期刊文献+
共找到1,117篇文章
< 1 2 56 >
每页显示 20 50 100
Nonlinear Model Predictive Control Based on Support Vector Machine with Multi-kernel 被引量:22
1
作者 包哲静 皮道映 孙优贤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第5期691-697,共7页
Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a... Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be transformed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimization in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm. 展开更多
关键词 nonlinear model predictive control support vector machine with multi-kernel nonlinear system identification kernel function
在线阅读 下载PDF
WAVELET KERNEL SUPPORT VECTOR MACHINES FOR SPARSE APPROXIMATION 被引量:1
2
作者 Tong Yubing Yang Dongkai Zhang Qishan 《Journal of Electronics(China)》 2006年第4期539-542,共4页
Wavelet, a powerful tool for signal processing, can be used to approximate the target func-tion. For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by using wavelet kernel Support... Wavelet, a powerful tool for signal processing, can be used to approximate the target func-tion. For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by using wavelet kernel Support Vector Machines (SVM), which can converge to minimum error with bet-ter sparsity. Here, wavelet functions would be firstly used to construct the admitted kernel for SVM according to Mercy theory; then new SVM with this kernel can be used to approximate the target fun-citon with better sparsity than wavelet approxiamtion itself. The results obtained by our simulation ex-periment show the feasibility and validity of wavelet kernel support vector machines. 展开更多
关键词 Wavelet kernel function support vector machines (SVM) Sparse approximation Quadratic Programming (QP)
在线阅读 下载PDF
Traffic Sign Recognition Based on CNN and Twin Support Vector Machine Hybrid Model
3
作者 Yang Sun Longwei Chen 《Journal of Applied Mathematics and Physics》 2021年第12期3122-3142,共21页
With the progress of deep learning research, convolutional neural networks have become the most important method in feature extraction. How to effectively classify and recognize the extracted features will directly af... With the progress of deep learning research, convolutional neural networks have become the most important method in feature extraction. How to effectively classify and recognize the extracted features will directly affect the performance of the entire network. Traditional processing methods include classification models such as fully connected network models and support vector machines. In order to solve the problem that the traditional convolutional neural network is prone to over-fitting for the classification of small samples, a CNN-TWSVM hybrid model was proposed by fusing the twin support vector machine (TWSVM) with higher computational efficiency as the CNN classifier, and it was applied to the traffic sign recognition task. In order to improve the generalization ability of the model, the wavelet kernel function is introduced to deal with the nonlinear classification task. The method uses the network initialized from the ImageNet dataset to fine-tune the specific domain and intercept the inner layer of the network to extract the high abstract features of the traffic sign image. Finally, the TWSVM based on wavelet kernel function is used to identify the traffic signs, so as to effectively solve the over-fitting problem of traffic signs classification. On GTSRB and BELGIUMTS datasets, the validity and generalization ability of the improved model is verified by comparing with different kernel functions and different SVM classifiers. 展开更多
关键词 CNN Twin support vector machine Wavelet kernel function Traffic Sign Recognition Transfer Learning
在线阅读 下载PDF
Support vector machine based nonlinear model multi-step-ahead optimizing predictive control 被引量:9
4
作者 钟伟民 皮道映 孙优贤 《Journal of Central South University of Technology》 EI 2005年第5期591-595,共5页
A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established... A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection. 展开更多
关键词 nonlinear model predictive control support vector machine nonlinear system identification kernel function nonlinear optimization
在线阅读 下载PDF
New predictive control algorithms based on Least Squares Support Vector Machines 被引量:3
5
作者 刘斌 苏宏业 褚健 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第5期440-446,共7页
Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlin... Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlinear system, the system model is built by using LS-SVM with linear kernel function, and then the obtained linear LS-SVM model is transformed into linear input-output relation of the controlled system. However, for the strongly nonlinear system, the off-line model of the controlled system is built by using LS-SVM with Radial Basis Function (RBF) kernel. The obtained nonlinear LS-SVM model is linearized at each sampling instant of system running, after which the on-line linear input-output model of the system is built. Based on the obtained linear input-output model, the Generalized Predictive Control (GPC) algorithm is employed to implement predictive control for the controlled plant in both algorithms. The simulation results after the presented algorithms were implemented in two different industrial processes model; respectively revealed the effectiveness and merit of both algorithms. 展开更多
关键词 Least Squares support vector machines Linear kernel function RBF kernel function Generalized predictive control
在线阅读 下载PDF
A Support Vector Machine-based Evaluation Model of Customer Satisfaction Degree in Logistics
6
作者 孙华丽 谢剑英 《Journal of Donghua University(English Edition)》 EI CAS 2007年第4期519-522,528,共5页
This paper presents a novel evaluation model of the customer satisfaction degree (CSD) in logistics based on support vector machine (SVM). Firstly, the relation between the suppliers and the customers is analyzed.... This paper presents a novel evaluation model of the customer satisfaction degree (CSD) in logistics based on support vector machine (SVM). Firstly, the relation between the suppliers and the customers is analyzed. Seondly, the evaluation index system and fuzzy quantitative methods are provided. Thirdly, the CSD evaluation system including eight indexes and three ranks based on one-against-one mode of SVM is built, last simulation experint is presented to illustrate the theoretical results. 展开更多
关键词 LOGISTICS Evaluation model Fuzzy membership function Pairuise comparison support vector machine Customer satisfaction degree
在线阅读 下载PDF
Temperature prediction control based on least squares support vector machines 被引量:5
7
作者 BinLIU HongyeSU +1 位作者 WeihuaHUANG JianCHU 《控制理论与应用(英文版)》 EI 2004年第4期365-370,共6页
A prediction control algorithm is presented based on least squares support vector machines (LS-SVM) model for a class of complex systems with strong nonlinearity. The nonlinear off-line model of the controlled plant i... A prediction control algorithm is presented based on least squares support vector machines (LS-SVM) model for a class of complex systems with strong nonlinearity. The nonlinear off-line model of the controlled plant is built by LS-SVM with radial basis function (RBF) kernel. In the process of system running, the off-line model is linearized at each sampling instant, and the generalized prediction control (GPC) algorithm is employed to implement the prediction control for the controlled plant. The obtained algorithm is applied to a boiler temperature control system with complicated nonlinearity and large time delay. The results of the experiment verify the effectiveness and merit of the algorithm. 展开更多
关键词 Predictive control Least squares support vector machines RBF kernel function Generalized prediction control
在线阅读 下载PDF
Using mixed kernel support vector machine to improve the predictive accuracy of genome selection
8
作者 Jinbu Wang Wencheng Zong +6 位作者 Liangyu Shi Mianyan Li Jia Li Deming Ren Fuping Zhao Lixian Wang Ligang Wang 《Journal of Integrative Agriculture》 2026年第2期775-787,共13页
The advantages of genome selection(GS) in animal and plant breeding are self-evident.Traditional parametric models have disadvantage in better fit the increasingly large sequencing data and capture complex effects acc... The advantages of genome selection(GS) in animal and plant breeding are self-evident.Traditional parametric models have disadvantage in better fit the increasingly large sequencing data and capture complex effects accurately.Machine learning models have demonstrated remarkable potential in addressing these challenges.In this study,we introduced the concept of mixed kernel functions to explore the performance of support vector machine regression(SVR) in GS.Six single kernel functions(SVR_L,SVR_C,SVR_G,SVR_P,SVR_S,SVR_L) and four mixed kernel functions(SVR_GS,SVR_GP,SVR_LS,SVR_LP) were used to predict genome breeding values.The prediction accuracy,mean squared error(MSE) and mean absolute error(MAE) were used as evaluation indicators to compare with two traditional parametric models(GBLUP,BayesB) and two popular machine learning models(RF,KcRR).The results indicate that in most cases,the performance of the mixed kernel function model significantly outperforms that of GBLUP,BayesB and single kernel function.For instance,for T1 in the pig dataset,the predictive accuracy of SVR_GS is improved by 10% compared to GBLUP,and by approximately 4.4 and 18.6% compared to SVR_G and SVR_S respectively.For E1 in the wheat dataset,SVR_GS achieves 13.3% higher prediction accuracy than GBLUP.Among single kernel functions,the Laplacian and Gaussian kernel functions yield similar results,with the Gaussian kernel function performing better.The mixed kernel function notably reduces the MSE and MAE when compared to all single kernel functions.Furthermore,regarding runtime,SVR_GS and SVR_GP mixed kernel functions run approximately three times faster than GBLUP in the pig dataset,with only a slight increase in runtime compared to the single kernel function model.In summary,the mixed kernel function model of SVR demonstrates speed and accuracy competitiveness,and the model such as SVR_GS has important application potential for GS. 展开更多
关键词 genome selection machine learning support vector machine kernel function mixed kernel function
在线阅读 下载PDF
Forecast Urban Air Pollution in Mexico City by Using Support Vector Machines: A Kernel Performance Approach 被引量:1
9
作者 Artemio Sotomayor-Olmedo Marco A. Aceves-Fernández +3 位作者 Efrén Gorrostieta-Hurtado Carlos Pedraza-Ortega Juan M. Ramos-Arreguín J. Emilio Vargas-Soto 《International Journal of Intelligence Science》 2013年第3期126-135,共10页
The development of forecasting models for pollution particles shows a nonlinear dynamic behavior;hence, implementation is a non-trivial process. In the literature, there have been multiple models of particulate pollut... The development of forecasting models for pollution particles shows a nonlinear dynamic behavior;hence, implementation is a non-trivial process. In the literature, there have been multiple models of particulate pollutants, which use softcomputing techniques and machine learning such as: multilayer perceptrons, neural networks, support vector machines, kernel algorithms, and so on. This paper presents a prediction pollution model using support vector machines and kernel functions, which are: Gaussian, Polynomial and Spline. Finally, the prediction results of ozone (O3), particulate matter (PM10) and nitrogen dioxide (NO2) at Mexico City are presented as a case study using these techniques. 展开更多
关键词 PREDICTIVE models AIRBORNE POLLUTION support vector machines kernel functions
在线阅读 下载PDF
The Application of Support Vector Machines to Gas Turbine Performance Diagnosis 被引量:9
10
作者 郝英 孙健国 +1 位作者 杨国庆 白杰 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第1期15-19,共5页
SVMs(support vector machines) is a new artificial intelligence methodology derived from Vapnik's statistical learning theory, which has better generalization than artificial neural network. A Csupport vector classi... SVMs(support vector machines) is a new artificial intelligence methodology derived from Vapnik's statistical learning theory, which has better generalization than artificial neural network. A Csupport vector classifiers Based Fault Diagnostic Model (CBFDM) which gives the 3 most possible fault causes is constructed in this paper. Five fold cross validation is chosen as the method of model selection for CBFDM. The simulated data are generated from PW4000-94 engine influence coefficient matrix at cruise, and the results show that the diagnostic accuracy of CBFDM is over 93 % even when the standard deviation of noise is 3 times larger than the normal. This model can also be used for other diagnostic problems. 展开更多
关键词 aerospace propulsion system performance diagnosis support vector machines model selection
在线阅读 下载PDF
SVM with Quadratic Polynomial Kernel Function Based Nonlinear Model One-step-ahead Predictive Control 被引量:12
11
作者 钟伟民 何国龙 +1 位作者 皮道映 孙优贤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第3期373-379,共7页
A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identifica... A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identification method. By solving a cubic equation in the feature space, an explicit predictive control law is obtained through the predictive control mechanism. The effect of controller is demonstrated on a recognized benchmark problem and on the control of continuous-stirred tank reactor (CSTR). Simulation results show that SVM with quadratic polynomial kernel function based predictive controller can be well applied to nonlinear systems, with good performance in following reference trajectory as well as in disturbance-rejection. 展开更多
关键词 nonlinear model predictive control support vector machine nonlinear system identification kernel function
在线阅读 下载PDF
Mandarin Digits Speech Recognition Using Support Vector Machines 被引量:2
12
作者 谢湘 匡镜明 《Journal of Beijing Institute of Technology》 EI CAS 2005年第1期9-12,共4页
A method of applying support vector machine (SVM) in speech recognition was proposed, and a speech recognition system for mandarin digits was built up by SVMs. In the system, vectors were linearly extracted from speec... A method of applying support vector machine (SVM) in speech recognition was proposed, and a speech recognition system for mandarin digits was built up by SVMs. In the system, vectors were linearly extracted from speech feature sequence to make up time-aligned input patterns for SVM, and the decisions of several 2-class SVM classifiers were employed for constructing an N-class classifier. Four kinds of SVM kernel functions were compared in the experiments of speaker-independent speech recognition of mandarin digits. And the kernel of radial basis function has the highest accurate rate of 99.33%, which is better than that of the baseline system based on hidden Markov models (HMM) (97.08%). And the experiments also show that SVM can outperform HMM especially when the samples for learning were very limited. 展开更多
关键词 speech recognition support vector machine (SVM) kernel function
在线阅读 下载PDF
Support Vector Machine:A Novel Tool for Mineral Prospectivity Mapping 被引量:1
13
作者 Renguang Zuo~1,Gang Chen~2 1.State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Wuhan 430074,China. 2.Faculty of Information Engineering,China University of Geosciences(Wuhan),Wuhan 430074,China 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期289-289,共1页
Support Vector Machine(SVM) was demonstrated as a potentially useful tool to integrate multi-variables and to produce a predictive map for mineral deposits. The e 1071,a free R package,was used to construct a SVM with... Support Vector Machine(SVM) was demonstrated as a potentially useful tool to integrate multi-variables and to produce a predictive map for mineral deposits. The e 1071,a free R package,was used to construct a SVM with radial kernel function to integrate four evidence layers and to map prospectivity for Gangdese porphyry copper deposits.The results demonstrate that the predicted prospective target area for Cu occupies 20.5%of the total study area and contains 52.4%of the total number of known porphyry copper deposits.The results obtained 展开更多
关键词 support vector machine kernel function prospectivity NEURAL Network TIBET
在线阅读 下载PDF
Signal Classification Method Based on Support Vector Machine and High-Order Cumulants 被引量:1
14
作者 Xin ZHOU Ying WU Bin YANG 《Wireless Sensor Network》 2010年第1期48-52,共5页
In this paper, a classification method based on Support Vector Machine (SVM) is given in the digital modulation signal classification. The second, fourth and sixth order cumulants of the received signals are used as c... In this paper, a classification method based on Support Vector Machine (SVM) is given in the digital modulation signal classification. The second, fourth and sixth order cumulants of the received signals are used as classification vectors firstly, then the kernel thought is used to map the feature vector to the high dimensional feature space and the optimum separating hyperplane is constructed in space to realize signal recognition. In order to build an effective and robust SVM classifier, the radial basis kernel function is selected, one against one or one against rest of multi-class classifier is designed, and method of parameter selection using cross- validation grid is adopted. Through the experiments it can be concluded that the classifier based on SVM has high performance and is more robust. 展开更多
关键词 HIGH-ORDER CUMULANTS support vector machine kernel function SIGNAL Classification
在线阅读 下载PDF
Blind source separation algorithm based on support vector machines 被引量:1
15
作者 HE Xuan-sen HU Bo-ping 《通讯和计算机(中英文版)》 2008年第11期7-12,共6页
关键词 通信技术 盲源分离算法 计算方法 径向基函数 概率密度函数
在线阅读 下载PDF
Protein-Protein Interaction Extraction Based on Convex Combination Kernel Function 被引量:1
16
作者 Peng Chen Jianyi Guo +3 位作者 Zhengtao Yu Sichao Wei Feng Zhou Xin Yan 《Journal of Computer and Communications》 2013年第5期9-13,共5页
Owing to the effect of classified models was different in Protein-Protein Interaction(PPI) extraction, which was made by different single kernel functions, and only using single kernel function hardly trained the opti... Owing to the effect of classified models was different in Protein-Protein Interaction(PPI) extraction, which was made by different single kernel functions, and only using single kernel function hardly trained the optimal classified model to extract PPI, this paper presents a strategy to find the optimal kernel function from a kernel function set. The strategy is that in the kernel function set which consists of different single kernel functions, endlessly finding the last two kernel functions on the performance in PPI extraction, using their optimal kernel function to replace them, until there is only one kernel function and it’s the final optimal kernel function. Finally, extracting PPI using the classified model made by this kernel function. This paper conducted the PPI extraction experiment on AIMed corpus, the experimental result shows that the optimal convex combination kernel function this paper presents can effectively improve the extraction performance than single kernel function, and it gets the best precision which reaches 65.0 among the similar PPI extraction systems. 展开更多
关键词 PROTEIN-PROTEIN Interaction support vector machine CONVEX COMBINATION kernel function
在线阅读 下载PDF
Splitting Method for Support Vector Machine in Reproducing Kernel Banach Space with a Lower Semi-continuous Loss Function
17
作者 Mingyu MO Yimin WEI Qi YE 《Chinese Annals of Mathematics,Series B》 CSCD 2024年第6期823-854,共32页
In this paper,the authors employ the splitting method to address support vector machine within a reproducing kernel Banach space framework,where a lower semi-continuous loss function is utilized.They translate support... In this paper,the authors employ the splitting method to address support vector machine within a reproducing kernel Banach space framework,where a lower semi-continuous loss function is utilized.They translate support vector machine in reproducing kernel Banach space with such a loss function to a finite-dimensional tensor optimization problem and propose a splitting method based on the alternating direction method of mul-tipliers.Leveraging Kurdyka-Lojasiewicz property of the augmented Lagrangian function,the authors demonstrate that the sequence derived from this splitting method is globally convergent to a stationary point if the loss function is lower semi-continuous and subana-lytic.Through several numerical examples,they illustrate the effectiveness of the proposed splitting algorithm. 展开更多
关键词 support vector machine Lower semi-continuous loss function Repro-ducing kernel Banach space Tensor optimization problem Splitting method
原文传递
DDoS detection based on wavelet kernel support vector machine 被引量:4
18
作者 YANG Ming-hui WANG Ru-chuan 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2008年第3期59-63,94,共6页
To enhance the detection accuracy and deduce false positive rate of distributed denial of service (DDoS) attack detection, a new machine learning method was proposed. With the analysis of support vector machine (SV... To enhance the detection accuracy and deduce false positive rate of distributed denial of service (DDoS) attack detection, a new machine learning method was proposed. With the analysis of support vector machine (SVM) and the wavelet kernel function theory, an admissive support vector kernel, which is a wavelet kernel constructed in this article, implements the combination of the wavelet technique with SVM. Then, wavelet support vector machine (WSVM) is applied to DDoS attack detections and as a classifying means to test the validity of the wavelet kernel function. Simulation experiments show that under the same conditions, the predictive ability of WSVM is improved and the computation burden is alleviated. The detection accuracy of WSVM is higher than the traditional SVM by about 4%, while its false positive is lower than the traditional SVM. Thus, for DDoS detections, WSVM shows better detection performance and is more adaptive to the changing network environment. 展开更多
关键词 wavelet kernel function wavelet supporting vector machine DDoS detection
原文传递
A stacked multiple kernel support vector machine for blast induced flyrock prediction 被引量:1
19
作者 Ruixuan Zhang Yuefeng Li +2 位作者 Yilin Gui Danial Jahed Armaghani Mojtaba Yari 《Geohazard Mechanics》 2024年第1期37-48,共12页
As a widely used rock excavation method in civil and mining construction works, the blasting operations and theinduced side effects are always investigated by the existing studies. The occurrence of flyrock is regarde... As a widely used rock excavation method in civil and mining construction works, the blasting operations and theinduced side effects are always investigated by the existing studies. The occurrence of flyrock is regarded as one ofthe most important issues induced by blasting operations, since the accurate prediction of which is crucial fordelineating safety zone. For this purpose, this study developed a flyrock prediction model based on 234 sets ofblasting data collected from Sugun Copper Mine site. A stacked multiple kernel support vector machine (stackedMK-SVM) model was proposed for flyrock prediction. The proposed stacked structure can effectively improve themodel performance by addressing the importance level of different features. For comparison purpose, 6 othermachine learning models were developed, including SVM, MK-SVM, Lagragian Twin SVM (LTSVM), ArtificialNeural Network (ANN), Random Forest (RF) and M5 Tree. This study implemented a 5-fold cross validationprocess for hyperparameters tuning purpose. According to the evaluation results, the proposed stacked MK-SVMmodel achieved the best overall performance, with RMSE of 1.73 and 1.74, MAE of 0.58 and 1.08, VAF of 98.95and 99.25 in training and testing phase, respectively. 展开更多
关键词 Multiple kernel learning support vector machine Stacked model Flyrock prediction
在线阅读 下载PDF
Mineralogical Characterization of Subsurface Soils Using Machine Learning:Application of Support Vector Machines
20
作者 Ahmed Babacar Sarr Mapathe Ndiaye +1 位作者 Sabou Sarr Ndiouga Camara 《Journal of Geoscience and Environment Protection》 2025年第10期121-134,共14页
Support vector machines are recognized as a powerful tool for supervised analysis and classification in different fields,particularly geophysics.In summary,SVMs are binary classifiers.Thus,for the multiclass study,the... Support vector machines are recognized as a powerful tool for supervised analysis and classification in different fields,particularly geophysics.In summary,SVMs are binary classifiers.Thus,for the multiclass study,the problem is divided into a series of binary classifications.At the end,all the results obtained from these binary classifications are combined into a one-to-one or one-to-all comparison.In this article,the strategy consists of classifying soils using their chemical composition as characteristics specific to a soil.The prediction consists of 5 classes,which are:White Clay,Red Clay,Black Clay,Granite,and Sand.The dataset is composed of basic oxides,which contribute to increasing soil salinity,acidic oxides such as silica,which do not influence soil fertility,and amphoteric oxides.These data are divided into training,test,and validation data.The one-vs-all strategy was used.The results obtained showed the strength of the one-vs-all associated with SVM on all classification metrics.The selection of the kernel as well as hyperparameters also played an important role in the prediction score.From the results obtained,the one-vs-all associated with SVM can be used for classification problems.For further studies,geolocation can be introduced to have knowledge of the evolution according to the different sectors of the same region. 展开更多
关键词 Classification support vector machine kernel function Soil RAW Materials
在线阅读 下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部