This paper proposes a fingerprint matching method integrating transfer learning and online learning to tackle the challenges of environmental adaptability and dynamic interference resistance in photovoltaic(PV)array D...This paper proposes a fingerprint matching method integrating transfer learning and online learning to tackle the challenges of environmental adaptability and dynamic interference resistance in photovoltaic(PV)array DC arc fault location methods based on electromagnetic radiation(EMR)signals.Initially,a comprehensive analysis of the time–frequency characteristics of series arc EMR signals is carried out to pinpoint effective data sources that reflect fault features.Subsequently,a multi-kernel domain-adversarial neural network(MKDANN)is introduced to extract domain-invariant features,and a feature extractor designed specifically for fingerprint matching is devised.To reduce inter-domain distribution differences,a multi-kernel maximum mean discrepancy(MK-MMD)is integrated into the adaptation layer.Moreover,to deal with dynamic environmental changes in real-world situations,the support-class passive aggressive(SPA)algorithm is utilized to adjust model parameters in real time.Finally,MKDANN and SPA technologies are smoothly combined to build a fully operational fault location model.Experimental results indicate that the proposed method attains an overall fault location accuracy of at least 95%,showing strong adaptability to environmental changes and robust interference resistance while maintaining excellent online learning capabilities during model migration.展开更多
为了准确识别气体绝缘开关柜(gas insulated switchgear,GIS)设备的异常工况,提出了一种基于加权梅尔频率谱系数单类支持向量机(Mel frequency cestrum coefficient-one class support vector machine,MFCC-OCSVM)和贝叶斯优化的门控循...为了准确识别气体绝缘开关柜(gas insulated switchgear,GIS)设备的异常工况,提出了一种基于加权梅尔频率谱系数单类支持向量机(Mel frequency cestrum coefficient-one class support vector machine,MFCC-OCSVM)和贝叶斯优化的门控循环单元(bidirectional gate recurrent unit,BiGRU)声纹识别算法。首先,利用基于F统计量的MFCC对声纹数据进行加权特征提取,突出重要特征并减弱噪声的影响,然后利用OCSVM对加权后的特征进行异常检测并去除异常值,提高数据质量。为解决样本不平衡问题,采用合成少数类过采样技术(synthetic minority over-sampling technique,SMOTE)进行声纹样本的均衡。最后,应用基于贝叶斯优化的BiGRU模型进行声纹识别。以某气体绝缘全封闭组合电器(gas insulated switchgear,GIS)为例,采集了20类不同工况下操纵机构的声音样本,与多种经典分类模型进行对比。结果显示,所提算法取得的最高平均识别准确率达到了92.8%,相比于自适应增强、朴素贝叶斯和线性判别分析算法分别提升了30.1%、14.7%和11.5%。通过消融实验进一步评估和验证了所提算法各个流程对声纹识别的实际效果和性能影响,研究成果可为GIS设备异常工况的声纹识别提供高效技术路线。展开更多
针对正常基因和异常基因在样本中的占比差异较大、变异断点位置难以准确确定的问题,提出了一种基于OCSVM(one-class support vector machine)的多策略融合拷贝数变异检测算法。算法融合读对深度、分裂读段和双端映射三种策略,建立多信...针对正常基因和异常基因在样本中的占比差异较大、变异断点位置难以准确确定的问题,提出了一种基于OCSVM(one-class support vector machine)的多策略融合拷贝数变异检测算法。算法融合读对深度、分裂读段和双端映射三种策略,建立多信号通道,并使用OCSVM模型解决正常基因和异常基因占比差异较大的影响以提高算法的拷贝数变异检测性能;对串联重复区域、穿插重复区域和缺失区域进行了分析探索,利用分裂读段信号实现变异点位置的精确定位,并确定变异类型。在240个模拟数据集和4个真实数据集上进行测试,并与其它几种算法进行比较。实验结果表明,该算法可以显著提高拷贝数变异检测的灵敏度、精度、F1评分以及重叠密度评分,同时减小了检测结果的边界偏差。展开更多
为监测分布式驱动电动汽车中轮毂电机运行状态,确保整车运行安全,提出一种基于改进的多类支持向量数据描述(multi-class support vector data description,简称MCSVDD)的轮毂电机故障诊断方法。首先,针对MCSVDD算法的改进,基于近邻传播(...为监测分布式驱动电动汽车中轮毂电机运行状态,确保整车运行安全,提出一种基于改进的多类支持向量数据描述(multi-class support vector data description,简称MCSVDD)的轮毂电机故障诊断方法。首先,针对MCSVDD算法的改进,基于近邻传播(affinity propagation,简称AP)聚类算法提出了MCSVDD以“距离类内簇中心最小”的类别判断法则,并基于Weibull函数构造了Weibull核函数,用于优化数据描述模型;其次,针对轮毂电机运行状态的多维特征参数组,提出一种基于最小距离传播鉴别投影(minimum-distance propagation discriminant projection,简称MPDP)的降维法,提高了不同工况下轮毂电机故障状态的可分性;最后,定制带有典型轴承故障的轮毂电机,采集7种工况下的振动信号,验证所提出方法的有效性。结果表明:基于MPDP降维后的轮毂电机运行状态观测样本的可分性优于线性判别分析(linear discriminant analysis,简称LDA)、局部保持投影(locality preserving projection,简称LPP)及最小距离鉴别投影(minimum-distance discriminant projection,简称MDP)方法,基于Weibull核函数的MCSVDD状态识别系统的识别精度整体高于基于多项式和高斯核函数的MCSVDD系统。展开更多
基金financially supported in part by the Natural Science Foundation of Fujian,China,under Grant 2021J01633.
文摘This paper proposes a fingerprint matching method integrating transfer learning and online learning to tackle the challenges of environmental adaptability and dynamic interference resistance in photovoltaic(PV)array DC arc fault location methods based on electromagnetic radiation(EMR)signals.Initially,a comprehensive analysis of the time–frequency characteristics of series arc EMR signals is carried out to pinpoint effective data sources that reflect fault features.Subsequently,a multi-kernel domain-adversarial neural network(MKDANN)is introduced to extract domain-invariant features,and a feature extractor designed specifically for fingerprint matching is devised.To reduce inter-domain distribution differences,a multi-kernel maximum mean discrepancy(MK-MMD)is integrated into the adaptation layer.Moreover,to deal with dynamic environmental changes in real-world situations,the support-class passive aggressive(SPA)algorithm is utilized to adjust model parameters in real time.Finally,MKDANN and SPA technologies are smoothly combined to build a fully operational fault location model.Experimental results indicate that the proposed method attains an overall fault location accuracy of at least 95%,showing strong adaptability to environmental changes and robust interference resistance while maintaining excellent online learning capabilities during model migration.
文摘针对正常基因和异常基因在样本中的占比差异较大、变异断点位置难以准确确定的问题,提出了一种基于OCSVM(one-class support vector machine)的多策略融合拷贝数变异检测算法。算法融合读对深度、分裂读段和双端映射三种策略,建立多信号通道,并使用OCSVM模型解决正常基因和异常基因占比差异较大的影响以提高算法的拷贝数变异检测性能;对串联重复区域、穿插重复区域和缺失区域进行了分析探索,利用分裂读段信号实现变异点位置的精确定位,并确定变异类型。在240个模拟数据集和4个真实数据集上进行测试,并与其它几种算法进行比较。实验结果表明,该算法可以显著提高拷贝数变异检测的灵敏度、精度、F1评分以及重叠密度评分,同时减小了检测结果的边界偏差。