An X1.7 flare at 10:15 UT and a halo CME with a projected speed of 942 km s-1 erupted from NOAA solar active region 9393 located at N20 W19,which were observed on 2001 March 29.When the CME reached the Earth,it trigge...An X1.7 flare at 10:15 UT and a halo CME with a projected speed of 942 km s-1 erupted from NOAA solar active region 9393 located at N20 W19,which were observed on 2001 March 29.When the CME reached the Earth,it triggered a super geomagnetic storm(hereafter super storm).We find that the CME always moved towards the Earth according to the intensity-time profiles of protons with different energies.The solar wind parameters responsible for the main phase of the super storm occurred on 2001 March 31 are analyzed while taking into account the delayed geomagnetic effect of solar wind at the L1 point and using the SYM-H index.According to the variation properties of SYM-H index during the main phase of the super storm,the main phase of the super storm is divided into two parts.A comparative study of solar wind parameters responsible for two parts shows the evidence that the solar wind density plays a significant role in transferring solar wind energy into the magnetosphere,besides the southward magnetic field and solar wind speed.展开更多
Proper knowledge of the nature of geomagnetic storms and their relationships with the conditions of the space environment at the outer part of the Earth's magnetosphere(bow shock nose) is essential to increase our...Proper knowledge of the nature of geomagnetic storms and their relationships with the conditions of the space environment at the outer part of the Earth's magnetosphere(bow shock nose) is essential to increase our resilience to space weather disturbances. In this article, we present an analysis of the interplanetary magnetic field(IMF) and solar wind parameters relevant to 100 geomagnetic storms in Solar Cycle 24. We revisit the relationship between the minimum disturbance storm time index(Dst_(min)), the minimum southward IMF(B_(S, min)), the maximum solar wind density(N_(SW, max)) and speed(V_(max)), and the lag time between the extrema(dT(B_(z), N),dT(B_(z), V)). We end with a regression formula that fits the data, with a coefficient of determination of 0.58, a root mean square error of 21.30 nT, and a mean absolute error of 15.87 nT. Even though more complex machine learning models can outperform this model, it serves as a theoretically sensible alternative for understanding and forecasting geomagnetic storms.展开更多
Stratospheric airships are lighter-than-air vehicles capable of continuous flying for months.The energy balance of the airship is the key to long-duration flights.The stratospheric airship is entirely powered by the s...Stratospheric airships are lighter-than-air vehicles capable of continuous flying for months.The energy balance of the airship is the key to long-duration flights.The stratospheric airship is entirely powered by the solar array.It is necessary to accurately predict the output power of the array for any flight state.Because of the uneven solar radiation received by the solar array,the traditional model based on components has a slow simulation speed.In this study,a data-driven surrogate modeling approach for prediction the output power of the solar array is proposed.The surrogate model is trained using the samples obtained from the high-accuracy simulation model.By using the input parameter preprocessor,the accuracy of the surrogate model in predicting the output power of the solar array is improved to 98.65%.In addition,the predictive speed of the surrogate model is ten million times faster than the traditional simulation model.Finally,the surrogate model is used to predict the energy balance of stratospheric airships flying throughout the year under actual global wind fields.展开更多
This paper presents a novel design for a Dyson-Harrop CubeSat aimed at harvesting energy from the solar wind. Unlike current photovoltaic-based satellite energy generation, the Dyson-Harrop satellite generates energy ...This paper presents a novel design for a Dyson-Harrop CubeSat aimed at harvesting energy from the solar wind. Unlike current photovoltaic-based satellite energy generation, the Dyson-Harrop satellite generates energy based on the photoelectric effect, which has the potential to achieve significantly higher efficiency than current photovoltaic technology. The proposed CubeSat system consists of three main components: a tether unit, an energy harvesting unit, and the central 3U CubeSat body. The tether unit generates a cylindrical magnetic field along its main tether,effectively concentrating electrons from the solar wind to the energy harvesting unit. The energy harvesting unit includes a spherical electron receiver, functioning as a capacitor, which attracts electrons from the solar wind, as well as an annular flat solar sail that captures photons in the solar wind to eject electrons via the photoelectric effect, resulting in an electric current in the system.The Dyson-Harrop CubeSat is shown to be highly efficient as an energy-generation system, producing approximately 1 kW of power by a 3U CubeSat. This energy can be transmitted via microwave beams to other spacecraft or ground stations on the Earth. It is important to note that this estimation is based on first-principle estimations, and thorough theoretical analysis and experimental validation are required to confirm the feasibility of the concept.展开更多
In this study,we analyzed the untapped energy potential of remote mountainous regions in eastern Morocco,thereby addressing the research gap on sustainable electrification in such areas.We proposed a hybrid energy sys...In this study,we analyzed the untapped energy potential of remote mountainous regions in eastern Morocco,thereby addressing the research gap on sustainable electrification in such areas.We proposed a hybrid energy system corresponding to the local conditions and integrated the solar,wind,and biomass energy using batteries and green hydrogen as storage systems,considering the grid as a backup.Simulations conducted using HOMER Pro indicate an annual energy output of 5.6 GWh from solar,6.9 GWh from wind,and 1 GWh from biomass,thereby ensuring 100%renewable self-sufficiency.The system is highly cost-effective and achieves a levelized cost of energy of 0.024$/kWh while significantly reducing the greenhouse gas emissions by over 99%for CO_(2) and 100%for SO_(2).This study presents a sustainable,reliable,and economically viable solution for rural electrification,which concurs with SDG 7.展开更多
In this study, we examined variability of sun-related energies, auroral electrojet current, ring current, and magnetopause current during solar cycles 23 and 24. The study revealed a dependence of sun-related energies...In this study, we examined variability of sun-related energies, auroral electrojet current, ring current, and magnetopause current during solar cycles 23 and 24. The study revealed a dependence of sun-related energies to the Sun and Earth currents systems with solar activity from 1996 to 2019. A decrease in the correlation between sun-related energies and sunspot number was observed over solar cycles 23 and 24 (0.88 for the solar cycle 23 and 0.66 for the solar cycle 24), with a drop in the speed of magnetic disturbances in the solar wind. These results could be attributed to the decrease in Sun’s magnetic field toroidal component magnitude induced by a weak in sunspots number and solar flares during the solar cycle 24. A weak in the Earth currents systems (auroral electrojet current, ring current, and magnetopause current) is also observed. During the decrease in the Earth currents, several peaks are observed, indicating a nonlinear dependence in the Earth currents variation (ring current, auroral electrojet current, and magnetopause current) from solar cycle 23 to solar cycle 24. This could be attributed to the Corotating Interaction Regions (CIRs) observed during the declining phase of solar cycle 23 and the deep minimum preceding solar cycle 24.展开更多
Wind power,solar power,and electrical load forecasting are essential works to ensure the safe and stable operation of the electric power system.With the increasing permeability of new energy and the rising demand resp...Wind power,solar power,and electrical load forecasting are essential works to ensure the safe and stable operation of the electric power system.With the increasing permeability of new energy and the rising demand response load,the uncertainty on the production and load sides are both increased,bringing new challenges to the forecasting work and putting forward higher requirements to the forecasting accuracy.Most review/survey papers focus on one specific forecasting object(wind,solar,or load),a few involve the above two or three objects,but the forecasting objects are surveyed separately.Some papers predict at least two kinds of objects simultaneously to cope with the increasing uncertainty at both production and load sides.However,there is no corresponding review at present.Hence,our study provides a comprehensive review of wind,solar,and electrical load forecasting methods.Furthermore,the survey of Numerical Weather Prediction wind speed/irradiance correction methods is also included in this manuscript.Challenges and future research directions are discussed at last.展开更多
The Mars Ion and Neutral Particle Analyzer(MINPA)is one of the three scientific instruments onboard the Tianwen-1 orbiter to investigate the Martian space environment.During Tianwen-1’s transfer orbit to Mars,the MIN...The Mars Ion and Neutral Particle Analyzer(MINPA)is one of the three scientific instruments onboard the Tianwen-1 orbiter to investigate the Martian space environment.During Tianwen-1’s transfer orbit to Mars,the MINPA was switched on to measure the solar wind ions.Here,we present the first results of the MINPA observations in the solar wind.During cruise,nearly half of the MINPA ion field-of-view(FOV)was blocked by the lander capsule;thus only the solar-wind ions with azimuthal speeds pointing towards the unblocked FOV sectors could be detected.We perform a detailed comparison of the MINPA’s solar wind observations with data from Earth-based missions when MINPA reached its count-rate peak,finding a general consistency of the ion moments between them.The blocking effect due to the lander is evaluated quantitatively under varying solar-wind velocity conditions.Despite the blocking effect,the MINPA’s solar wind measurements during the transfer orbit suggest a good performance.展开更多
The white-light corona calibrated data with processing level L1 from the LASCO-C2/SOHO instrument, and data from the Wind spacecraft with one-hour and one-minute time resolution on quasi-stationary slow (v between 300...The white-light corona calibrated data with processing level L1 from the LASCO-C2/SOHO instrument, and data from the Wind spacecraft with one-hour and one-minute time resolution on quasi-stationary slow (v between 300-450 km/s at the Earth's orbit) the Solar Wind (SW) parameters in the absence of sporadic SW streams are examined. Within distances from the Sun's center less than R in the range of 20-30 Rs,(Rs, the solar radius), slow wind is known as the streamer belt, and at larger distances it is called the Heliospheric Plasma Sheet (HPS). It is shown that the streamer belt comprises a sequence of pairs of rays. In general, ray brightnesses in each pair can differ, and the magnetic field is oppositely directed in them. The neutral line of the radial magnetic field of the Sun runs along the belt between the rays of each of the pairs.The area in which the streamer belt intersects the ecliptic plane and which lies at the central meridian, will be recorded at the earth's orbit with a time delay of 5-6 days, in the form of one or several peaks with Nmax > 10 cm-3. Furthermore, the simplest density profile of the portion of the HCS has the form of two peaks of a different or identical amplitude . The such a profile is observed in cases where the angle of intersection of the streamer belt with the ecliptic plane near the Sun is sufficiently large, i.e. close to 90°. The two-ray structure of the cross-section of the streamer-belt moves from the Sun to the Earth, it retains not only the angular size of the peaks but also the relative density variations, and the position of the neutral line(sector boundary) in between. At the Earth's orbit the ray structure of the streamer belt provides the source for sharp (i.e. with steep fronts of a duration of a few minutes or shorter) solar wind plasma density peaks (of a duration of several hours) with maximum values Nmax > 10 cm-3.展开更多
The operation and power generation of utility-scale solar energy infrastructure in desert areas are affected by changes in surface erosion processes resulting from the construction of solar photovoltaic(PV)power stati...The operation and power generation of utility-scale solar energy infrastructure in desert areas are affected by changes in surface erosion processes resulting from the construction of solar photovoltaic(PV)power stations.However,few studies have addressed the interactions between solar PV arrays and aeolian erosion processes.In this study,wind flow field characteristics and the vertical distribution of sediments were investigated in the near-surface transport layer at three different locations with respect to the solar PV arrays in a 200 WM-p PV power station in the central Hobq Desert,northwestern China.The results indicate that the sediment transport varied around the panels,with the greatest transport occurring between the panels,followed by behind and in front of the panels.The sediment fluxes of all of the observation sites obey an exponential function.The secondary flow field zones formed around the PV panels:the conflux accelerating zone between the panels,the resistance decelerating zone of the under panels,and the transition zone of the rapid velocity increase in front of and behind the panels.This resulted in a greater shear force in front of the panels under the downward flow diversion effect of PV panels,and the wind erosion depressions were finally formed here.The results of this study provide information for planning better technical schemes for wind-sand hazards at solar PV power stations,which would ensure operational stability and safety in desert areas.展开更多
If two or more renewable energy sources are available in the same region, their complementary can be advantageous in a hybrid power system. Three indices are defined in this work for assessing the complementarity of s...If two or more renewable energy sources are available in the same region, their complementary can be advantageous in a hybrid power system. Three indices are defined in this work for assessing the complementarity of solar and wind resources for energy production. Based on existing data of solar radiation and wind speed, these complementarity indices were calculated and represented in the form of maps for the state of Rio Grande do Sul, in southern Brazil. The results found suggest that there are some areas of the state where the use of hybrid wind-solar power systems could be more effective than single photovoltaic or wind systems.展开更多
Wind-solar hybrid systems are employed extensively due to certain advantages. However, two problems exist in their application: the PV modules operate at high temperatures, particularly during summer, and low wind pow...Wind-solar hybrid systems are employed extensively due to certain advantages. However, two problems exist in their application: the PV modules operate at high temperatures, particularly during summer, and low wind power cannot be utilized. To solve these two problems, a novel hybrid system is designed based on PV/thermal systems, in which PV modules are cooled with fans driven by a wind turbine. This paper studies the practicability of the novel hybrid system. First, the electrical performance of the wind turbine is compared using a fan and battery load,respectively. Second, different types and numbers of fans are tested to obtain the largest air volume. Third, the height of the air duct on the back of the PV module is optimized and the cooling effect is studied. Results show that a 24 V DC fan is more appropriate for the novel system than a 12 V DC fan, as it provides a greater air volume, and with a switch wind speed of 3.0 m/s the power of PV module shows a maximum increase of 8.0%.展开更多
This paper presents the generation of kinetic Alfv én wave(KAW) coherent structures of magnetic filaments applicable to solar wind at 1 AU,when the background plasma density is modified by parallel ponderomotive ...This paper presents the generation of kinetic Alfv én wave(KAW) coherent structures of magnetic filaments applicable to solar wind at 1 AU,when the background plasma density is modified by parallel ponderomotive force and Joule heating.The inhomogeneity in the magnetic field,which was included as a perturbation in the transverse direction of the magnetic field,takes energy from the main pump KAWs and generates the filamentary structures.When the intensity is high enough,the filaments are broken down and the energy initially confined to low wavenumbers is redistributed to higher wavenumbers,leading to cascades of energy at small scales less than the ion acoustic gyroradius or comparable to electron gyroradius.The magnetic field spectral profile is generated from the numerical simulation results,and its dependence on different directions of the wavevector and initial conditions of the simulation representing the transverse magnetic field inhomogeneity is studied.The relevance of these results with other spacecraft observations and measurements is also pointed out.展开更多
Solar Wind Charge eXchange X-ray(SWCX) emission in the heliosphere and Ea rth’s exosphere is a hard to avoid signal in soft Xray obse rvations of astrophysical targets.On the other hand,the X-ray imaging possibilitie...Solar Wind Charge eXchange X-ray(SWCX) emission in the heliosphere and Ea rth’s exosphere is a hard to avoid signal in soft Xray obse rvations of astrophysical targets.On the other hand,the X-ray imaging possibilities offered by the SWCX process has led to an increasing number of future dedicated space missions for investigating the solar wind-terrestrial inte ractions and magnetospheric interfaces.In both cases,accurate modelling of the SWCX emission is key to correctly interpret its signal,and remove it from obse rvations,when needed.In this paper,we compile solar wind abundance measurements from ACE for different solar wind types,and atomic data from literature,including charge exchange cross-sections and emission probabilities,used fo r calculating the compound cross-section a for the SWCX X-ray emission.We calculate a values for charge-exchange with H and He,relevant to soft X-ray energy bands(0.1-2.0 keV)for various solar wind types and solar cycle conditions.展开更多
It is a significant task to predict the solar activity for space weather and solar physics. All kinds of approaches have been used to forecast solar activities, and they have been applied to many areas such as the sol...It is a significant task to predict the solar activity for space weather and solar physics. All kinds of approaches have been used to forecast solar activities, and they have been applied to many areas such as the solar dynamo of simulation and space mission planning. In this paper, we employ the long-shortterm memory(LSTM) and neural network autoregression(NNAR) deep learning methods to predict the upcoming 25 th solar cycle using the sunspot area(SSA) data during the period of May 1874 to December2020. Our results show that the 25 th solar cycle will be 55% stronger than Solar Cycle 24 with a maximum sunspot area of 3115±401 and the cycle reaching its peak in October 2022 by using the LSTM method. It also shows that deep learning algorithms perform better than the other commonly used methods and have high application value.展开更多
The sun-grazing comet C/2011 W3(Lovejoy)showed a distorted,unconventional tail morphology near its perihelion(1.2Rs).Based on the“Solar Corona and Inner Heliosphere”modeling result of the magnetic field and plasma d...The sun-grazing comet C/2011 W3(Lovejoy)showed a distorted,unconventional tail morphology near its perihelion(1.2Rs).Based on the“Solar Corona and Inner Heliosphere”modeling result of the magnetic field and plasma dynamics in the solar corona,we use the Runge-Kutta method to simulate the moving trajectory of charged dust and ion particles released at different positions from the C/2011 W3 orbit.We find that the dust particles near the sun,which are subject to a strong magnetic Lorentz force,travel differently from their counterparts distant from the sun,where the latter are mainly affected by the solar gravitational force and radiation pressure.According to the simulation results,we propose that the magnetic mirror effect can rebound the charged dust particles back away from the sun and be regarded as one crucial cause of the dust-free zone formation.We find that ions mainly move along magnetic field lines at an acute angle to the comet's direction of motion.The cometary ions'movement direction was determined by the comet's velocity and the coronal magnetic field,which are responsible for the C/2011 W3’s unique comet tail shape near perihelion.Additionally,the ion particles also experience perpendicular drift motion,mainly dominated by the electric field drift,which is similar to and can be used to approximate the solar wind's transverse velocity at its source region.展开更多
Previous studies have tended to adopt the quasi-decadal variability of the solar cycle (e.g.sunspot number (SSN) or solar radio flux at 10.7 cm (F10.7) to investigate the effect of solar activity on El Ni(n)o-S...Previous studies have tended to adopt the quasi-decadal variability of the solar cycle (e.g.sunspot number (SSN) or solar radio flux at 10.7 cm (F10.7) to investigate the effect of solar activity on El Ni(n)o-Southern Oscillation (ENSO).As one of the major terrestrial energy sources,the effect of solar wind energy flux in Earth's magnetosphere (Ein) on the climate has not drawn much attention,due to the big challenge associated with its quantitative estimation.Based on a new Ein index estimated by three-dimensional magnetohydrodynamic simulations from a previous study,this study reveals that Ein exhibits both quasi-decadal variability (periodic 11-year) and interannual (2-4 years) variability,which has rarely before been detected by SSN and F10.7.A significant interannual relationship between the annual mean Ein and subsequent early-winter ENSO is further revealed.Following high Ein,the sea level pressure in the subsequent early winter shows significant positive anomalies from Asia southward to the Maritime Continent,and significant negative anomalies over the Southeast and Northeast Pacific,resembling the Southern Oscillation.Meanwhile,significant upper-level anomalous convergence and divergence winds appear over the western and eastern Pacific,which is configured with significant lower-level anomalous divergence and convergence,indicating a weakening of the Walker circulation.Consequently,notable surface easterly wind anomalies prevail over the eastern tropical Pacific,leading to El Ni(n展开更多
The solar wind protons undergo significant perpendicular heating when they propagate in the interplanetary space.Stochastic heating and cyclotron resonance heating due to kinetic Alfvén waves(KAWs) are two propos...The solar wind protons undergo significant perpendicular heating when they propagate in the interplanetary space.Stochastic heating and cyclotron resonance heating due to kinetic Alfvén waves(KAWs) are two proposed mechanisms. Which mechanism accounts for the perpendicular heating is still an open question. This paper performs tests for the two mechanisms based on Wind observations during 2004 June and 2019 May. Results show that heating rates in terms of stochastic heating theory considerably depend on the parameter of plasma β. For the solar wind with moderately high β, the theoretical heating rates are comparable to or larger than empirical heating rates, suggesting that the stochastic heating could be a powerful mechanism. For the solar wind with low β, on the contrary, the majority of data have theoretical heating rates much lower than empirical heating rates, showing that the stochastic heating seems to be weak in this case. On the other hand, it is found that, when the propagation angles of KAWs are around 70°, theoretically predicted damping wavenumbers of KAWs are equal to the observed wavenumbers at which magnetic energy spectra become significantly steep. This may imply that resonance heating due to cyclotron damping of KAWs could be another mechanism if KAWs have propagation angles around 70°.展开更多
Voyager 1 occasionally detected sudden jumps of the local interstellar magnetic field strength since its heliopause crossing in August 2012.These events were believed to be associated with outward propagating solar wi...Voyager 1 occasionally detected sudden jumps of the local interstellar magnetic field strength since its heliopause crossing in August 2012.These events were believed to be associated with outward propagating solar wind shocks originating in the inner heliosphere.Here we investigate the correlation between interstellar shocks and large-scale solar wind events by means of numerical MHD simulation.The solar wind is simplified as a symmetric flow near the equatorial plane,and the interstellar neutrals are treated as a constant flow with a fixed density distribution along the upwind direction of the local interstellar medium.The charge exchanges between the solar wind plasma and the interstellar neutrals are taken into account.At a heliocentric distance of 1 AU,the solar wind data from OMNI,STEREO A and B during the period between 2010 and 2017 are used as the inner boundary conditions to drive the simulation.The simulation results showed that the solar wind gradually merges into large-scale structures as the radial distance increases,consistent with observations by New Horizons.After propagating into the inner heliosheath,the shocks are fully developed and the corresponding pressure pulses roughly agree with the observations by Voyager 2 in the inner heliosheath.The arrival of the shocks beyond the heliopause is estimated and found to be consistent with the observed signatures of interstellar shocks by Voyager 1.The possible origins of interstellar shocks in the inner heliosheath are discussed based on the simulation.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41074132,41274193 and41474166).
文摘An X1.7 flare at 10:15 UT and a halo CME with a projected speed of 942 km s-1 erupted from NOAA solar active region 9393 located at N20 W19,which were observed on 2001 March 29.When the CME reached the Earth,it triggered a super geomagnetic storm(hereafter super storm).We find that the CME always moved towards the Earth according to the intensity-time profiles of protons with different energies.The solar wind parameters responsible for the main phase of the super storm occurred on 2001 March 31 are analyzed while taking into account the delayed geomagnetic effect of solar wind at the L1 point and using the SYM-H index.According to the variation properties of SYM-H index during the main phase of the super storm,the main phase of the super storm is divided into two parts.A comparative study of solar wind parameters responsible for two parts shows the evidence that the solar wind density plays a significant role in transferring solar wind energy into the magnetosphere,besides the southward magnetic field and solar wind speed.
文摘Proper knowledge of the nature of geomagnetic storms and their relationships with the conditions of the space environment at the outer part of the Earth's magnetosphere(bow shock nose) is essential to increase our resilience to space weather disturbances. In this article, we present an analysis of the interplanetary magnetic field(IMF) and solar wind parameters relevant to 100 geomagnetic storms in Solar Cycle 24. We revisit the relationship between the minimum disturbance storm time index(Dst_(min)), the minimum southward IMF(B_(S, min)), the maximum solar wind density(N_(SW, max)) and speed(V_(max)), and the lag time between the extrema(dT(B_(z), N),dT(B_(z), V)). We end with a regression formula that fits the data, with a coefficient of determination of 0.58, a root mean square error of 21.30 nT, and a mean absolute error of 15.87 nT. Even though more complex machine learning models can outperform this model, it serves as a theoretically sensible alternative for understanding and forecasting geomagnetic storms.
基金supported by the National Natural Science Foundation of China(Nos.51775021,52302511)the Fundamental Research Funds for the Central Universities,China(Nos.YWF-23-JC-01,YWF-23-JC-04,YWF-23-JC-09)。
文摘Stratospheric airships are lighter-than-air vehicles capable of continuous flying for months.The energy balance of the airship is the key to long-duration flights.The stratospheric airship is entirely powered by the solar array.It is necessary to accurately predict the output power of the array for any flight state.Because of the uneven solar radiation received by the solar array,the traditional model based on components has a slow simulation speed.In this study,a data-driven surrogate modeling approach for prediction the output power of the solar array is proposed.The surrogate model is trained using the samples obtained from the high-accuracy simulation model.By using the input parameter preprocessor,the accuracy of the surrogate model in predicting the output power of the solar array is improved to 98.65%.In addition,the predictive speed of the surrogate model is ten million times faster than the traditional simulation model.Finally,the surrogate model is used to predict the energy balance of stratospheric airships flying throughout the year under actual global wind fields.
基金supported by the Discovery grant(No.RGPIN-2024-06290)the CREATE grant(No.504156)of the Natural Sciences and Engineering Research Council of Canada.
文摘This paper presents a novel design for a Dyson-Harrop CubeSat aimed at harvesting energy from the solar wind. Unlike current photovoltaic-based satellite energy generation, the Dyson-Harrop satellite generates energy based on the photoelectric effect, which has the potential to achieve significantly higher efficiency than current photovoltaic technology. The proposed CubeSat system consists of three main components: a tether unit, an energy harvesting unit, and the central 3U CubeSat body. The tether unit generates a cylindrical magnetic field along its main tether,effectively concentrating electrons from the solar wind to the energy harvesting unit. The energy harvesting unit includes a spherical electron receiver, functioning as a capacitor, which attracts electrons from the solar wind, as well as an annular flat solar sail that captures photons in the solar wind to eject electrons via the photoelectric effect, resulting in an electric current in the system.The Dyson-Harrop CubeSat is shown to be highly efficient as an energy-generation system, producing approximately 1 kW of power by a 3U CubeSat. This energy can be transmitted via microwave beams to other spacecraft or ground stations on the Earth. It is important to note that this estimation is based on first-principle estimations, and thorough theoretical analysis and experimental validation are required to confirm the feasibility of the concept.
基金supported by CPS2E Laboratory,National Higher School of Mines of Rabat.
文摘In this study,we analyzed the untapped energy potential of remote mountainous regions in eastern Morocco,thereby addressing the research gap on sustainable electrification in such areas.We proposed a hybrid energy system corresponding to the local conditions and integrated the solar,wind,and biomass energy using batteries and green hydrogen as storage systems,considering the grid as a backup.Simulations conducted using HOMER Pro indicate an annual energy output of 5.6 GWh from solar,6.9 GWh from wind,and 1 GWh from biomass,thereby ensuring 100%renewable self-sufficiency.The system is highly cost-effective and achieves a levelized cost of energy of 0.024$/kWh while significantly reducing the greenhouse gas emissions by over 99%for CO_(2) and 100%for SO_(2).This study presents a sustainable,reliable,and economically viable solution for rural electrification,which concurs with SDG 7.
文摘In this study, we examined variability of sun-related energies, auroral electrojet current, ring current, and magnetopause current during solar cycles 23 and 24. The study revealed a dependence of sun-related energies to the Sun and Earth currents systems with solar activity from 1996 to 2019. A decrease in the correlation between sun-related energies and sunspot number was observed over solar cycles 23 and 24 (0.88 for the solar cycle 23 and 0.66 for the solar cycle 24), with a drop in the speed of magnetic disturbances in the solar wind. These results could be attributed to the decrease in Sun’s magnetic field toroidal component magnitude induced by a weak in sunspots number and solar flares during the solar cycle 24. A weak in the Earth currents systems (auroral electrojet current, ring current, and magnetopause current) is also observed. During the decrease in the Earth currents, several peaks are observed, indicating a nonlinear dependence in the Earth currents variation (ring current, auroral electrojet current, and magnetopause current) from solar cycle 23 to solar cycle 24. This could be attributed to the Corotating Interaction Regions (CIRs) observed during the declining phase of solar cycle 23 and the deep minimum preceding solar cycle 24.
基金supported by China Three Gorges Corporation(Key technology research and demonstration application of large-scale source-net-load-storage integration under the vision of carbon neutrality)Fundamental Research Funds for the Central Universities(2020MS021).
文摘Wind power,solar power,and electrical load forecasting are essential works to ensure the safe and stable operation of the electric power system.With the increasing permeability of new energy and the rising demand response load,the uncertainty on the production and load sides are both increased,bringing new challenges to the forecasting work and putting forward higher requirements to the forecasting accuracy.Most review/survey papers focus on one specific forecasting object(wind,solar,or load),a few involve the above two or three objects,but the forecasting objects are surveyed separately.Some papers predict at least two kinds of objects simultaneously to cope with the increasing uncertainty at both production and load sides.However,there is no corresponding review at present.Hence,our study provides a comprehensive review of wind,solar,and electrical load forecasting methods.Furthermore,the survey of Numerical Weather Prediction wind speed/irradiance correction methods is also included in this manuscript.Challenges and future research directions are discussed at last.
基金supported by the Key Research Program of the Chinese Academy of Sciences(Grant NO.ZDBS-SSW-TLC00103)Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB41000000)+3 种基金NNSFC Grant No.41974170 and 41974196Specialized Research Fund for State Key Laboratories of China,and Pandeng Program of National Space Science Center,Chinese Academy of Sciences.BBT(2019153),YTZ(2017186),WYL(2018177)LHX(2021144)were supported by the Youth Innovation Promotion Associationfunded by the Young Elite Scientists Sponsorship Program by CAST.
文摘The Mars Ion and Neutral Particle Analyzer(MINPA)is one of the three scientific instruments onboard the Tianwen-1 orbiter to investigate the Martian space environment.During Tianwen-1’s transfer orbit to Mars,the MINPA was switched on to measure the solar wind ions.Here,we present the first results of the MINPA observations in the solar wind.During cruise,nearly half of the MINPA ion field-of-view(FOV)was blocked by the lander capsule;thus only the solar-wind ions with azimuthal speeds pointing towards the unblocked FOV sectors could be detected.We perform a detailed comparison of the MINPA’s solar wind observations with data from Earth-based missions when MINPA reached its count-rate peak,finding a general consistency of the ion moments between them.The blocking effect due to the lander is evaluated quantitatively under varying solar-wind velocity conditions.Despite the blocking effect,the MINPA’s solar wind measurements during the transfer orbit suggest a good performance.
基金Supported by the China-Russia Joint Research Center on Space Weather, Chinese Academy of Sciences
文摘The white-light corona calibrated data with processing level L1 from the LASCO-C2/SOHO instrument, and data from the Wind spacecraft with one-hour and one-minute time resolution on quasi-stationary slow (v between 300-450 km/s at the Earth's orbit) the Solar Wind (SW) parameters in the absence of sporadic SW streams are examined. Within distances from the Sun's center less than R in the range of 20-30 Rs,(Rs, the solar radius), slow wind is known as the streamer belt, and at larger distances it is called the Heliospheric Plasma Sheet (HPS). It is shown that the streamer belt comprises a sequence of pairs of rays. In general, ray brightnesses in each pair can differ, and the magnetic field is oppositely directed in them. The neutral line of the radial magnetic field of the Sun runs along the belt between the rays of each of the pairs.The area in which the streamer belt intersects the ecliptic plane and which lies at the central meridian, will be recorded at the earth's orbit with a time delay of 5-6 days, in the form of one or several peaks with Nmax > 10 cm-3. Furthermore, the simplest density profile of the portion of the HCS has the form of two peaks of a different or identical amplitude . The such a profile is observed in cases where the angle of intersection of the streamer belt with the ecliptic plane near the Sun is sufficiently large, i.e. close to 90°. The two-ray structure of the cross-section of the streamer-belt moves from the Sun to the Earth, it retains not only the angular size of the peaks but also the relative density variations, and the position of the neutral line(sector boundary) in between. At the Earth's orbit the ray structure of the streamer belt provides the source for sharp (i.e. with steep fronts of a duration of a few minutes or shorter) solar wind plasma density peaks (of a duration of several hours) with maximum values Nmax > 10 cm-3.
基金supported by the Major Science and Technology Projects of Inner Mongolia Autonomous Region of China(zdzx2018058-3)the National Key Research and Development Project of China(2016YFC0500906-3)the Scientific and Technological Innovation Guiding Fund Project of Inner Mongolia Autonomous Region of China and the Scientific Research Project of Universities in Inner Mongolia Autonomous Region of China(NJZY19052)。
文摘The operation and power generation of utility-scale solar energy infrastructure in desert areas are affected by changes in surface erosion processes resulting from the construction of solar photovoltaic(PV)power stations.However,few studies have addressed the interactions between solar PV arrays and aeolian erosion processes.In this study,wind flow field characteristics and the vertical distribution of sediments were investigated in the near-surface transport layer at three different locations with respect to the solar PV arrays in a 200 WM-p PV power station in the central Hobq Desert,northwestern China.The results indicate that the sediment transport varied around the panels,with the greatest transport occurring between the panels,followed by behind and in front of the panels.The sediment fluxes of all of the observation sites obey an exponential function.The secondary flow field zones formed around the PV panels:the conflux accelerating zone between the panels,the resistance decelerating zone of the under panels,and the transition zone of the rapid velocity increase in front of and behind the panels.This resulted in a greater shear force in front of the panels under the downward flow diversion effect of PV panels,and the wind erosion depressions were finally formed here.The results of this study provide information for planning better technical schemes for wind-sand hazards at solar PV power stations,which would ensure operational stability and safety in desert areas.
文摘If two or more renewable energy sources are available in the same region, their complementary can be advantageous in a hybrid power system. Three indices are defined in this work for assessing the complementarity of solar and wind resources for energy production. Based on existing data of solar radiation and wind speed, these complementarity indices were calculated and represented in the form of maps for the state of Rio Grande do Sul, in southern Brazil. The results found suggest that there are some areas of the state where the use of hybrid wind-solar power systems could be more effective than single photovoltaic or wind systems.
文摘Wind-solar hybrid systems are employed extensively due to certain advantages. However, two problems exist in their application: the PV modules operate at high temperatures, particularly during summer, and low wind power cannot be utilized. To solve these two problems, a novel hybrid system is designed based on PV/thermal systems, in which PV modules are cooled with fans driven by a wind turbine. This paper studies the practicability of the novel hybrid system. First, the electrical performance of the wind turbine is compared using a fan and battery load,respectively. Second, different types and numbers of fans are tested to obtain the largest air volume. Third, the height of the air duct on the back of the PV module is optimized and the cooling effect is studied. Results show that a 24 V DC fan is more appropriate for the novel system than a 12 V DC fan, as it provides a greater air volume, and with a switch wind speed of 3.0 m/s the power of PV module shows a maximum increase of 8.0%.
文摘This paper presents the generation of kinetic Alfv én wave(KAW) coherent structures of magnetic filaments applicable to solar wind at 1 AU,when the background plasma density is modified by parallel ponderomotive force and Joule heating.The inhomogeneity in the magnetic field,which was included as a perturbation in the transverse direction of the magnetic field,takes energy from the main pump KAWs and generates the filamentary structures.When the intensity is high enough,the filaments are broken down and the energy initially confined to low wavenumbers is redistributed to higher wavenumbers,leading to cascades of energy at small scales less than the ion acoustic gyroradius or comparable to electron gyroradius.The magnetic field spectral profile is generated from the numerical simulation results,and its dependence on different directions of the wavevector and initial conditions of the simulation representing the transverse magnetic field inhomogeneity is studied.The relevance of these results with other spacecraft observations and measurements is also pointed out.
文摘Solar Wind Charge eXchange X-ray(SWCX) emission in the heliosphere and Ea rth’s exosphere is a hard to avoid signal in soft Xray obse rvations of astrophysical targets.On the other hand,the X-ray imaging possibilities offered by the SWCX process has led to an increasing number of future dedicated space missions for investigating the solar wind-terrestrial inte ractions and magnetospheric interfaces.In both cases,accurate modelling of the SWCX emission is key to correctly interpret its signal,and remove it from obse rvations,when needed.In this paper,we compile solar wind abundance measurements from ACE for different solar wind types,and atomic data from literature,including charge exchange cross-sections and emission probabilities,used fo r calculating the compound cross-section a for the SWCX X-ray emission.We calculate a values for charge-exchange with H and He,relevant to soft X-ray energy bands(0.1-2.0 keV)for various solar wind types and solar cycle conditions.
基金supported by the National Natural Science Foundation of China under Grant numbers U2031202,U1731124 and U1531247the special foundation work of the Ministry of Science and Technology of the People’s Republic of China under Grant number 2014FY120300the 13th Five-year Informatization Plan of Chinese Academy of Sciences under Grant number XXH13505-04。
文摘It is a significant task to predict the solar activity for space weather and solar physics. All kinds of approaches have been used to forecast solar activities, and they have been applied to many areas such as the solar dynamo of simulation and space mission planning. In this paper, we employ the long-shortterm memory(LSTM) and neural network autoregression(NNAR) deep learning methods to predict the upcoming 25 th solar cycle using the sunspot area(SSA) data during the period of May 1874 to December2020. Our results show that the 25 th solar cycle will be 55% stronger than Solar Cycle 24 with a maximum sunspot area of 3115±401 and the cycle reaching its peak in October 2022 by using the LSTM method. It also shows that deep learning algorithms perform better than the other commonly used methods and have high application value.
基金supported by NSFC under contracts No.41874200 and 41421003supported by CNSA under contracts No.D020301 and D020302.
文摘The sun-grazing comet C/2011 W3(Lovejoy)showed a distorted,unconventional tail morphology near its perihelion(1.2Rs).Based on the“Solar Corona and Inner Heliosphere”modeling result of the magnetic field and plasma dynamics in the solar corona,we use the Runge-Kutta method to simulate the moving trajectory of charged dust and ion particles released at different positions from the C/2011 W3 orbit.We find that the dust particles near the sun,which are subject to a strong magnetic Lorentz force,travel differently from their counterparts distant from the sun,where the latter are mainly affected by the solar gravitational force and radiation pressure.According to the simulation results,we propose that the magnetic mirror effect can rebound the charged dust particles back away from the sun and be regarded as one crucial cause of the dust-free zone formation.We find that ions mainly move along magnetic field lines at an acute angle to the comet's direction of motion.The cometary ions'movement direction was determined by the comet's velocity and the coronal magnetic field,which are responsible for the C/2011 W3’s unique comet tail shape near perihelion.Additionally,the ion particles also experience perpendicular drift motion,mainly dominated by the electric field drift,which is similar to and can be used to approximate the solar wind's transverse velocity at its source region.
基金supported by the National Key R&D Program of China[grant number 2016YFA0600703]the National Natural Science Foundation of China[grant numbers 41421004,41505073,and 41605059]the Young Talent Support Plan launched by the China Association for Science and Technology[grant number 2016QNRC001]
文摘Previous studies have tended to adopt the quasi-decadal variability of the solar cycle (e.g.sunspot number (SSN) or solar radio flux at 10.7 cm (F10.7) to investigate the effect of solar activity on El Ni(n)o-Southern Oscillation (ENSO).As one of the major terrestrial energy sources,the effect of solar wind energy flux in Earth's magnetosphere (Ein) on the climate has not drawn much attention,due to the big challenge associated with its quantitative estimation.Based on a new Ein index estimated by three-dimensional magnetohydrodynamic simulations from a previous study,this study reveals that Ein exhibits both quasi-decadal variability (periodic 11-year) and interannual (2-4 years) variability,which has rarely before been detected by SSN and F10.7.A significant interannual relationship between the annual mean Ein and subsequent early-winter ENSO is further revealed.Following high Ein,the sea level pressure in the subsequent early winter shows significant positive anomalies from Asia southward to the Maritime Continent,and significant negative anomalies over the Southeast and Northeast Pacific,resembling the Southern Oscillation.Meanwhile,significant upper-level anomalous convergence and divergence winds appear over the western and eastern Pacific,which is configured with significant lower-level anomalous divergence and convergence,indicating a weakening of the Walker circulation.Consequently,notable surface easterly wind anomalies prevail over the eastern tropical Pacific,leading to El Ni(n
基金supported by the National Natural Science Foundation of China under grant Nos.41874204,41974197 and 11873018supported partly by the Project for Scientific Innovation Talent in Universities of Henan Province (19HASTIT020)。
文摘The solar wind protons undergo significant perpendicular heating when they propagate in the interplanetary space.Stochastic heating and cyclotron resonance heating due to kinetic Alfvén waves(KAWs) are two proposed mechanisms. Which mechanism accounts for the perpendicular heating is still an open question. This paper performs tests for the two mechanisms based on Wind observations during 2004 June and 2019 May. Results show that heating rates in terms of stochastic heating theory considerably depend on the parameter of plasma β. For the solar wind with moderately high β, the theoretical heating rates are comparable to or larger than empirical heating rates, suggesting that the stochastic heating could be a powerful mechanism. For the solar wind with low β, on the contrary, the majority of data have theoretical heating rates much lower than empirical heating rates, showing that the stochastic heating seems to be weak in this case. On the other hand, it is found that, when the propagation angles of KAWs are around 70°, theoretically predicted damping wavenumbers of KAWs are equal to the observed wavenumbers at which magnetic energy spectra become significantly steep. This may imply that resonance heating due to cyclotron damping of KAWs could be another mechanism if KAWs have propagation angles around 70°.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences Grant No.XDB41000000,XDA15052500,XDA17010301,QYZDJ-SSW-JSC028,NNSFC grants 41874171,41674146,41731070,and 41774179the Specialized Research Fund for State Key Laboratories of China and NSSC research fund for key development directions,and the Civil Aerospace"13th Five-Year Plan"PreliminaryResearch in space science(project No:D020301,D030202)。
文摘Voyager 1 occasionally detected sudden jumps of the local interstellar magnetic field strength since its heliopause crossing in August 2012.These events were believed to be associated with outward propagating solar wind shocks originating in the inner heliosphere.Here we investigate the correlation between interstellar shocks and large-scale solar wind events by means of numerical MHD simulation.The solar wind is simplified as a symmetric flow near the equatorial plane,and the interstellar neutrals are treated as a constant flow with a fixed density distribution along the upwind direction of the local interstellar medium.The charge exchanges between the solar wind plasma and the interstellar neutrals are taken into account.At a heliocentric distance of 1 AU,the solar wind data from OMNI,STEREO A and B during the period between 2010 and 2017 are used as the inner boundary conditions to drive the simulation.The simulation results showed that the solar wind gradually merges into large-scale structures as the radial distance increases,consistent with observations by New Horizons.After propagating into the inner heliosheath,the shocks are fully developed and the corresponding pressure pulses roughly agree with the observations by Voyager 2 in the inner heliosheath.The arrival of the shocks beyond the heliopause is estimated and found to be consistent with the observed signatures of interstellar shocks by Voyager 1.The possible origins of interstellar shocks in the inner heliosheath are discussed based on the simulation.