期刊文献+
共找到92篇文章
< 1 2 5 >
每页显示 20 50 100
Superstructured carbon materials:Progress and challenges in energy storage and conversion technologies
1
作者 ZUO Ming-xue HU Xia +6 位作者 KONG De-bin WEI Xin-ru QIN Xin LV Wei YANG Quan-Hong KANG Fei-yu ZHI Lin-jie 《新型炭材料(中英文)》 北大核心 2025年第4期962-972,共11页
Carbon materials are a key component in energy storage and conversion devices and their microstructure plays a crucial role in determining device performance.However,traditional carbon materials are unable to meet the... Carbon materials are a key component in energy storage and conversion devices and their microstructure plays a crucial role in determining device performance.However,traditional carbon materials are unable to meet the requirements for applications in emerging fields such as renewable energy and electric vehicles due to limitations including a disordered structure and uncontrolled defects.With an aim of realizing devisable structures,adjustable functions,and performance breakthroughs,superstructured carbons is proposed and represent a category of carbon-based materials,characterized by precisely-built pores,networks,and interfaces.Superstructured carbons can overcome the limitations of traditional carbon materials and improve the performance of energy storage and conversion devices.We review the structure-activity relationships of superstructured carbons and recent research advances from three aspects including a precisely customized pore structure,a dense carbon network framework,and a multi-component highly coupled interface between the different components.Finally,we provide an outlook on the future development of and practical challenges in energy storage and conversion devices. 展开更多
关键词 Carbon material application superstructured carbons Energy storage and conversion
在线阅读 下载PDF
Superstructured carbon materials:design and energy applications 被引量:5
2
作者 Debin Kong Wei Lv +6 位作者 Ruliang Liu Yan-Bing He Dingcai Wu Feng Li Ruowen Fu Quan-Hong Yang Feiyu Kang 《Energy Materials and Devices》 2023年第2期1-23,共23页
Carbon materials are key components in energy storage and conversion devices and most directly impact device performance.The need for advanced carbon materials has become more pressing with the increasing demand for h... Carbon materials are key components in energy storage and conversion devices and most directly impact device performance.The need for advanced carbon materials has become more pressing with the increasing demand for high-performance energy conversion and storage facilities.Nonetheless,realizing significant performance improvements across devices remains challenging because of the difficulties in controlling irreg-ularly organized microstructures and the specific carbon structures concerned.With the aim of realizing devis-able structures,adjustable functions,and performance breakthroughs,this review proposes the concept of superstructured carbons.In fact,superstructured carbons are a category of carbon-based materials charac-terized by precisely built pores,networks,and interfaces.This unique category meets the particular func-tional demands of high-performance devices and exceeds the rigid structure of traditional carbons.In the context of these superstructured carbons,we present methods for realizing both custom-built structures and target-oriented functionalities.For specific energy-related reactions,we emphasize the targeted property-structure relationships in these well-defined superstructured carbons.Finally,future developments and practi-cability challenges of superstructured carbons are also proposed. 展开更多
关键词 carbon materials superstructured carbons structure-activity relationship energy storage
在线阅读 下载PDF
Nonprecious and long-term stable MOF@POM superstructurederived electrocatalyst for water oxidation reaction
3
作者 Lei Zhang Ya-Qian Lan 《Science China Chemistry》 2025年第9期3907-3908,共2页
In the scale-up of water electrolysis,commercial systems require catalysts that are effective,stable,and earth-abundant.Although platinum group metal(PGM)catalysts exhibit remarkable activity,the high cost and scarcit... In the scale-up of water electrolysis,commercial systems require catalysts that are effective,stable,and earth-abundant.Although platinum group metal(PGM)catalysts exhibit remarkable activity,the high cost and scarcity significantly increase the overall capital expenses for alkaline water oxidation[1].As a more sustainable alternative,non-PGM catalysts—particularly first-row(3d)transitionmetal(oxy)hydroxides—show great promise for water oxidation.However,from a theoretical standpoint(e.g.,Pourbaix diagrams)[2],these active phases are often difficult to detect compared to PGM under oxygen evolution reaction(OER)conditions,underscoring the need to stabilize them during operation.Moreover,the rapid degradation of these metal(oxy)hydroxides is potential-dependent and typically occurs at high overpotentials required to achieve practical current densities,often associated with the dissolution of catalytic metal sites or phase segregation under harsh OER conditions[3].Together,these factors present a critical challenge in the development of metal(oxy)hydroxide catalysts—namely,stabilizing both the active phases and active sites,particularly during long-term operations at high current densities[4]. 展开更多
关键词 water electrolysiscommercial long term stable water oxidationhoweverfrom ELECTROCATALYST superstructure derived alkaline water oxidation water oxidation reaction nonprecious
原文传递
Analysis of vibration response characteristics of subway station and superstructure with hard combination 被引量:1
4
作者 Jia Jinglong Xu Weiping +1 位作者 Liu Xu Wei Yong 《Earthquake Engineering and Engineering Vibration》 2025年第1期271-281,共11页
The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with... The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with a hard combination,a numerical model is developed in this study.The indoor model test verified the accuracy of the numerical model.The influence laws of different hard combinations,train operating speeds and modes were studied and evaluated accordingly.The results show that the frequency corresponding to the peak vibration acceleration level of each floor of the superstructure property is concentrated at 10–20 Hz.The vibration response decreases in the high-frequency parts and increases in the lowfrequency parts with increasing distance from the source.Furthermore,the factors,such as train operating speed,operating mode,and hard combination type,will affect the vibration of the superstructure.The vibration response under the reversible operation of the train is greater than that of the unidirectional operation.The operating speed of the train is proportional to its vibration response.The vibration amplification area appears between the middle and the top of the superstructure at a higher train speed.Its vibration acceleration level will exceed the limit value of relevant regulations,and vibration-damping measures are required.Within the scope of application,this study provides some suggestions for constructing subway stations and superstructures. 展开更多
关键词 subway station SUPERSTRUCTURE vibration response hard combination
在线阅读 下载PDF
Multi-Wavelength Optical Packet Routing Technologies Based on Superstructured Fiber Bragg Gratings
5
作者 Benn C. Thomsen Peh C. Teh +1 位作者 Morten Ibsen David J. Richardson 《光学学报》 EI CAS CSCD 北大核心 2003年第S1期699-700,共2页
A WDM compatible Edge-to-Edge Self-Routed optical packet switched network that simplifies the optical processing is proposed. The system employs all-optical packet label generation and recognition using coded superstr... A WDM compatible Edge-to-Edge Self-Routed optical packet switched network that simplifies the optical processing is proposed. The system employs all-optical packet label generation and recognition using coded superstructured Fiber Bragg gratings. 展开更多
关键词 WDM in of as OCL that Multi-Wavelength Optical Packet Routing Technologies Based on superstructured Fiber Bragg Gratings on
原文传递
Structuring MoO_(3)-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction
6
作者 Bowen Li Ting Wang +5 位作者 Ming Xu Yuqi Wang Zhaoxing Li Mei Liu Wenjing Zhang Ming Feng 《Chinese Chemical Letters》 2025年第2期211-215,共5页
Improving the surface atoms utilization efficiency of catalysts is extremely important for large-scale H_(2)production by electrochemical water splitting,but it remains a great challenge.Herein,we reported two kinds o... Improving the surface atoms utilization efficiency of catalysts is extremely important for large-scale H_(2)production by electrochemical water splitting,but it remains a great challenge.Herein,we reported two kinds of Mo O_(3)-polyoxometalate hybrid nanobelt superstructures(MoO_(3)-POM HNSs,POM=PW_(12)O_(40)and Si W_(12)O_(40))using a simple hydrothermal method.Such superstructure with highly uniform nanoparticles as building blocks can expose more surface atoms and emanate increased specific surface area.The incorporated POMs generated abundant oxygen vacancies,improved the electronic mobility,and modulated the surface electronic structure of MoO_(3),allowing to optimize the H^(*)adsorption/desorption and dehydrogenation kinetics of catalyst.Notably,the as-prepared MoO_(3)-PW_(12)O_(40)HNSs electrodes not only displayed the low overpotentials of 108 mV at 10 mA/cm^(2)current density in 0.5 mol/L H_(2)SO_(4)electrolyte but also displayed excellent long-term stability.The hydrogen evolution reaction(HER)performance of MoO_(3)-POM superstructures is significantly better than that of corresponding bulk materials MoO_(3)@PW_(12)O_(40)and Mo O_(3)@Si W_(12)O_(40),and the overpotentials are about 8.3 and 4.9 times lower than that of single Mo O_(3).This work opens an avenue for designing highly surface-exposed catalysts for electrocatalytic H_(2)production and other electrochemical applications. 展开更多
关键词 POLYOXOMETALATE Metal oxide ELECTROCATALYSIS SUPERSTRUCTURE Hydrogen production
原文传递
Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage
7
作者 Chengmin Hu Pingxuan Liu +6 位作者 Ziyang Song Yaokang Lv Hui Duan Li Xie Ling Miao Mingxian Liu Lihua Gan 《Chinese Chemical Letters》 2025年第4期409-415,共7页
Designing carbon materials with ideal stable hierarchical porous structures and fiexible functional properties for efficient and sustainable Zn2+ion storage still faces great challenges. Herein, the threedimensional c... Designing carbon materials with ideal stable hierarchical porous structures and fiexible functional properties for efficient and sustainable Zn2+ion storage still faces great challenges. Herein, the threedimensional carbon superstructures with spherical nanofiower-like structures were tailor-made by the self-assembly strategy. Specifically, organic polymer units(i.e., organic motifs) were formed by tetrachloro-p-benzoquinone(TBQ) and 2,6-diamino anthraquinone(DAQ) via a noble-metal-free catalyzed coupling reaction. Subsequently, the organic motifs assemble into spherical nanofiower-like superstructures induced by intermolecular hydrogen bonding and aromatic π-π stacking interactions. Welldesigned carbon superstructures can provide a stable backbone that effectively blocks structural stacking and collapse. Meanwhile, the hierarchical porous structures in 3D carbon superstructures provide continuous charge transport pathways to greatly shorten the ion diffusion distance, and as a result, the carbon superstructures-based zinc-ion hybrid capacitors(ZIHCs) provide a capacity of 245 m Ah/g at 0.5 A/g, a high energy density of 152 Wh/kg and an ultra-long life of 300,000 cycles at 20 A/g. The excellent electrochemical performance is also attributed to the corresponding charge storage mechanism, i.e., the alternate binding of Zn^(2+)/CF_(3)SO_(3)^(-) ions. Besides, the high-level N/O motifs improve the surface properties of the carbon superstructures and reduce the ion migration barriers for more efficient charge storage. This paper provides insights into the design of advanced carbon-based cathodes and presents a fundamental understanding of their charge storage mechanisms. 展开更多
关键词 Tailor-made Overstable Carbon superstructures High serformance Zinc-ion storage
原文传递
Template-oriented synthesis of boron/nitrogen-rich carbon nanoflake superstructure for high-performance Zn-ion hybrid capacitors
8
作者 Chunjiang Jin Fengjiao Guo +4 位作者 Hongyu Mi Nianjun Yang Congcong Yang Xiaqing Chang Jieshan Qiu 《Carbon Energy》 2025年第3期76-90,共15页
The rise of Zn-ion hybrid capacitor(ZHC)has imposed high requirements on carbon cathodes,including reasonable configuration,high specific surface area,multiscale pores,and abundant defects.To achieve this objective,a ... The rise of Zn-ion hybrid capacitor(ZHC)has imposed high requirements on carbon cathodes,including reasonable configuration,high specific surface area,multiscale pores,and abundant defects.To achieve this objective,a template-oriented strategy coupled with multi-heteroatom modification is proposed to precisely synthesize a three-dimensional boron/nitrogen-rich carbon nanoflake-interconnected micro/nano superstructure,referred to as BNPC.The hierarchically porous framework of BNPC shares short channels for fast Zn2+transport,increased adsorption-site accessibility,and structural robustness.Additionally,the boron/nitrogen incorporation effect significantly augments Zn2+adsorption capability and more distinctive pseudocapacitive nature,notably enhancing Zn-ion storage and transmission kinetics by performing the dual-storage mechanism of the electric double-layer capacitance and Faradaic redox process in BNPC cathode.These merits contribute to a high capacity(143.7 mAh g^(-1)at 0.2 A g^(-1))and excellent rate capability(84.5 mAh g^(-1)at 30 A g^(-1))of BNPC-based aqueous ZHC,and the ZHC still shows an ultrahigh capacity of 108.5 mAh g^(-1)even under a high BNPC mass loading of 12 mg cm^(-2).More critically,the BNPC-based flexible device also sustains notable cyclability over 30,000 cycles and low-rate self-discharge of 2.13 mV h-1 along with a preeminent energy output of 117.15 Wh kg^(-1)at a power density of 163.15Wkg^(-1),favoring a creditable applicability in modern electronics.In/ex-situ analysis and theoretical calculations elaborately elucidate the enhanced charge storage mechanism in depth.The findings offer a promising platform for the development of advanced carbon cathodes and corresponding electrochemical devices. 展开更多
关键词 active site density carbon superstructure heteroatom doping MOF template Zn-ion hybrid capacitor
在线阅读 下载PDF
Depression of pyrrhotite superstructures in copper flotation:A synchrotron X-ray powder diffraction and DFT study
9
作者 Alireza Rezvani Foad Raji +3 位作者 Rong Fan R.Kappes Zhiyong Gao Yongjun Peng 《International Journal of Mining Science and Technology》 2025年第8期1259-1270,共12页
Pyrrhotite naturally occurs in various superstructures including magnetic(4C)and non-magnetic(5C,6C)types,each with distinct physicochemical properties and flotation behaviors.Challenges in accurately identifying and ... Pyrrhotite naturally occurs in various superstructures including magnetic(4C)and non-magnetic(5C,6C)types,each with distinct physicochemical properties and flotation behaviors.Challenges in accurately identifying and quantifying these superstructures hinder the optimization of pyrrhotite depression in flotation processes.To address this critical issue,synchrotron X-ray powder diffraction(S-XRPD)with Rietveld refinement was employed to quantify the distribution of superstructures in the feed and flotation concentrates of a copper–gold ore.To elucidate the mechanisms influencing depression,density functional theory(DFT)calculations were conducted to explore the electronic structures and surface reactivity of the pyrrhotite superstructures toward the adsorption of water,oxygen and hydroxyl ions(OH-)as dominant species present in the flotation process.S-XRPD analysis revealed that flotation recovery rates of pyrrhotite followed the order of 4C<6C<5C.DFT calculations indicated that the Fe 3d and S 3p orbital band centers exhibited a similar trend relative to the Fermi level with 4C being the closest.The Fe3d band center suggested that the 4C structure possessed a more reactive surface toward the oxygen reduction reaction,promoting the formation of hydrophilic Fe-OH sites.The S 3p band center order also implied that xanthate on the non-magnetic 5C and 6C surfaces could oxidize to dixanthogen,increasing hydrophobicity and floatability,while 4C formed less hydrophobic metal-xanthate complexes.Adsorption energy and charge transfer analyses of water,hydroxyl ions and molecular oxygen further supported the high reactivity and hydrophilic nature of 4C pyrrhotite.The strong bonding with hydroxyl ions indicated enhanced surface passivation by hydrophilic Fe–OOH complexes,aligning with the experimentally observed flotation order(4C<6C<5C).These findings provide a compelling correlation between experimental flotation results and electronic structure calculations,delivering crucial insights for optimizing flotation processes and improving pyrrhotite depression.This breakthrough opens up new opportunities to enhance the efficiency of flotation processes in the mining industry. 展开更多
关键词 Pyrrhotite depression Synchrotron X-ray powder diffraction analysis Pyrrhotite superstructures DFT simulation Surface reactivity
在线阅读 下载PDF
Microscopic characterization and analysis of nickel-plated steel coatings
10
作者 GU Jiaqing LI Xiujun DENG Zhaojun 《Baosteel Technical Research》 2025年第1期17-27,共11页
Employing experimental equipment and techniques,such as electron backscatter diffraction,transmission Kikuchi diffraction,and transmission electron microscopy,the microstructure,phase structure,and orientation relatio... Employing experimental equipment and techniques,such as electron backscatter diffraction,transmission Kikuchi diffraction,and transmission electron microscopy,the microstructure,phase structure,and orientation relationships of 0.6μm electroplated nickel(Ni)steel following annealing at 580-650℃for 15-30 hours were investigated.A comprehensive analysis was conducted to gain insights into the complex changes in the material's properties due to the annealing process.The results reveal that prolonged annealing led to considerable long-range diffusion of surface Ni atoms into the substrate of the 0.6μm Ni-plated steel.This diffusion process resulted in the formation of an alloy diffusion layer,approximately 4μm in thickness,which altered the material's microstructural characteristics.The extent of diffusion and its effect on the microstructure and structure were meticulously quantified.At the annealing temperature,the diffused Ni in the substrate,acting as an austenite-stabilizing element,expanded the austenite phase region.The alloy layer at this temperature predominantly consisted of the face-centered cubic(FCC)-structuredγ(Fe,Ni)solid solution.Upon cooling to room temperature,the alloy diffusion layer evolved into a dual-layer composite structure.The upper layer mainly comprised the FCC-structuredγ(Fe,Ni)solid solution,interspersed with a minor FCC compound superstructure phase.The lower layer underwent a diffusionless phase transformation during cooling,which led to the formation of the body-centered tetragonal/body-centered cubic-structured martensite.This phase,which is known for its high hardness and numerous variants,maintained the classic Kurdjumov-Sachs orientation relationship with the upper FCC parent phase,and it satisfied the close-packed plane{111}γ//{110}α′and close-packed direction<110>γ//<111>α′.A detailed analysis of the different phases within the alloy layer and their phase transitions was presented,offering an in-depth understanding of the material's characteristics. 展开更多
关键词 nickel-plated steel electron backscatter diffraction transmission Kikuchi diffraction transmission electron microscopy SUPERSTRUCTURE
在线阅读 下载PDF
Design Strategies for Complex Mountain Highway Bridge
11
作者 Meng Wan 《Journal of World Architecture》 2025年第4期110-117,共8页
This article discusses the design strategy of complex mountain highway bridges.During the research phase,details were obtained based on prior literature review and analysis of engineering materials from mountainous ar... This article discusses the design strategy of complex mountain highway bridges.During the research phase,details were obtained based on prior literature review and analysis of engineering materials from mountainous area bridges.After analyzing the design characteristics of complex mountainous area road and bridge projects,the principles for the design of bridges on complex mountainous area expressways were proposed.The research on bridge design was carried out from five dimensions:bridge type selection,foundation design,superstructure design,connection part design,and material and technological innovation.Eventually,a relatively complete design system was formed.It is expected that this paper can provide technical references and value for road and bridge projects in China and promote the sustainable development of China’s road traffic system from a macro perspective. 展开更多
关键词 Complex mountainous area Bridge design Bridge type selection SUPERSTRUCTURE
在线阅读 下载PDF
Superstructured α-Fe2O3 nanorods as novel binder-free anodes for high-performing fiber-shaped Ni/Fe battery 被引量:5
12
作者 Chenglong Liu Qiulong Li +5 位作者 Jingwen Cao Qichong Zhang Ping Mana Zhenyu Zhou Chaowei Li Yagang Yao 《Science Bulletin》 SCIE EI CAS CSCD 2020年第10期812-819,M0003,M0004,共10页
Fiber-shaped energy storage devices are indispensable parts of wearable and portable electronics.Aqueous rechargeable Ni/Fe battery is a very appropriate energy storage device due to their good safety without organic ... Fiber-shaped energy storage devices are indispensable parts of wearable and portable electronics.Aqueous rechargeable Ni/Fe battery is a very appropriate energy storage device due to their good safety without organic electrolytes, high ionic conductivity, and low cost. Unfortunately, the low energy density,poor power density and cycling performance hinder its further practical applications. In this study, in order to obtain high performance negative iron-based material, we first synthesized a-iron oxide(α-Fe2O3) nanorods(NRs) with superstructures on the surface of highly conductive carbon nanotube fibers(CNTFs), then electrically conductive polypyrrole(PPy) was coated to enhance the electron, ion diffusion and cycle stability. The as-prepared α-Fe2O3@PPy NRs/CNTF electrode shows a high specific capacity of 0.62 Ah cm-3 at the current density of 1 A cm-3. Furthermore, the Ni/Fe battery that was assembled by the above negative electrode shows a maximum volumetric energy density of 15.47 mWh cm-3 with228.2 mW cm-3 at a current density of 1 A cm-3. The cycling durability and mechanical flexibility of the Ni/Fe battery were tested, which show good prospect for practical application. In summary, these merits make it possible for our Ni/Fe battery to have practical applications in next generation flexible energy storage devices. 展开更多
关键词 a-Fe2O3 nanorods SUPERSTRUCTURES PPy coating Ni/Fe battery Wearable electronics
原文传递
Optimal synthesis of heat-integrated distillation configurations using the two-column superstructure 被引量:1
13
作者 Xiaodong Zhang Lu Jin Jinsheng Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期238-249,共12页
In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocol... In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance. 展开更多
关键词 SUPERSTRUCTURE Process synthesis Heat integration Simulation-based optimization Industrial organosilicon separation
在线阅读 下载PDF
Defined organic-octamolybdate crystalline superstructures derived Mo_(2)C@C as efficient hydrogen evolution electrocatalysts 被引量:1
14
作者 Jiao Li Chenyang Zhang +6 位作者 Chuhan Wu Yan Liu Xuejian Zhang Xiao Li Yongtao Li Jing Sun Zhongmin Su 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第6期201-205,共5页
Hydrogen evolution electrocatalysts derived from metal-organic crystalline frameworks can inherit the merits of ordered and adjustable structures with high surface area.In this paper,organic-octamolybdate crystalline ... Hydrogen evolution electrocatalysts derived from metal-organic crystalline frameworks can inherit the merits of ordered and adjustable structures with high surface area.In this paper,organic-octamolybdate crystalline superstructures(OOCS)with a fixed stoichiometric ratio of Mo_(8)(L)_(2) and high Mo content(>40 wt%)were synthesized using flexible ligands with controllable lengths(named as OOCS-1-3).Then,molybdenum carbides coated with carbon layers as electrocatalysts(Mo_(2)C@C-1-3)can be obtained directly from a one-step high-temperature carbonization process using OOCS-1-3 as precursors.As a typical example,Mo_(2)C@C-3 exhibits satisfactory hydrogen evolution activity with a low overpotential of 151 m V(1.0 mol/L KOH)at 10 m A/cm^(2) and stability for 24 h.The electrocatalytic activity is mainly from the synergistic interactions between the carbon layers and molybdenum carbide species.Furthermore,compared with the initial content of C,N,Mo in OOCS and Mo_(2)C@C,the catalytic activity increases with the N amount.This work makes organic-octamolybdate crystalline superstructures used as general precursors to product high Mo content electrocatalysts applied in energy storage and conversion fields. 展开更多
关键词 Molybdenum carbides ELECTROCATALYSTS Organic-octamolybdate crystalline SUPERSTRUCTURES Synergistic interactions Hydrogen evolution reaction(HER)
原文传递
Engineering hierarchical quaternary superstructure of an integrated MOF-derived electrode for boosting urea electrooxidation assisted water electrolysis 被引量:1
15
作者 Jianjun Tian Changsheng Cao +3 位作者 Yingchun He Muhammad Imran Khan Xin-Tao Wu Qi-Long Zhu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期695-701,共7页
Controllable design of the catalytic electrodes with hierarchical superstructures is expected to improve their electrochemical performance.Herein,a self-supported integrated electrode(NiCo-ZLDH/NF)with a unique hierar... Controllable design of the catalytic electrodes with hierarchical superstructures is expected to improve their electrochemical performance.Herein,a self-supported integrated electrode(NiCo-ZLDH/NF)with a unique hierarchical quaternary superstructure was fabricated through a self-sacrificing template strategy from the metal–organic framework(Co-ZIF-67)nanoplate arrays,which features an intriguing well-defined hierarchy when taking the unit cells of the NiCo-based layered double hydroxide(NiCo-LDH)as the primary structure,the ultrathin LDH nanoneedles as the secondary structure,the mesoscale hollow plates of the LDH nanoneedle arrays as the tertiary structure,and the macroscale three-dimensional frames of the plate arrays as the quaternary structure.Notably,the distinctive structure of NiCo-ZLDH/NF can not only accelerate both mass and charge transfer,but also expose plentiful accessible active sites with high intrinsic activity,endowing it with an excellent electrochemical performance for urea oxidation reaction(UOR).Specially,it only required the low potentials of 1.335,1.368 and 1.388 V to deliver the current densities of 10,100 and 200 mA cm^(-2),respectively,much superior to those for typical NiCo-LDH.Employing NiCo-ZLDH/NF as the bifunctional electrode for both anodic UOR and cathodic HER,an energy-saving electrolysis system was further explored which can greatly reduce the needed voltage of 213 mV to deliver the current density of 100 mA cm^(-2),as compared to the conventional water electrolysis system composed of OER.This work manifests that it is prospective to explore the hierarchically nanostructured electrodes and the innovative electrolytic technologies for high-efficiency electrocatalysis. 展开更多
关键词 Hierarchical superstructures Metal–organic frameworks Layered double hydroxides Urea oxidation reaction Hydrogen evolution reaction
在线阅读 下载PDF
Nanocomposite superstructure of zinc oxide mesocrystal/reduced graphene oxide with effective photoconductivity
16
作者 Ahmad A.Ahmad Qais M.Al-Bataineh Ahmad B.Migdadi 《Journal of Semiconductors》 EI CAS CSCD 2024年第11期81-88,共8页
Metal oxide mesocrystals are the alignment of metal oxide nanoparticles building blocks into the ordered superstructure,which have potentially tunable optical,electronic,and electrical properties suitable for practica... Metal oxide mesocrystals are the alignment of metal oxide nanoparticles building blocks into the ordered superstructure,which have potentially tunable optical,electronic,and electrical properties suitable for practical applications.Herein,we report an effective method for synthesizing mesocrystal zinc oxide nanorods(ZnONRs).The crystal,surface,and internal structures of the zinc oxide mesocrystals were fully characterized.Mesocrystal zinc oxide nanorods/reduced graphene oxide(ZnONRs/rGO)nanocomposite superstructure were synthesized also using the hydrothermal method.The crystal,surface,chemical,and internal structures of the ZnONRs/rGO nanocomposite superstructure were also fully characterized.The optical absorption coefficient,bandgap energy,band structure,and electrical conductivity of the ZnONRs/rGO nanocomposite superstructure were investigated to understand its optoelectronic and electrical properties.Finally,the photoconductivity of the ZnONRs/rGO nanocomposite superstructure was explored to find the possibilities of using this nanocomposite superstructure for ultraviolet(UV)photodetection applications.Finally,we concluded that the ZnONRs/rGO nanocomposite superstructure has high UV sensitivity and is suitable for UV detector applications. 展开更多
关键词 MESOCRYSTALS SUPERSTRUCTURE mesocrystal zinc oxide nanorods(ZnONRs) meduced graphene oxide(rGO) ZnONRs/rGO nanocomposite superstructure UV photodetection
在线阅读 下载PDF
Flower-like superstructure of boron carbon nitride nanosheets with adjustable band gaps for photocatalytic hydrogen peroxide production
17
作者 Dehong Yang Yang Li +7 位作者 Ruihua Chen Xiangjian Wang Zhi Li Tao Xing Lei Wei Sheng Xu Pengcheng Dai Mingbo Wu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第16期23-31,共9页
The self-assembly of two-dimensional(2D)semiconductor nanosheets into three-dimensional(3D)ordered superstructures represents an ingenious way to avoid aggregation,expose massive available active sites and benefit the... The self-assembly of two-dimensional(2D)semiconductor nanosheets into three-dimensional(3D)ordered superstructures represents an ingenious way to avoid aggregation,expose massive available active sites and benefit the mass transfer,which maximizes the advantages of the 2D nanostructures in photo-catalysis.Herein,a flower-like superstructure of ternary semiconducting boron carbon nitride nanosheets(FS-BCNNSs)was synthesized through the morphology-preserved thermal transformation of a flower-like superstructure of boron-containing metal-organic framework nanosheets(FS-MOFNSs).Taking advantage of this functional superstructure,FS-BCNNSs was employed for the pioneering application in the field of photocatalytic hydrogen peroxide(H_(2)O_(2))production and exhibited excellent photocatalytic performance,yielding an impressive rate of 1415.9μmol g^(−1)h^(−1)for the production of H_(2)O_(2).The results of this work offer not just a promising catalyst for photocatalytic H_(2)O_(2)production but also a facile strategy to fabricate unique superstructures constructed from 2D nanosheets for catalysis,energy conversion,and other related fields. 展开更多
关键词 PHOTOCATALYSIS Boron carbon nitride Flower-like superstructure Metal-organic framework Hydrogen peroxide production
原文传递
Random Differential Settlement Effects on Reliability of Existing Bridges
18
作者 Zuo-Cai Wang 《Journal of Civil Engineering and Architecture》 2024年第2期60-68,共9页
This paper investigates the impact of differential foundation settlement on the reliability of bridge superstructure based on loads and resistances statistical properties in Missouri State.Maximum deterministic differ... This paper investigates the impact of differential foundation settlement on the reliability of bridge superstructure based on loads and resistances statistical properties in Missouri State.Maximum deterministic differential settlement is often used in current AASHTO LRFD(load and resistance factored design)specification.However,the expected foundation settlement is quite different from the actual settlement due to the soil’s large variability.Therefore,it makes sense to consider settlement as a random variable.In this paper,a lognormal distribution with coefficient of variation of 0.25 of random settlement is considered in reliability analysis based on limited previous studies.Dead and live loads are modeled as random variables with normal and Gumbel Type I distributions,respectively.Considering the regional traffic condition on Missouri roadways,the live load effect on existing bridges based on weight-in-motion data is also investigated.The calibrated resistance statistical properties such as bias and COV(coefficient of variance)are used for reliability analysis.Total 14 existing bridges based on Strength I Limit State are analyzed.Since no differential settlement is considered in the past designed bridges in Missouri,small differential settlement can significantly reduce the reliability indices of the superstructure,depending upon the span length and rigidity of the girder.The analysis results also show that the reliability of existing steel-girder bridges is consistently higher than prestressed concrete and solid slab bridges;the shorter and stiffer the spans,the more significant the settlement’s effect on the reliability of bridge superstructures;As the span length ratio becomes less than 0.75,the girder and solid slab bridges’reliability drops significantly at small settlements. 展开更多
关键词 BRIDGES SUPERSTRUCTURE LRFD
在线阅读 下载PDF
ORDERING TRANSFORMATION OF γ TO γ_1 IN TiAl+Nb SYSTEM
19
作者 王金国 陈国良 叶恒强 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1995年第1期6+1-6,共7页
A series of TiAl+Nb alloys with various Nb contents has been employed to explore phase relationship and the evolution of microstructure.A new ordered γ derivative (γ1) has been observed in the alloy containing 20 at... A series of TiAl+Nb alloys with various Nb contents has been employed to explore phase relationship and the evolution of microstructure.A new ordered γ derivative (γ1) has been observed in the alloy containing 20 at% Nb.The additional diffraction spots added to the diffraction pattern of L10 (TiAl) structure have been found in the alloy containing Nb up to 11 at% in terms of further ordering.The transformation from L10 (TiAl) structure to the further ordering phase,γ1,is a continuous ordering process with the substitution of Nb atoms for Ti atoms in alloys with over-stoichiometric Al content of TiAl.The possible transformtion characterzation has been discussed. 展开更多
关键词 INTERMETALLICS Ti-Al-Nb system SUPERSTRUCTURE ordering transformation
在线阅读 下载PDF
Seismic behavior of variable frequency pendulum isolator 被引量:6
20
作者 V. R. Panchal R. S. Jangid 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第2期193-205,共13页
Earthquake performance of a flexible one-story building isolated with a variable frequency pendulum isolator (VFPI) under near-fault and far-field ground motions is investigated. The frictional forces mobilized at t... Earthquake performance of a flexible one-story building isolated with a variable frequency pendulum isolator (VFPI) under near-fault and far-field ground motions is investigated. The frictional forces mobilized at the interface of the VFPI are assumed to be velocity dependent. The interaction between frictional forces of the VFPI in two horizontal directions is duly considered and coupled differential equations of motion of the isolated system in the incremental form are solved iteratively. The response of the system with bi-directional interaction is compared with those without interaction. In addition, the effects of velocity dependence on the response of the isolated system are also investigated. Moreover, a parametric study is carried out to critically examine the influence of important parameters on bi-directional interaction effects of the frictional forces of the VFPI. These parameters are: the superstructure time period, frequency variation factor (FVF) and friction coefficient of the VFPI. From the above investigations, it is observed that the dependence of the friction coefficient on relative velocity of the system does not have a noticeable effect on the peak response of the system isolated with VFPI, and that the bi-directional interaction of frictional forces of the VFPI is important and if neglected, isolator displacements will be underestimated and the superstructure acceleration and base shear will be overestimated. 展开更多
关键词 base isolation bi-directional interaction superstructure flexibility near-fault ground motion friction coefficient far-field ground motion VFPI
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部