Using the vortex filament model with the full Biot-Savart law, we show that non-straight bundles of quantized vortex lines in HeII are structurally robust and can reconnect with each other maintaining their identity. ...Using the vortex filament model with the full Biot-Savart law, we show that non-straight bundles of quantized vortex lines in HeII are structurally robust and can reconnect with each other maintaining their identity. We discuss vortex stretching in superfluid turbulence in many cases. We show that, during the bundle reconnection process, Kelvin waves of large amplitude are generated, in agreement with previous work and with the finding that helicity is produced by nearly singular vortex interactions in classical Euler flows. The reconnection events lead to changes in velocities, radius, number of points and total length. The existence of reconnections was confirmed by other authors using the model of nonlinear Schr?dinger equation (NLSE). Our results are agreed with the finding of other authors and extension to our numerical experiments.展开更多
This paper introduces a novel theoretical model that reimagines the internal structure of quarks as superfluid vortices formed during the Quark Epoch of the Big Bang. The proposed theory challenges the traditional vie...This paper introduces a novel theoretical model that reimagines the internal structure of quarks as superfluid vortices formed during the Quark Epoch of the Big Bang. The proposed theory challenges the traditional view of quarks as point-like entities without internal structure, offering instead a hydrodynamic perspective that aligns with the principles of quantum chromodynamics (QCD). By considering quarks as vortices in a frictionless superfluid vacuum, the model provides new insights into their mass, charge, spin, and interactions. The formalism presented in this work utilizes hydrodynamic principles to model quarks as irrotational circular vortices, calculating key properties such as charge radius, mass, and density. The calculations are grounded in the application of vortex dynamics, including the evaluation of circulation, vorticity, and the balance of forces within the quantum fluid. The resulting quark radius and mass are shown to be consistent with known experimental ranges, providing a strong validation of the vortex-based formalism. The theory also explores the implications of this vortex model on the stability of quarks within protons and neutrons, and how quark-antiquark pairs (mesons) and three-quark structures (baryons) can be understood as interactions between these vortices. Additionally, the model predicts specific quark properties such as charge radius and density, which are consistent with experimental observations and current understandings of subatomic particle physics. Furthermore, this approach elucidates the strong force’s role as an interaction between these vortices, mediated by gluons in the quantum fluid. The proposed model not only aligns with existing experimental data but also paves the way for further exploration into the complex behaviors of quarks and their role in the fundamental structure of matter.展开更多
A theory employing the vortex shape of the electron was presented to resolve the enigma of the wave-particle duality. Conventions such as “particle” and “wave” were used to describe the behavior of quantum objects...A theory employing the vortex shape of the electron was presented to resolve the enigma of the wave-particle duality. Conventions such as “particle” and “wave” were used to describe the behavior of quantum objects such as electrons. A superfluid vacuum formed the base to describe the basic vortex structure and properties of the electron, whereas various formulations derived from hydrodynamic laws described the electron vortex circumference, radius, angular velocity and angular frequency, angular momentum (spin) and magnetic momentum. A vortex electron fully explained the associations between momentum and wave, and hydrodynamic laws were essential in deriving the energy and angular frequency of the electron. In general, an electron traveling in space possesses internal and external motions. To derive the angular frequency of its internal motion, the Compton wavelength was used to represent the length of one cycle of the internal motion that is equal to the circumference of the electron vortex. The angular frequency of the electron vortex was calculated to obtain the same value according to Planck’s theory. A traveling vortex electron has internal and external motions that create a three-dimensional helix trajectory. The magnitude of the instantaneous velocity of the electron is the resultant of its internal and external velocities, being equal to the internal velocity reduced by the Lorentz factor (whose essence is presented in a detailed formulation). The wavelength of the helix trajectory represents the distance traveled by a particle along its axis during one period of revolution around the axis, resulting in the same de Broglie wavelength that corresponds to the helix pitch of the helix. Mathematical formulations were presented to demonstrate the relation between the energy of the vortex and its angular frequency and de Broglie’s wavelength;furthermore, Compton’s and de Broglie’s wavelengths were also differentiated.展开更多
The Josephson effect of Bose condensates with a weak link created by superposing a far-off-resonant red-detuned laser beam on a double-well potential is theoretically considered. The numerical simulations show that th...The Josephson effect of Bose condensates with a weak link created by superposing a far-off-resonant red-detuned laser beam on a double-well potential is theoretically considered. The numerical simulations show that there would be c/ear Josephson effect for this sort of three-well system. The present work gives a feasible scheme to study a new type of weak link which is crucial to investigate experimentally the Josephson effect.展开更多
文摘Using the vortex filament model with the full Biot-Savart law, we show that non-straight bundles of quantized vortex lines in HeII are structurally robust and can reconnect with each other maintaining their identity. We discuss vortex stretching in superfluid turbulence in many cases. We show that, during the bundle reconnection process, Kelvin waves of large amplitude are generated, in agreement with previous work and with the finding that helicity is produced by nearly singular vortex interactions in classical Euler flows. The reconnection events lead to changes in velocities, radius, number of points and total length. The existence of reconnections was confirmed by other authors using the model of nonlinear Schr?dinger equation (NLSE). Our results are agreed with the finding of other authors and extension to our numerical experiments.
文摘This paper introduces a novel theoretical model that reimagines the internal structure of quarks as superfluid vortices formed during the Quark Epoch of the Big Bang. The proposed theory challenges the traditional view of quarks as point-like entities without internal structure, offering instead a hydrodynamic perspective that aligns with the principles of quantum chromodynamics (QCD). By considering quarks as vortices in a frictionless superfluid vacuum, the model provides new insights into their mass, charge, spin, and interactions. The formalism presented in this work utilizes hydrodynamic principles to model quarks as irrotational circular vortices, calculating key properties such as charge radius, mass, and density. The calculations are grounded in the application of vortex dynamics, including the evaluation of circulation, vorticity, and the balance of forces within the quantum fluid. The resulting quark radius and mass are shown to be consistent with known experimental ranges, providing a strong validation of the vortex-based formalism. The theory also explores the implications of this vortex model on the stability of quarks within protons and neutrons, and how quark-antiquark pairs (mesons) and three-quark structures (baryons) can be understood as interactions between these vortices. Additionally, the model predicts specific quark properties such as charge radius and density, which are consistent with experimental observations and current understandings of subatomic particle physics. Furthermore, this approach elucidates the strong force’s role as an interaction between these vortices, mediated by gluons in the quantum fluid. The proposed model not only aligns with existing experimental data but also paves the way for further exploration into the complex behaviors of quarks and their role in the fundamental structure of matter.
文摘A theory employing the vortex shape of the electron was presented to resolve the enigma of the wave-particle duality. Conventions such as “particle” and “wave” were used to describe the behavior of quantum objects such as electrons. A superfluid vacuum formed the base to describe the basic vortex structure and properties of the electron, whereas various formulations derived from hydrodynamic laws described the electron vortex circumference, radius, angular velocity and angular frequency, angular momentum (spin) and magnetic momentum. A vortex electron fully explained the associations between momentum and wave, and hydrodynamic laws were essential in deriving the energy and angular frequency of the electron. In general, an electron traveling in space possesses internal and external motions. To derive the angular frequency of its internal motion, the Compton wavelength was used to represent the length of one cycle of the internal motion that is equal to the circumference of the electron vortex. The angular frequency of the electron vortex was calculated to obtain the same value according to Planck’s theory. A traveling vortex electron has internal and external motions that create a three-dimensional helix trajectory. The magnitude of the instantaneous velocity of the electron is the resultant of its internal and external velocities, being equal to the internal velocity reduced by the Lorentz factor (whose essence is presented in a detailed formulation). The wavelength of the helix trajectory represents the distance traveled by a particle along its axis during one period of revolution around the axis, resulting in the same de Broglie wavelength that corresponds to the helix pitch of the helix. Mathematical formulations were presented to demonstrate the relation between the energy of the vortex and its angular frequency and de Broglie’s wavelength;furthermore, Compton’s and de Broglie’s wavelengths were also differentiated.
基金Supported by the National Natural Science Foundation of China under Grant No 10474119, the National Basic Research Programme of China under Grant No 2005CB724508, and the Funds from Chinese Academy of Sciences.
文摘The Josephson effect of Bose condensates with a weak link created by superposing a far-off-resonant red-detuned laser beam on a double-well potential is theoretically considered. The numerical simulations show that there would be c/ear Josephson effect for this sort of three-well system. The present work gives a feasible scheme to study a new type of weak link which is crucial to investigate experimentally the Josephson effect.