the soft intersection over union(SIoU)replaces the original loss function to improve the convergence speed and prediction accuracy of the model.Experimental results show that compared with that of the original YOLOv8n model,the mAP@0.5 of the improved algorithm is increased by 5.1%,the number of parameters and computational complexity are reduced by 33.3%and 32.1%,respectively,and the FPS is increased by 4.9%.Compared with other mainstream object detection algorithms,the improved algorithm still leads in terms of core indicators and has good generalizability for surface defects encountered in other industrial scenarios.展开更多
Surface defects can affect the quality of steel plate.Many methods based on computer vision are currently applied to surface defect detection of steel plate.However,their real-time performance and object detection of ...Surface defects can affect the quality of steel plate.Many methods based on computer vision are currently applied to surface defect detection of steel plate.However,their real-time performance and object detection of small defect are still unsatisfactory.An improved object detection network based on You Only Look One-level Feature(YOLOF)is proposed to show excellent performance in surface defect detection of steel plate,called DLF-YOLOF.First,the anchor-free detector is used to reduce the network hyperparameters.Secondly,deformable convolution network and local spatial attention module are introduced into the feature extraction network to increase the contextual information in the feature maps.Also,the soft non-maximum suppression is used to improve detection accuracy significantly.Finally,data augmentation is performed for small defect objects during training to improve detection accuracy.Experiments show the average precision and average precision for small objects are 42.7%and 33.5%at a detection speed of 62 frames per second on a single GPU,respectively.This shows that DLF-YOLOF has excellent performance to meet the needs of industrial real-time detection.展开更多
Ensuring high product quality is of paramount importance in pharmaceutical drug manufacturing,as it is subject to rigorous regulatory practices.This study presents a research focused on the development of an on-line d...Ensuring high product quality is of paramount importance in pharmaceutical drug manufacturing,as it is subject to rigorous regulatory practices.This study presents a research focused on the development of an on-line detection method and system for identifying surface defects in pharmaceutical products packaged in aluminum-plastic blisters.Firstly,the aluminum-plastic blister packages exhibit multi-scale features and inter-class indistinction.To address this,the deep semantic network with boundary refinement(DSN-BR)model is proposed,which leverages semantic segmentation domain knowledge,to accurately segment the defects in pixel level.Additionally,a specialized image acquisition module that minimizes the impact of ambient light is established,ensuring high-quality image capture.Finally,the image acquisition module,image detection module,and data management module are designed to construct a comprehensive online surface defect detection system.To validate the effectiveness of our approach,we employ a real dataset for instance verification on the implemented system.The experimental results substantiate the outstanding performance of the DSN-BR,achieving the mean intersection over union(MIoU)of 90.5%.Furthermore,the proposed system achieves an inference speed of up to 14.12 f/s,while attaining an F1-Score of 98.25%.These results demonstrate that the system meets the actual needs of the enterprise and provides theoretical and methodological support for intelligent inspection of product surface quality.By standardizing the control process of pharmaceutical manufacturing and improving the management capability of the manufacturing process,our approach holds significant market application prospects.展开更多
Segment Anything Model(SAM)is a cutting-edge model that has shown impressive performance in general object segmentation.The birth of the segment anything is a groundbreaking step towards creating a universal intellige...Segment Anything Model(SAM)is a cutting-edge model that has shown impressive performance in general object segmentation.The birth of the segment anything is a groundbreaking step towards creating a universal intelligent model.Due to its superior performance in general object segmentation,it quickly gained attention and interest.This makes SAM particularly attractive in industrial surface defect segmentation,especially for complex industrial scenes with limited training data.However,its segmentation ability for specific industrial scenes remains unknown.Therefore,in this work,we select three representative and complex industrial surface defect detection scenarios,namely strip steel surface defects,tile surface defects,and rail surface defects,to evaluate the segmentation performance of SAM.Our results show that although SAM has great potential in general object segmentation,it cannot achieve satisfactory performance in complex industrial scenes.Our test results are available at:https://github.com/VDT-2048/SAM-IS.展开更多
The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on ...The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on wind turbine blades,a blade surface defect detection and quantification method based on an improved Deeplabv3+deep learning model is proposed.Firstly,an improved method for wind turbine blade surface defect detection,utilizing Mobilenetv2 as the backbone feature extraction network,is proposed based on an original Deeplabv3+deep learning model to address the issue of limited robustness.Secondly,through integrating the concept of pre-trained weights from transfer learning and implementing a freeze training strategy,significant improvements have been made to enhance both the training speed and model training accuracy of this deep learning model.Finally,based on segmented blade surface defect images,a method for quantifying blade defects is proposed.This method combines image stitching algorithms to achieve overall quantification and risk assessment of the entire blade.Test results show that the improved Deeplabv3+deep learning model reduces training time by approximately 43.03%compared to the original model,while achieving mAP and MIoU values of 96.87%and 96.93%,respectively.Moreover,it demonstrates robustness in detecting different surface defects on blades across different back-grounds.The application of a blade surface defect quantification method enables the precise quantification of dif-ferent defects and facilitates the assessment of risk levels associated with defect measurements across the entire blade.This method enables non-contact,long-distance,high-precision detection and quantification of surface defects on the blades,providing a reference for assessing surface defects on wind turbine blades.展开更多
Feature extraction is essential to the classification of surface defect images. The defects of hot-rolled steels distribute in different directions. Therefore, the methods of multi-scale geometric analysis (MGA) wer...Feature extraction is essential to the classification of surface defect images. The defects of hot-rolled steels distribute in different directions. Therefore, the methods of multi-scale geometric analysis (MGA) were employed to decompose the image into several directional subba^ds at several scales. Then, the statistical features of each subband were calculated to produce a high-dimensional feature vector, which was reduced to a lower-dimensional vector by graph embedding algorithms. Finally, support vector machine (SVM) was used for defect classification. The multi-scale feature extraction method was implemented via curvelet transform and kernel locality preserving projections (KLPP). Experiment results show that the proposed method is effective for classifying the surface defects of hot-rolled steels and the total classification rate is up to 97.33%.展开更多
Surface defects of the cold-rolled sheets of Ti-IF steel were studied and analyzed. After analyzing surface defects of cold-rolled sheets, such as shelling defects, holes and sliver defects by SEM/EDS, a variety of in...Surface defects of the cold-rolled sheets of Ti-IF steel were studied and analyzed. After analyzing surface defects of cold-rolled sheets, such as shelling defects, holes and sliver defects by SEM/EDS, a variety of inclusions were found. In addition, the distribution of macro-inclusions in slabs was analyzed by MIDAS method. The results show the macroscopic inclusion bands of head slabs and normal slabs are in 1/8 slab thickness regions of both inner arc side and outer arc side. The formation process of the defects in the cold-rolled sheets was simulated with an experimental cold-rolling machine for comparison. The results show that there were three kinds of inclusions underneath the surface defects: Al2O3, SiO2 and particles from slag entrainment, which were the main reason for defect formation during cold rolling.展开更多
Inefficient charge separation and limited light absorption are two critical issues associated with high‐efficiency photocatalytic H2production using TiO2.Surface defects within a certain concentration range in photoc...Inefficient charge separation and limited light absorption are two critical issues associated with high‐efficiency photocatalytic H2production using TiO2.Surface defects within a certain concentration range in photocatalyst materials are beneficial for photocatalytic activity.In this study,surface defects(oxygen vacancies and metal cation replacement defects)were induced with a facile and effective approach by surface doping with low‐cost transition metals(Co,Ni,Cu,and Mn)on ultrafine TiO2.The obtained surface‐defective TiO2exhibited a3–4‐fold improved activity compared to that of the original ultrafine TiO2.In addition,a H2production rate of3.4μmol/h was obtained using visible light(λ>420nm)irradiation.The apparent quantum yield(AQY)at365nm reached36.9%over TiO2‐Cu,significantly more than the commercial P25TiO2.The enhancement of photocatalytic H2production activity can be attributed to improved rapid charge separation efficiency andexpanded light absorption window.This hydrothermal treatment with transition metal was proven to be a very facile and effective method for obtaining surface defects.展开更多
Considering that the surface defects of cold rolled strips are hard to be recognized by human eyes under high-speed circumstances, an automatic recognition technique was discussed. Spectrum images of defects can be go...Considering that the surface defects of cold rolled strips are hard to be recognized by human eyes under high-speed circumstances, an automatic recognition technique was discussed. Spectrum images of defects can be got by fast Fourier transform (FFF) and sum of valid pixels (SVP), and its optimized center region, which concentrates nearly all energies, are extracted as an original feature set. Using genetic algorithm to optimize the feature set, an optimized feature set with 51 features can be achieved. Using the optimized feature set as an input vector of neural networks, the recognition effects of LVQ neural networks have been studied. Experiment results show that the new method can get a higher classification rate and can settle the automatic recognition problem of surface defects on cold rolled strips ideally.展开更多
Although a high-quality homoepitaxial layer of 4H‑silicon carbide(4H-SiC)can be obtained on a 4°off-axis substrate using chemical vapor deposition,the reduction of defects is still a focus of research.In this stu...Although a high-quality homoepitaxial layer of 4H‑silicon carbide(4H-SiC)can be obtained on a 4°off-axis substrate using chemical vapor deposition,the reduction of defects is still a focus of research.In this study,several kinds of surface defects in the 4H-SiC homoepitaxial layer are systemically investigated,including triangles,carrots,surface pits,basal plane dislocations,and step bunching.Themorphologies and structures of surface defects are further discussed via optical microscopy and potassium hydroxide-based defect selective etching analysis.Through research and analysis,we found that the origin of surface defects in the 4H-SiC homoepitaxial layer can be attributed to two aspects:the propagation of substrate defects,such as scratches,dislocation,and inclusion,and improper process parameters during epitaxial growth,such as in-situ etch,C/Si ratio,and growth temperature.It is believed that the surface defects in the 4H-SiC homoepitaxial layer can be significantly decreased by precisely controlling the chemistry on the deposition surface during the growth process.展开更多
Hypo-peritectic steels are widely used in various industrial fields because of their high strength,high toughness,high processability,high weldability,and low material cost.However,surface defects are liable to occur ...Hypo-peritectic steels are widely used in various industrial fields because of their high strength,high toughness,high processability,high weldability,and low material cost.However,surface defects are liable to occur during continuous casting,which includes depression,longitudinal cracks,deep oscillation marks,and severe level fluctuation with slag entrapment.The high-efficiency production of hypo-peritectic steels by continuous casting is still a great challenge due to the limited understanding of the mechanism of peritectic solidification.This work reviews the definition and classification of hypo-peritectic steels and introduces the formation tendency of common surface defects related to peritectic solidification.New achievements in the mechanism of peritectic reaction and transformation have been listed.Finally,countermeasures to avoiding surface defects of hypo-peritectic steels duiring continuous casting are summarized.Enlightening certain points in the continuous casting of hypo-peritectic steels and the development of new techniques to overcome the present problems will be a great aid to researchers.展开更多
The effects of crystallite size on the physicochemical properties and surface defects of pure monoclinic ZrO_(2) catalysts for isobutene synthesis were studied.We prepared a series of monoclinic ZrO_(2) catalysts with...The effects of crystallite size on the physicochemical properties and surface defects of pure monoclinic ZrO_(2) catalysts for isobutene synthesis were studied.We prepared a series of monoclinic ZrO_(2) catalysts with different crystallite size by changing calcination temperature and evaluated their catalytic performance for isobutene synthesis from syngas.ZrO_(2) with small crystalline size showed higher CO conversion and isobutene selectivity,while samples with large crystalline size preferred to form dimethyl ether(DME)instead of hydrocarbons,much less to isobutene.Oxygen defects(ODefects)analyzed by X-ray photoelectron spectroscopy(XPS)provided evidence that more ODefectsoccupied on the surface of ZrO_(2) catalysts with smaller crystalline size.Electron paramagnetic resonance(EPR)and ultraviolet–visible diffuse reflectance(UV–vis DRS)confirmed the presence of high concentration of surface defects and Zr3+on mZrO_(2)-5.9 sample,respectively.In situ diffuse reflectance infrared Fourier transform spectroscopy(in situ DRIFTS)analysis indicated that the adsorption strength of formed formate species on catalyst reduced as the crystalline size decreased.These results suggested that surface defects were responsible for CO activation and further influenced the adsorption strength of surface species,and thus the products distribution changed.This study provides an in-depth insight for active sites regulation of ZrO_(2) catalyst in CO hydrogenation reaction.展开更多
A ceramic ball is a basic part widely used in precision bearings.There is no perfect testing equipment for ceramic ball surface defects at present.A fast visual detection algorithm for ceramic ball surface defects bas...A ceramic ball is a basic part widely used in precision bearings.There is no perfect testing equipment for ceramic ball surface defects at present.A fast visual detection algorithm for ceramic ball surface defects based on fringe reflection is designed.By means of image preprocessing,grayscale value accumulative differential positioning,edge detection,pixel-value row difference and template matching,the algorithm can locate feature points and judge whether the spherical surface has defects by the number of points.Taking black silicon nitride ceramic balls with a diameter of 6.35 mm as an example,the defect detection time for a single gray scale image is 0.78 s,and the detection limit is 16.5μm.展开更多
Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were ...Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were synthesized via a thermal polycondensation coupled in situ depositionprecipitation method without use of template or surfactant.The structure and morphology studies indicate that ultrafine CeO2 QDs are well distributed inside and outside of SCN NTs offering highly dispersed active sites and a large contact interface between two components.This leads to the promoted formation of rich Ce^(3+) ion and oxygen vacancies as confirmed by XPS.The photocatalytic performance can be facilely modulated by the content of CeO2 QDs introduced in SCN matrix while bare CeO2 does not show activity of hydrogen production.The optimal catalyst with 10% of CeO2 loading yields a hydrogen evolution rate of 2923.8 μmol h-1 g-1 under visible light,remarkably higher than that of bare SCN and their physical mixtures.Further studies reveal that the abundant surface defects and the created 0 D/1 D junctions play a critical role in improving the separation and transfer of charge carriers,leading to superior solar hydrogen production and good stability.展开更多
基金funded by Woosong University Academic Research 2024.
文摘This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel ViT.Leveraging awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and understanding.These techniques mitigated overfitting,stabilized training,and improved generalization capabilities.The LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,respectively.The findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature extraction.The additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial applications.For instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often misclassify.This study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are key.Future research may focus on enhancing LMViT’s computational efficiency for deployment in real-time quality control systems.
基金supported by the Key Research and Development Program of Shaanxi Province-International Science and Technology Cooperation Program Project (No.2020KW-001)the Contract for Xi'an Municipal Science and Technology Plan Project-Xi'an City Strong Foundation Innovation Plan (No.21XJZZ0074)the Key Project of Graduate Student Innovation Fund at Xi'an University of Posts and Telecommunications (No.CXJJZL2023013)。
文摘The detection of surface defects in concrete bridges using deep learning is of significant importance for reducing operational risks,saving maintenance costs,and driving the intelligent transformation of bridge defect detection.In contrast to the subjective and inefficient manual visual inspection,deep learning-based algorithms for concrete defect detection exhibit remarkable advantages,emerging as a focal point in recent research.This paper comprehensively analyzes the research progress of deep learning algorithms in the field of surface defect detection in concrete bridges in recent years.It introduces the early detection methods for surface defects in concrete bridges and the development of deep learning.Subsequently,it provides an overview of deep learning-based concrete bridge surface defect detection research from three aspects:image classification,object detection,and semantic segmentation.The paper summarizes the strengths and weaknesses of existing methods and the challenges they face.Additionally,it analyzes and prospects the development trends of surface defect detection in concrete bridges.
基金supported by the Scientific and technological key project in Henan Province 22210224002the Natural Science Foundation of Henan Polytechnic University B2021-38.
文摘The service life of internal combustion engines is significantly influenced by surface defects in cylinder liners.To address the limitations of traditional detection methods,we propose an enhanced YOLOv8 model with Swin Transformer as the backbone network.This approach leverages Swin Transformer's multi-head self-attention mechanism for improved feature extraction of defects spanning various scales.Integrated with the YOLOv8 detection head,our model achieves a mean average precision of 85.1%on our dataset,outperforming baseline methods by 1.4%.The model's effectiveness is further demonstrated on a steel-surface defect dataset,indicating its broad applicability in industrial surface defect detection.Our work highlights the potential of combining Swin Transformer and YOLOv8 for accurate and efficient defect detection.
基金supported in part by the National Key R&D Program of China(Grant No.2023YFB3307604)the Shanxi Province Basic Research Program Youth Science Research Project(Grant Nos.202303021212054 and 202303021212046)+3 种基金the Key Projects Supported by Hebei Natural Science Foundation(Grant No.E2024203125)the National Science Foundation of China(Grant No.52105391)the Hebei Provincial Science and Technology Major Project(Grant No.23280101Z)the National Key Laboratory of Metal Forming Technology and Heavy Equipment Open Fund(Grant No.S2308100.W17).
文摘A novel dual-branch decoding fusion convolutional neural network model(DDFNet)specifically designed for real-time salient object detection(SOD)on steel surfaces is proposed.DDFNet is based on a standard encoder–decoder architecture.DDFNet integrates three key innovations:first,we introduce a novel,lightweight multi-scale progressive aggregation residual network that effectively suppresses background interference and refines defect details,enabling efficient salient feature extraction.Then,we propose an innovative dual-branch decoding fusion structure,comprising the refined defect representation branch and the enhanced defect representation branch,which enhance accuracy in defect region identification and feature representation.Additionally,to further improve the detection of small and complex defects,we incorporate a multi-scale attention fusion module.Experimental results on the public ESDIs-SOD dataset show that DDFNet,with only 3.69 million parameters,achieves detection performance comparable to current state-of-the-art models,demonstrating its potential for real-time industrial applications.Furthermore,our DDFNet-L variant consistently outperforms leading methods in detection performance.The code is available at https://github.com/13140W/DDFNet.
基金supported by the National Natural Science Foundation of China(No.62103298)the Natural Science Foundation of Hebei Province(No.F2018209289)。
文摘Aiming at the problems of low detection efficiency and difficult positioning of traditional steel surface defect detection methods,a lightweight steel surface defect detection model based on you only look once version 7(YOLOv7)is proposed.First,a cascading style sheets(CSS)block module is proposed,which uses more lightweight operations to obtain redundant information in the feature map,reduces the amount of computation,and effectively improves the detection speed.Secondly,the improved spatial pyramid pooling with cross stage partial convolutions(SPPCSPC)structure is adopted to ensure that the model can also pay attention to the defect location information while predicting the defect category information,obtain richer defect features.In addition,the convolution operation in the original model is simplified,which significantly reduces the size of the model and helps to improve the detection speed.Finally,using efficient intersection over union(EIOU)loss to focus on high-quality anchors,speed up convergence and improve positioning accuracy.Experiments were carried out on the Northeastern University-defect(NEU-DET)steel surface defect dataset.Compared with the original YOLOv7 model,the number of parameters of this model was reduced by 40%,the frames per second(FPS)reached 112,and the average accuracy reached 79.1%,the detection accuracy and speed have been improved,which can meet the needs of steel surface defect detection.
基金funded by the National Natural Science Foundation of China(grant number 62306186)the Technology Plan Joint Foundation of Liaoning Province(grant number 2023-MSLH-246)the Technology Plan Joint Foundation of Liaoning Province(grant number 2023-BSBA-238).
文摘Detecting surface defects on unused rails is crucial for evaluating rail quality and durability to ensure the safety of rail transportation.However,existing detection methods often struggle with challenges such as complex defect morphology,texture similarity,and fuzzy edges,leading to poor accuracy and missed detections.In order to resolve these problems,we propose MSCM-Net(Multi-Scale Cross-Modal Network),a multiscale cross-modal framework focused on detecting rail surface defects.MSCM-Net introduces an attention mechanism to dynamically weight the fusion of RGB and depth maps,effectively capturing and enhancing features at different scales for each modality.To further enrich feature representation and improve edge detection in blurred areas,we propose a multi-scale void fusion module that integrates multi-scale feature information.To improve cross-modal feature fusion,we develop a cross-enhanced fusion module that transfers fused features between layers to incorporate interlayer information.We also introduce a multimodal feature integration module,which merges modality-specific features from separate decoders into a shared decoder,enhancing detection by leveraging richer complementary information.Finally,we validate MSCM-Net on the NEU RSDDS-AUG RGB-depth dataset,comparing it against 12 leading methods,and the results show that MSCM-Net achieves superior performance on all metrics.
基金supported by the Jiangsu Province Science and Technology Policy Guidance Program(Industry-University-Research Cooperation)/Forward-Looking Joint Research Project(BY2016005-05).
文摘In response to themissed and false detections that are easily caused by the large variety of and significant differences among aluminum surface defects,a detection algorithm based on an improved You Only Look Once(YOLO)v8n network is proposed.First,a C2f_DWR_DRB module is constructed by introducing a dilation-wise residual(DWR)module and a dilated reparameterization block(DRB)to replace the C2f module at the high level of the backbone network,enriching the gradient flow information and increasing the effective receptive field(ERF).Second,an efficient local attention(ELA)mechanism is fused with the high-level screening-feature pyramid networks(HS-FPN)module,and an ELA_HSFPN is designed to replace the original feature fusion module,enhancing the ability of the network to cope with multiscale detection tasks.Moreover,a lightweight shared convolutional detection head(SCDH)is introduced to reduce the number of parameters and the computational complexity of the module while enhancing the performance and generalizability of the model.Finally,the soft intersection over union(SIoU)replaces the original loss function to improve the convergence speed and prediction accuracy of the model.Experimental results show that compared with that of the original YOLOv8n model,the mAP@0.5 of the improved algorithm is increased by 5.1%,the number of parameters and computational complexity are reduced by 33.3%and 32.1%,respectively,and the FPS is increased by 4.9%.Compared with other mainstream object detection algorithms,the improved algorithm still leads in terms of core indicators and has good generalizability for surface defects encountered in other industrial scenarios.
基金supported by the Natural Science Foundation of Liaoning Province(No.2022-MS-353)Basic Scientific Research Project of Education Department of Liaoning Province(Nos.2020LNZD06 and LJKMZ20220640)。
文摘Surface defects can affect the quality of steel plate.Many methods based on computer vision are currently applied to surface defect detection of steel plate.However,their real-time performance and object detection of small defect are still unsatisfactory.An improved object detection network based on You Only Look One-level Feature(YOLOF)is proposed to show excellent performance in surface defect detection of steel plate,called DLF-YOLOF.First,the anchor-free detector is used to reduce the network hyperparameters.Secondly,deformable convolution network and local spatial attention module are introduced into the feature extraction network to increase the contextual information in the feature maps.Also,the soft non-maximum suppression is used to improve detection accuracy significantly.Finally,data augmentation is performed for small defect objects during training to improve detection accuracy.Experiments show the average precision and average precision for small objects are 42.7%and 33.5%at a detection speed of 62 frames per second on a single GPU,respectively.This shows that DLF-YOLOF has excellent performance to meet the needs of industrial real-time detection.
文摘Ensuring high product quality is of paramount importance in pharmaceutical drug manufacturing,as it is subject to rigorous regulatory practices.This study presents a research focused on the development of an on-line detection method and system for identifying surface defects in pharmaceutical products packaged in aluminum-plastic blisters.Firstly,the aluminum-plastic blister packages exhibit multi-scale features and inter-class indistinction.To address this,the deep semantic network with boundary refinement(DSN-BR)model is proposed,which leverages semantic segmentation domain knowledge,to accurately segment the defects in pixel level.Additionally,a specialized image acquisition module that minimizes the impact of ambient light is established,ensuring high-quality image capture.Finally,the image acquisition module,image detection module,and data management module are designed to construct a comprehensive online surface defect detection system.To validate the effectiveness of our approach,we employ a real dataset for instance verification on the implemented system.The experimental results substantiate the outstanding performance of the DSN-BR,achieving the mean intersection over union(MIoU)of 90.5%.Furthermore,the proposed system achieves an inference speed of up to 14.12 f/s,while attaining an F1-Score of 98.25%.These results demonstrate that the system meets the actual needs of the enterprise and provides theoretical and methodological support for intelligent inspection of product surface quality.By standardizing the control process of pharmaceutical manufacturing and improving the management capability of the manufacturing process,our approach holds significant market application prospects.
基金supported by the National Natural Science Foundation of China(51805078)Project of National Key Laboratory of Advanced Casting Technologies(CAT2023-002)the 111 Project(B16009).
文摘Segment Anything Model(SAM)is a cutting-edge model that has shown impressive performance in general object segmentation.The birth of the segment anything is a groundbreaking step towards creating a universal intelligent model.Due to its superior performance in general object segmentation,it quickly gained attention and interest.This makes SAM particularly attractive in industrial surface defect segmentation,especially for complex industrial scenes with limited training data.However,its segmentation ability for specific industrial scenes remains unknown.Therefore,in this work,we select three representative and complex industrial surface defect detection scenarios,namely strip steel surface defects,tile surface defects,and rail surface defects,to evaluate the segmentation performance of SAM.Our results show that although SAM has great potential in general object segmentation,it cannot achieve satisfactory performance in complex industrial scenes.Our test results are available at:https://github.com/VDT-2048/SAM-IS.
基金supported by the National Science Foundation of China(Grant Nos.52068049 and 51908266)the Science Fund for Distinguished Young Scholars of Gansu Province(No.21JR7RA267)Hongliu Outstanding Young Talents Program of Lanzhou University of Technology.
文摘The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on wind turbine blades,a blade surface defect detection and quantification method based on an improved Deeplabv3+deep learning model is proposed.Firstly,an improved method for wind turbine blade surface defect detection,utilizing Mobilenetv2 as the backbone feature extraction network,is proposed based on an original Deeplabv3+deep learning model to address the issue of limited robustness.Secondly,through integrating the concept of pre-trained weights from transfer learning and implementing a freeze training strategy,significant improvements have been made to enhance both the training speed and model training accuracy of this deep learning model.Finally,based on segmented blade surface defect images,a method for quantifying blade defects is proposed.This method combines image stitching algorithms to achieve overall quantification and risk assessment of the entire blade.Test results show that the improved Deeplabv3+deep learning model reduces training time by approximately 43.03%compared to the original model,while achieving mAP and MIoU values of 96.87%and 96.93%,respectively.Moreover,it demonstrates robustness in detecting different surface defects on blades across different back-grounds.The application of a blade surface defect quantification method enables the precise quantification of dif-ferent defects and facilitates the assessment of risk levels associated with defect measurements across the entire blade.This method enables non-contact,long-distance,high-precision detection and quantification of surface defects on the blades,providing a reference for assessing surface defects on wind turbine blades.
基金supports by the Program for New Century Excellent Talents in Chinese Universities (No.NCET-08-0726)Beijing Nova Program (No. 2007B027)the Fundamental Research Funds for the Central Universities (No. FRF-TP-09-027B)
文摘Feature extraction is essential to the classification of surface defect images. The defects of hot-rolled steels distribute in different directions. Therefore, the methods of multi-scale geometric analysis (MGA) were employed to decompose the image into several directional subba^ds at several scales. Then, the statistical features of each subband were calculated to produce a high-dimensional feature vector, which was reduced to a lower-dimensional vector by graph embedding algorithms. Finally, support vector machine (SVM) was used for defect classification. The multi-scale feature extraction method was implemented via curvelet transform and kernel locality preserving projections (KLPP). Experiment results show that the proposed method is effective for classifying the surface defects of hot-rolled steels and the total classification rate is up to 97.33%.
文摘Surface defects of the cold-rolled sheets of Ti-IF steel were studied and analyzed. After analyzing surface defects of cold-rolled sheets, such as shelling defects, holes and sliver defects by SEM/EDS, a variety of inclusions were found. In addition, the distribution of macro-inclusions in slabs was analyzed by MIDAS method. The results show the macroscopic inclusion bands of head slabs and normal slabs are in 1/8 slab thickness regions of both inner arc side and outer arc side. The formation process of the defects in the cold-rolled sheets was simulated with an experimental cold-rolling machine for comparison. The results show that there were three kinds of inclusions underneath the surface defects: Al2O3, SiO2 and particles from slag entrainment, which were the main reason for defect formation during cold rolling.
基金supported by the Double First‐rate Subject‐Food Science and Engineering Program of Hebei Province (2018SPGCA18)Young Tip‐top Talents Plan of Universities and Colleges in Hebei Province of China (BJ2017026)the Specific Foundation for Doctor in Hebei Agriculture University of China (ZD201709)~~
文摘Inefficient charge separation and limited light absorption are two critical issues associated with high‐efficiency photocatalytic H2production using TiO2.Surface defects within a certain concentration range in photocatalyst materials are beneficial for photocatalytic activity.In this study,surface defects(oxygen vacancies and metal cation replacement defects)were induced with a facile and effective approach by surface doping with low‐cost transition metals(Co,Ni,Cu,and Mn)on ultrafine TiO2.The obtained surface‐defective TiO2exhibited a3–4‐fold improved activity compared to that of the original ultrafine TiO2.In addition,a H2production rate of3.4μmol/h was obtained using visible light(λ>420nm)irradiation.The apparent quantum yield(AQY)at365nm reached36.9%over TiO2‐Cu,significantly more than the commercial P25TiO2.The enhancement of photocatalytic H2production activity can be attributed to improved rapid charge separation efficiency andexpanded light absorption window.This hydrothermal treatment with transition metal was proven to be a very facile and effective method for obtaining surface defects.
基金This work was financially supported by the National High Technology Research and Development Program of China (No.2003AA331080 and 2001AA339030)the Talent Science Research Foundation of Henan University of Science & Technology (No.09001121).
文摘Considering that the surface defects of cold rolled strips are hard to be recognized by human eyes under high-speed circumstances, an automatic recognition technique was discussed. Spectrum images of defects can be got by fast Fourier transform (FFF) and sum of valid pixels (SVP), and its optimized center region, which concentrates nearly all energies, are extracted as an original feature set. Using genetic algorithm to optimize the feature set, an optimized feature set with 51 features can be achieved. Using the optimized feature set as an input vector of neural networks, the recognition effects of LVQ neural networks have been studied. Experiment results show that the new method can get a higher classification rate and can settle the automatic recognition problem of surface defects on cold rolled strips ideally.
基金This work was supported by the Provincial Government of Shanxi[Grant No.20201102012].
文摘Although a high-quality homoepitaxial layer of 4H‑silicon carbide(4H-SiC)can be obtained on a 4°off-axis substrate using chemical vapor deposition,the reduction of defects is still a focus of research.In this study,several kinds of surface defects in the 4H-SiC homoepitaxial layer are systemically investigated,including triangles,carrots,surface pits,basal plane dislocations,and step bunching.Themorphologies and structures of surface defects are further discussed via optical microscopy and potassium hydroxide-based defect selective etching analysis.Through research and analysis,we found that the origin of surface defects in the 4H-SiC homoepitaxial layer can be attributed to two aspects:the propagation of substrate defects,such as scratches,dislocation,and inclusion,and improper process parameters during epitaxial growth,such as in-situ etch,C/Si ratio,and growth temperature.It is believed that the surface defects in the 4H-SiC homoepitaxial layer can be significantly decreased by precisely controlling the chemistry on the deposition surface during the growth process.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.FRF-TP-19-017A3)the National Natural Science Foundation of China(No.51874026)。
文摘Hypo-peritectic steels are widely used in various industrial fields because of their high strength,high toughness,high processability,high weldability,and low material cost.However,surface defects are liable to occur during continuous casting,which includes depression,longitudinal cracks,deep oscillation marks,and severe level fluctuation with slag entrapment.The high-efficiency production of hypo-peritectic steels by continuous casting is still a great challenge due to the limited understanding of the mechanism of peritectic solidification.This work reviews the definition and classification of hypo-peritectic steels and introduces the formation tendency of common surface defects related to peritectic solidification.New achievements in the mechanism of peritectic reaction and transformation have been listed.Finally,countermeasures to avoiding surface defects of hypo-peritectic steels duiring continuous casting are summarized.Enlightening certain points in the continuous casting of hypo-peritectic steels and the development of new techniques to overcome the present problems will be a great aid to researchers.
基金financially supported by the Natural Science Foundation of China(21978312,21908235 and 21802155)the Key Research Program of Frontier Sciences,CAS(QYZDB–SSW–JS C043)+1 种基金Foundation of State Key Laboratory of Highefficiency Utilization of Coal and Green Chemical Engineering(2019-KF-05 and 2018-K22)Supported by Shanxi Scholarship Council of China and Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province are also greatly appreciated。
文摘The effects of crystallite size on the physicochemical properties and surface defects of pure monoclinic ZrO_(2) catalysts for isobutene synthesis were studied.We prepared a series of monoclinic ZrO_(2) catalysts with different crystallite size by changing calcination temperature and evaluated their catalytic performance for isobutene synthesis from syngas.ZrO_(2) with small crystalline size showed higher CO conversion and isobutene selectivity,while samples with large crystalline size preferred to form dimethyl ether(DME)instead of hydrocarbons,much less to isobutene.Oxygen defects(ODefects)analyzed by X-ray photoelectron spectroscopy(XPS)provided evidence that more ODefectsoccupied on the surface of ZrO_(2) catalysts with smaller crystalline size.Electron paramagnetic resonance(EPR)and ultraviolet–visible diffuse reflectance(UV–vis DRS)confirmed the presence of high concentration of surface defects and Zr3+on mZrO_(2)-5.9 sample,respectively.In situ diffuse reflectance infrared Fourier transform spectroscopy(in situ DRIFTS)analysis indicated that the adsorption strength of formed formate species on catalyst reduced as the crystalline size decreased.These results suggested that surface defects were responsible for CO activation and further influenced the adsorption strength of surface species,and thus the products distribution changed.This study provides an in-depth insight for active sites regulation of ZrO_(2) catalyst in CO hydrogenation reaction.
基金National Science and Technology Major Project of China(No.2016ZX04003001)。
文摘A ceramic ball is a basic part widely used in precision bearings.There is no perfect testing equipment for ceramic ball surface defects at present.A fast visual detection algorithm for ceramic ball surface defects based on fringe reflection is designed.By means of image preprocessing,grayscale value accumulative differential positioning,edge detection,pixel-value row difference and template matching,the algorithm can locate feature points and judge whether the spherical surface has defects by the number of points.Taking black silicon nitride ceramic balls with a diameter of 6.35 mm as an example,the defect detection time for a single gray scale image is 0.78 s,and the detection limit is 16.5μm.
基金financially supported by the National Natural Science Foundation of China (21872065, 21763013, and 21503100)the Natural Science Foundation of Jiangxi Province (20192ACBL21027 and 20192BAB203007)the Project of Education Department of Jiangxi Province (GJJ170227)。
文摘Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were synthesized via a thermal polycondensation coupled in situ depositionprecipitation method without use of template or surfactant.The structure and morphology studies indicate that ultrafine CeO2 QDs are well distributed inside and outside of SCN NTs offering highly dispersed active sites and a large contact interface between two components.This leads to the promoted formation of rich Ce^(3+) ion and oxygen vacancies as confirmed by XPS.The photocatalytic performance can be facilely modulated by the content of CeO2 QDs introduced in SCN matrix while bare CeO2 does not show activity of hydrogen production.The optimal catalyst with 10% of CeO2 loading yields a hydrogen evolution rate of 2923.8 μmol h-1 g-1 under visible light,remarkably higher than that of bare SCN and their physical mixtures.Further studies reveal that the abundant surface defects and the created 0 D/1 D junctions play a critical role in improving the separation and transfer of charge carriers,leading to superior solar hydrogen production and good stability.