期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Detecting Climate Change in Using Extreme Data from Two Surface Weather Stations: Case Study Valle of Comitan and La Esperanza, Chiapas, Mexico
1
作者 Martín Mundo-Molina Eber A. Godinez-Gutiérrez +1 位作者 José Luis Pérez-Díaz Daniel Hernández-Cruz 《Journal of Water Resource and Protection》 2021年第12期1061-1075,共15页
The study area is located between the cities of Comitan (16&deg;10'43"N and 92&deg;04'20''W) a city with 150,000 inhabitants and La Esperanza (16&deg;9'15''N and 91&deg... The study area is located between the cities of Comitan (16&deg;10'43"N and 92&deg;04'20''W) a city with 150,000 inhabitants and La Esperanza (16&deg;9'15''N and 91&deg;52'5''W) a town with 3000 inhabitants. Both weather stations are 30 km from each other in the Chiapas State, México. 54 years of daily records of the series of maximum (<em>t</em><sub>max</sub>) and minimum temperatures (<em>t</em><sub>min</sub>) of the weather station 07205 Comitan that is on top of a house and 30 years of daily records of the weather station 07374 La Esperanza were analyzed. The objective is to analyze the evidence of climate change in the Comitan valley. 2.07% and 19.04% of missing data were filled, respectively, with the WS method. In order to verify homogeneity three methods were used: Standard Normal Homogeneity Test (SNHT), the Von Neumann method and the Buishand method. The heterogeneous series were homogenized using climatol. The trends of <em>t</em><sub>max</sub> and <em>t</em><sub>min</sub> for both weather stations were analyzed by simple linear regression, Sperman’s rho and Mann-Kendall tests. The Mann-Kendal test method confirmed the warming trend at the Comitan station for both variables with <em>Z<sub>MK</sub></em> statistic values equal to 1.57 (statistically not significant) and 4.64 (statistically significant). However, for the Esperanza station, it determined a cooling trend for tmin and a slight non-significant warming for <em>t</em><sub>max</sub> with a <em>Z</em><sub><em>MK</em></sub> statistic of -2.27 (statistically significant) and 1.16 (statistically not significant), for a significance level <em>α</em> = 0.05. 展开更多
关键词 Detecting climate Change in Using Extreme Data from Two surface Weather Stations: Case Study Valle of Comitan and La Esperanza CHIAPAS Mexico
在线阅读 下载PDF
A SIMPLE LAND SURFACE PROCESS MODEL FOR USE IN CLIMATE STUDY 被引量:15
2
作者 季劲钧 胡玉春 《Acta meteorologica Sinica》 SCIE 1989年第3期342-351,共10页
A quantitative description of the processes taking place among the atmosphere, vegetation and soil is needed for studying air-land interaction and interrelation between the geosphere and the biosphere. In this paper, ... A quantitative description of the processes taking place among the atmosphere, vegetation and soil is needed for studying air-land interaction and interrelation between the geosphere and the biosphere. In this paper, a simple land surface process model is proposed. Through transfers and exchanges of heat and water, the therrnal and moisture states of the atmosphere, vegetation and soil are linked in a coupled system, in which vegetation is considered as a horizontally uniform layer, soil is divided into three layers and the horizontal differences of variables in the system are neglected. The preliminary results of the experiment indicate that the model is capable of predicting the thermal and moisture conditions of the land surface and suitable to climate study. 展开更多
关键词 A SIMPLE LAND surface PROCESS MODEL FOR USE IN climate STUDY
在线阅读 下载PDF
Detecting the storage and change on topsoil organic carbon in grasslands of Inner Mongolia from 1980s to 2010s 被引量:6
3
作者 DAI Erfu ZHAI Ruixue +1 位作者 GE Quansheng WU Xiuqin 《Journal of Geographical Sciences》 SCIE CSCD 2014年第6期1035-1046,共12页
Soil carbon sequestration and potential has been a focal issue in global carbon research. Under the background of global change, the estimation of the size as well as its change of soil organic carbon(SOC) storage i... Soil carbon sequestration and potential has been a focal issue in global carbon research. Under the background of global change, the estimation of the size as well as its change of soil organic carbon(SOC) storage is of great importance. Based on soil data from the second national soil survey and field survey during 2011–2012, by using the regression method between sampling soil data and remote sensing data, this paper aimed to investigate spatial distribution and changes of topsoil(0–20 cm) organic carbon storage in grasslands of Inner Mongolia between the 1980 s and 2010 s. The results showed that:(1) the SOC storage in grasslands of Inner Mongolia between the 1980 s and 2010 s was estimated to be 2.05 and 2.17 Pg C, with an average density of 3.48 and 3.69 kg C·m–2, respectively. The SOC storage was mainly distributed in the typical steppe and meadow steppe, which accounted for over 98% of the total SOC storage. The spatial distribution showed a decreased trend from the meadow steppe, typical steppe to the desert steppe, corresponding to the temperature and precipitation gradient.(2) SOC changes during 1982–2012 were estimated to be 0.12 Pg C, at 7.00 g C·m–2·yr–1, which didn't show a significant change, indicating that SOC storage in grasslands of Inner Mongolia remained relatively stable over this period. However, topsoil organic carbon showed different trends of carbon source/sink during the past three decades. Meadow steppe and typical steppe had sequestered 0.15 and 0.03 Pg C, respectively, served as a carbon sink; while desert steppe lost 0.06 Pg C, served as a carbon source. It appears that SOC storage in grassland ecosystem may respond differently to climate change, related to vegetation type, regional climate type and grazing intensity. These results might give advice to decision makers on adopting suitable countermeasures for sustainable grassland utilization and protection. 展开更多
关键词 surface soil organic carbon storage climate change spatial differences grassland in Inner Mongolia
原文传递
Interpreting the sea surface temperature warming trend in the Yellow Sea and East China Sea 被引量:12
4
作者 PEI YuHua LIU XiaoHui HE HaiLun 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第8期1558-1568,共11页
Previous studies have demonstrated that the low-frequency sea surface temperature(SST) variability in the Yellow Sea and East China Sea(YECS) is linked to large-scale climate variability, but explanations on the mecha... Previous studies have demonstrated that the low-frequency sea surface temperature(SST) variability in the Yellow Sea and East China Sea(YECS) is linked to large-scale climate variability, but explanations on the mechanisms vary. This study examines the low-frequency variability and trends of some atmospheric and oceanic variables to discuss their different effects on the YECS warming. The increasing temperature trend is also observed at a hydrographic section transecting the Kuroshio.The increasing rate of ocean temperature decreases with depth, which might result in an increase in vertical stratification and a decrease in vertical mixing, and thus plays a positive role on the YECS warming. The surface net heat flux(downward positive)displays a decreasing trend, which is possibly a result of the YECS warming, and, in turn, inhibits it. Wind speeds show different trends in different datasets, such that its role in the YECS warming is uncertain. The trends in wind stress divergence and curl have large uncertainties, so their effects on SST warming are still unclear. The Kuroshio heat transport calculated in this study,displays no significantly increasing trend, so is an unlikely explanation for the SST warming. Limited by sparse ocean observations,sophisticated assimilative climate models are still needed to unravel the mechanisms behind the YECS warming. 展开更多
关键词 Sea surface temperature East China Sea Yellow Sea Regional climate change surface heat flux
原文传递
Variations in soil moisture over the ‘Huang-Huai-Hai Plain' in China due to temperature change using the CNOP-P method and outputs from CMIP5 被引量:1
5
作者 SUN GuoDong PENG Fei MU Mu 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第10期1838-1853,共16页
In this study, the variations in surface soil liquid water(SSLW) due to future climate change are explored in the‘Huang-Huai-Hai Plain'(‘3H') region in China with the Common Land Model(CoLM). To evaluate the... In this study, the variations in surface soil liquid water(SSLW) due to future climate change are explored in the‘Huang-Huai-Hai Plain'(‘3H') region in China with the Common Land Model(CoLM). To evaluate the possible maximum response of SSLW to climate change, the combination of the conditional nonlinear optimal perturbation related to the parameter(CNOP-P) approach and projections from 10 general circulation models(GCMs) of the Coupled Model Intercomparison Project5(CMIP5) are used. The CNOP-P-type temperature change scenario, a new type of temperature change scenario, is determined by using the CNOP-P method and constrained by the temperature change projections from the 10 GCMs under a high-emission scenario(the Representative Concentration Pathway 8.5 scenario). Numerical results have shown that the response of SSLW to the CNOP-P-type temperature scenario is stronger than those to the 11 temperature scenarios derived from the 10 GCMs and from their ensemble average in the entire ‘3H' region. In the northern region, SSLW under the CNOP-P-type scenario increases to0.1773 m^3 m^(-3); however, SSLW in the scenarios from the GCMs fluctuates from 0.1671 to 0.1748 m^3 m^(-3). In the southern region,SSLW decreases, and its variation(–0.0070 m^3 m^(-3)) due to the CNOP-P-type scenario is higher than each of the variations(–0.0051 to –0.0026 m^3 m^(-3)) due to the scenarios from the GCMs. 展开更多
关键词 CNOP-P surface soil liquid water CMIP5 climate change Seasonal and regional heterogeneity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部