期刊文献+
共找到1,482篇文章
< 1 2 75 >
每页显示 20 50 100
Adsorption characteristics of Pb(Ⅱ)ions on sulfidized hemimorphite surface under ammonium sulfate system 被引量:3
1
作者 Xi Zhang Jiushuai Deng +5 位作者 Yu Wang Sihao Li Honghui Zhao Chang Liu Zhitao Ma Zhenwu Sun 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第4期511-518,共8页
In this work,the effect of ammonium sulfate on the adsorption characteristics of low-concentration Pb(Ⅱ)ions on the sulfidized hemimorphite surface was comprehensively investigated.The results showed that ammonium su... In this work,the effect of ammonium sulfate on the adsorption characteristics of low-concentration Pb(Ⅱ)ions on the sulfidized hemimorphite surface was comprehensively investigated.The results showed that ammonium sulfate could increase the maximum recovery of hemimorphite from 69.42%to 88.24%under a low concentration of Pb(Ⅱ)ions.On the hemimorphite surface pretreated with ammonium sulfate,the adsorption of Pb(Ⅱ)ions was enhanced and the main species of Pb adsorbed was changed from Pb―O/OH to PbS.This was due to the larger amount of ZnS providing more effective adsorption sites for Pb components to generate Pb S.Meanwhile,the intensity of ZnS decreased with the formation of PbS,demonstrating that ZnS was covered by PbS which formed later on the mineral surface.It was beneficial for the adsorption of butyl xanthate on the hemimorphite surface to form more hydrophobic substances.As a result,ammonium sulfate played a crucial role in realizing the efficient recovery of hemimorphite. 展开更多
关键词 HEMIMORPHITE Sulfidation flotation Ammonium sulfate Pb(II)ions Adsorption characteristics
在线阅读 下载PDF
Experimental and molecular dynamics simulation insights into enhanced flotation of sulfidized smithsonite in a Cu–Pb dual activation system 被引量:2
2
作者 Wenhang Yang Yanyu Tang +2 位作者 Bin Huang Guang Han Qicheng Feng 《Green and Smart Mining Engineering》 2025年第1期8-17,共10页
The limited active sites on the smithsonite surface pose significant challenges to the interaction between collectors and the mineral surface,resulting in suboptimal flotation recovery.This study investigates the infl... The limited active sites on the smithsonite surface pose significant challenges to the interaction between collectors and the mineral surface,resulting in suboptimal flotation recovery.This study investigates the influences of Pb^(2+)and Cu^(2+)on the reactivity,sulfidized components,and collector adsorption on the sulfidized smithsonite surface.Flotation results demonstrated that metal ions significantly improved the flotation behavior of sulfidized smithsonite.With Cu^(2+)or Pb^(2+)activation,the flotation recovery of sulfidized smithsonite reached 80.42%and 84.52%,respectively.Notably,surface activation was further enhanced in the Cu-Pb co-activation system,achieving a flotation recovery of 97.69%.Xray photoelectron spectroscopy(XPS)and time-of-flight secondary ion mass spectroscopy(ToF-SIMS)confirmed an increase in sulfidization products on the smithsonite surface following activation with either Pb^(2+)or Cu^(2+),with further enhancement observed in the Cu-Pb co-activation system.Atomic force microscope(AFM)and scanning electron microscope(SEM)revealed morphological changes and variations in elemental content,demonstrating the formation of substantial Cu and Pb sulfidized components on the smithsonite surface in the Cu-Pb co-activation system.Molecular dynamics simulations indicated that the relative concentrations of HS-and metal ions were higher near the smithsonite in the Cu-Pb co-activation system than in the single metal ion activation system.The improved adsorption behavior of the collector on the sulfidized smithsonite surface following Cu-Pb co-activation was confirmed through Fourier transform infrared(FTIR)analysis,adsorption measurements,and contact angle tests.Results reveal that Cu-Pb coactivation remarkably enhances potassium pentyl xanthate(KAX)adsorption on the sulfidized smithsonite surface,providing an innovative approach for improving smithsonite flotation. 展开更多
关键词 sulfidized smithsonite Cu-Pb dual activation Surface modification Collector adsorption Flotation enhancement
在线阅读 下载PDF
Synergistic effect between biochar and sulfidized nano-sized zero-valent iron enhanced cadmium immobilization in a contaminated paddy soil 被引量:1
3
作者 Yu Zhou Lu Lv +6 位作者 Zhi Yu Jian Zhang Bing Wang Ruidong Yang Miao Chen Pan Wu Shengsen Wang 《Biochar》 CSCD 2024年第1期972-988,共17页
Biochar-based sulfidized nano-sized zero-valent iron(SNZVI/BC)can effectively immobilize cadmium(Cd)in contaminated paddy soils.However,the synergistic effects between biochar and SNZVI on Cd immobilization,as well as... Biochar-based sulfidized nano-sized zero-valent iron(SNZVI/BC)can effectively immobilize cadmium(Cd)in contaminated paddy soils.However,the synergistic effects between biochar and SNZVI on Cd immobilization,as well as the underlying mechanisms remain unclear.Herein,a soil microcosm incubation experiment was performed to investigate the immobilization performance of SNZVI/BC towards Cd in the contaminated paddy soil.Results indicated that the addition of SNZVI/BC at a dosage of 3%significantly lessened the concentration of available Cd in the contaminated soil from 14.9(without addition)to 9.9 mg kg^(−1)with an immobilization efficiency of 33.3%,indicating a synergistic effect.The sequential extraction results indicated that the proportion of the residual Cd in the contaminated soil increased from 8.1 to 10.3%,manifesting the transformation of the unstable Cd fractions to the steadier specie after application of SNZVI/BC.Also,the addition of SNZVI/BC increased soil pH,organic matter,and dissolved organic carbon,which significantly altered the bacterial community in the soil,enriching the relative abundances of functional microbes(e.g.,Bacillus,Clostridium,and Desulfosporosinus).These functional microorganisms further facilitated the generation of ammonium,nitrate,and ferrous iron in the contaminated paddy soil,enhancing nutrients’availability.The direct interaction between SNZVI/BC and Cd^(2+),the altered soil physicochemical properties,and the responded bacterial community played important roles in Cd immobilization in the contaminated soil.Overall,the biochar-based SNZVI is a promising candidate for the effective immobilization of Cd and the improvement of nutrients’availability in the contaminated paddy soil. 展开更多
关键词 BIOCHAR Potentially toxic element Soil remediation Microbial response sulfidized nano-sized zero-valent iron
原文传递
Effect of fluoride roasting on copper species transformation on chrysocolla surfaces and its role in enhanced sulfidation flotation
4
作者 Yingqiang Ma Xin Huang +5 位作者 Yafeng Fu Zhenguo Song Sen Luo Shuanglin Zheng Feng Rao Wanzhong Yin 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期165-176,共12页
It is difficult to recover chrysocolla from sulfidation flotation which is closely related to the mineral surface composition.In this study,the effects of fluoride roasting on the surface composition of chrysocolla we... It is difficult to recover chrysocolla from sulfidation flotation which is closely related to the mineral surface composition.In this study,the effects of fluoride roasting on the surface composition of chrysocolla were investigated,its impact on sulfidation flotation was explored,and the mechanisms involved in both fluoride roasting and sulfidation flotation were discussed.With CaF_(2)as the roasting reagent,Na_(2)S·9H_(2)O as the sulfidation reagent,and sodium butyl xanthate(NaBX)as the collector,the results of the flotation experiments showed that fluoride roasting improved the floatability of chrysocolla,and the recovery rate increased from 16.87%to 82.74%.X-ray diffraction analysis revealed that after fluoride roasting,approximately all the Cu on the chrysocolla surface was exposed in the form of CuO,which could provide a basis for subsequent sulfidation flotation.The microscopy and elemental analyses revealed that large quantities of"pagoda-like"grains were observed on the sulfidation surface of the fluoride-roasted chrysocolla,indicating high crystallinity particles of copper sulfide.This suggests that the effect of sulfide formation on the chrysocolla surface was more pronounced.X-ray photoelectron spectroscopy revealed that fluoride roasting increased the relative contents of sulfur and copper on the surface and that both the Cu~+and polysulfide fractions on the surface of the minerals increased.This enhances the effect of sulfidation,which is conducive to flotation recovery.Therefore,fluoride roasting improved the effect of copper species transformation and sulfidation on the surface of chysocolla,promoted the adsorption of collectors,and improved the recovery of chrysocolla from sulfidation flotation. 展开更多
关键词 sulfidation flotation CHRYSOCOLLA fluoride roasting copper species transformation enhanced sulfidation
在线阅读 下载PDF
Effect of hydrogen sulfide on reductive leaching of chalcopyrite by copper
5
作者 Xin SUN Rui LIAO +5 位作者 Zu-chao PAN Yi-sheng ZHANG Mao-xin HONG Yan-sheng ZHANG Jun WANG Guan-zhou QIU 《Transactions of Nonferrous Metals Society of China》 2026年第1期287-297,共11页
A series of leaching and electrochemical experiments were conducted to elucidate the critical role of hydrogen sulfide(H_(2)S)in copper-driven reduction of chalcopyrite.Results demonstrate that in the absence of H_(2)... A series of leaching and electrochemical experiments were conducted to elucidate the critical role of hydrogen sulfide(H_(2)S)in copper-driven reduction of chalcopyrite.Results demonstrate that in the absence of H_(2)S,metallic copper converts chalcopyrite into bornite(Cu_(5)FeS_(4)).However,the introduction of H_(2)S promotes the formation of chalcocite(Cu_(2)S)by altering the oxidation pathway of copper.Electrochemical analysis demonstrates that the presence of H₂S significantly reduces the corrosion potential of copper from 0.251 to−0.223 V(vs SHE),reaching the threshold necessary for the formation of Cu_(2)S.Nevertheless,excessive H_(2)S triggers sulfate reduction via the reaction of 8Cu+H_(2)SO_(4)+3H_(2)S=4Cu_(2)S+4H_(2)O(ΔG=−519.429 kJ/mol at 50℃),leading to inefficient copper utilization. 展开更多
关键词 chalcopyrite reduction COPPER hydrogen sulfide CHALCOCITE
在线阅读 下载PDF
Solid-Polymer-Electrolyte Interphase Inductively Formed by Surface Chemistry to Stabilize the High Ni Cathode in Sulfide-Based All-Solid-State Lithium Batteries
6
作者 Guo Tang Gengzhong Lin +5 位作者 Yicheng Deng Hui Li Yuliang Cao Yongjin Fang Hanxi Yang Xinping Ai 《Carbon Energy》 2026年第1期26-37,共12页
High-nickel cathode,LiNi0.8Co0.1Mn0.1O_(2)(NCM811),and sulfide-solid electrolyte are a promising combination for all-solid-state lithium batteries(ASSLBs).However,this combination faces the issue of interfacial instab... High-nickel cathode,LiNi0.8Co0.1Mn0.1O_(2)(NCM811),and sulfide-solid electrolyte are a promising combination for all-solid-state lithium batteries(ASSLBs).However,this combination faces the issue of interfacial instability between the cathode and electrolyte.Given the surface alkalinity of NCM811,we propose a strategy to construct a solid-polymer-electrolyte(SPE)interphase on NCM811 surface by leveraging the surface alkaline residues to nucleophilically initiate the in-situ ring-opening polymerization of cyclic organic molecules.As a proof-of-concept,this study demonstrates that the ring-opening copolymerization of 1,3-dioxolane and maleic anhydride produces a homogeneous,compact,and conformal SPE layer on NCM811 surface to prevent the cathode from contact and reaction with Li6PS5Cl solid-state electrolyte.Consequently,the SPE-modified-NCM811 in ASSLBs exhibits high capacities of 193.5 mA h g^(-1) at 0.2 C,160.9 mA h g^(-1) at 2.0 C and 112.3 mA h g^(-1) at 10 C,and particularly,excellent long-term cycling stabilities over 11000 cycles with a 71.95%capacity retention at 10 C at 25℃,as well as a remained capacity of 117.9 mA h g^(-1) after 8000 cycles at 30 C at 60℃,showing a great application prospect.This study provides a new route for creating electrochemically and structurally stable solid-solid interfaces for ASSLBs. 展开更多
关键词 all-solid-state lithium batteries Ni-rich layered oxides nucleophilic reaction solid-polymer-electrolyte interphase sulfide solid electroly
在线阅读 下载PDF
Defects‑Rich Heterostructures Trigger Strong Polarization Coupling in Sulfides/Carbon Composites with Robust Electromagnetic Wave Absorption 被引量:2
7
作者 Jiaolong Liu Siyu Zhang +14 位作者 Dan Qu Xuejiao Zhou Moxuan Yin Chenxuan Wang Xuelin Zhang Sichen Li Peijun Zhang Yuqi Zhou Kai Tao Mengyang Li Bing Wei Hongjing Wu Mengyang Li Bing Wei Hongjing Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期528-547,共20页
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how... Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response. 展开更多
关键词 Defects-rich heterointerfaces Sulfides Polarization coupling Electromagnetic wave absorption
在线阅读 下载PDF
Hydrogen sulfide reduces oxidative stress in Huntington's disease via Nrf2 被引量:2
8
作者 Zige Jiang Dexiang Liu +7 位作者 Tingting Li Chengcheng Gai Danqing Xin Yijing Zhao Yan Song Yahong Cheng Tong Li Zhen Wang 《Neural Regeneration Research》 SCIE CAS 2025年第6期1776-1788,共13页
The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular an... The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease. 展开更多
关键词 apoptosis CYSTATHIONINE-Β-SYNTHASE nuclear factor erythroid 2-related factor 2 Huntington's disease hydrogen sulfide MITOCHONDRION NEUROPLASTICITY oxidative stress quinolinic acid reactive oxygen species
暂未订购
Preparation of carbon fiber cloth supported porous CdS nanorods with excellent photocatalytic activity for Cr(Ⅵ)reduction 被引量:2
9
作者 LI Hengchao WANG Wenguang +3 位作者 WU Liangpeng JIAN Siyuan LONG Shimin GUO Yuxi 《中南民族大学学报(自然科学版)》 CAS 2025年第1期9-21,共13页
The use of visible-light responsive photocatalysts for removing heavy metal ions in wastewater has received great attention.However,the development of photocatalysts with high activity and recyclability remains a huge... The use of visible-light responsive photocatalysts for removing heavy metal ions in wastewater has received great attention.However,the development of photocatalysts with high activity and recyclability remains a huge challenge.Herein,a recyclable carbon fiber cloth-supported porous CdS nanorod photocatalyst was fabricated by a two-step hydrothermal treatment using AgVO_(3) nanowires as templates.The results indicated that under visible-light illumination,the carbon cloth-supported porous CdS nanorods showed improved photocatalytic activity for the reduction of Cr(Ⅵ),with an apparent rate constant exceeding that of carbon cloth-supported CdS nanospheres by a factor of 1.65 times.Moreover,the carbon cloth-supported porous CdS nanorods can be easily separated and be reused.This brings a new perspective for developing photocatalysts with high efficiency and recyclability for wastewater treatment. 展开更多
关键词 carbon cloth cadmium sulfide silver metavanadate porous nanorods heavy metal ions reduction
在线阅读 下载PDF
Micro-sized hexapod-like CuS/Cu_(9)S_(5) hybrid with broadband electromagnetic wave absorption 被引量:3
10
作者 Mengjun Han Di Lan +5 位作者 Zhiming Zhang Yizhi Zhao Jiaxiao Zou Zhenguo Gao Guanglei Wu Zirui Jia 《Journal of Materials Science & Technology》 2025年第11期302-312,共11页
Reasonable manipulation of component and microstructure is considered as a potential route to realize high-performance microwave absorber.In this paper,micro-sized hexapod-like CuS/Cu_(9)S_(5) composites were synthesi... Reasonable manipulation of component and microstructure is considered as a potential route to realize high-performance microwave absorber.In this paper,micro-sized hexapod-like CuS/Cu_(9)S_(5) composites were synthesized via a facile approach involving the solvothermal method and subsequent sulfuration treatment.The resultant CuS/Cu_(9)S_(5) exhibited superb microwave absorbing capacity with a minimum reflection loss(RLmin)of-59.38 dB at 2.7 mm.The maximum effective absorption bandwidth(EABmax)was 7.44 GHz(10.56-18 GHz)when the thickness was reduced to 2.3 mm.The outstanding microwave absorbing ability of CuS/Cu_(9)S_(5) composites is mainly related to its unique hexapod shape and the formation of heterogeneous interfaces.The unique hexapod shape significantly promotes the multi-reflection of the incident electromagnetic wave(EMW)increasing the attenuation path of EMWs in the material.Hetero-geneous interfaces between CuS/Cu_(9)S_(5) enable powerful interface polarization,contributing to the atten-uation of EMWs propagating in the medium.In addition,the EMW absorption performance of CuS/Cu_(9)S_(5) composites is also inseparable from the conduction loss.This study provides a strong reference for the research of EMW absorbent materials based on transition metal sulfides. 展开更多
关键词 Heterogeneous interface Hexapod shape Transition metal sulfide Electromagnetic wave absorption
原文传递
Flammability of sulfide solid-state electrolytesβ-Li_(3)PS_(4)and Li_(6)PS_(5)Cl:Volatilization and autoignition of sulfur vapor-New insight into all-solid-state battery thermal runaway 被引量:2
11
作者 Thomas A.Yersak Hernando J.Gonzalez Malabet +3 位作者 Vamakshi Yadav Nicholas P.W.Pieczonka Will Collin Mei Cai 《Journal of Energy Chemistry》 2025年第3期651-660,共10页
This study shows that sulfide solid-state electrolytes,β-Li_(3)PS_(4)and Li_(6)PS_(5)Cl,are flammable solids.Both solid-state electrolytes release sulfur vapor in a dry,oxidizing environment at elevated temperature&l... This study shows that sulfide solid-state electrolytes,β-Li_(3)PS_(4)and Li_(6)PS_(5)Cl,are flammable solids.Both solid-state electrolytes release sulfur vapor in a dry,oxidizing environment at elevated temperature<300℃.Sulfur vapor is a highly flammable gas,which then auto-ignites to produce a flame.This behavior suggests that an O_(2)-S gas-gas reaction mechanism may contribute to all-solid-state battery thermal runaway.To improve all-solid-state battery safety,current work focuses on eliminating the O_(2)source by changing the cathode active material.The conclusion of this study suggests that all-solidstate battery safety can also be realized by the development of solid-state electrolytes with less susceptibility to sulfur volatilization. 展开更多
关键词 SULFIDE Solid-state electrolyte FLAMMABILITY ALL-SOLID-STATE Battery Thermal runaway
在线阅读 下载PDF
Layered MoS_(2)-supported and metallic Ni-doped MgH_(2) towards enhanced hydrogen storage kinetics and cycling stability 被引量:1
12
作者 Haimei Tang Yiqi Sun +7 位作者 Hua Ning Hui Luo Qinqin Wei Cunke Huang Zhiqiang Lan Jin Guo Xinhua Wang Haizhen Liu 《Journal of Magnesium and Alloys》 2025年第9期4517-4529,共13页
Mg-based hydrogen storage materials have attracted much attention due to their high hydrogen content,abundant resources,and environmental friendliness.However,the high dehydrogenation temperature,slow kinetics and poo... Mg-based hydrogen storage materials have attracted much attention due to their high hydrogen content,abundant resources,and environmental friendliness.However,the high dehydrogenation temperature,slow kinetics and poor cycling stability are limiting its practical application.This work demonstrates the improved dehydrogenation kinetics and cycling stability of MgH_(2) modified by a hybrid of metallic Ni and layered MoS_(2)(denoted as“Ni-MoS_(2)”)introduced by ball milling,with Ni as the catalyst for MgH_(2) and MoS_(2) as the support for both Ni and MgH_(2).The onset dehydrogenation temperature of MgH_(2) is reduced to 198℃,and the rehydrogenation begins at a low temperature of 50℃.The MgH_(2)+10 wt%Ni-MoS_(2) composite has a fast dehydrogenation kinetics and can release 6.1 wt% hydrogen in 10 min at a constant temperature of 300℃,with the dehydrogenation activation energy significantly reduced from 151 to 85 kJ mol^(-1).During the cycling,the reversible capacity of the composite first exhibits a gradual increase for the initial 22 cycles and then maintains at 6.1 wt% from the 23th cycle to the 50th cycle.The Ni/MoS_(2) addition does not change the overall thermodynamic properties of MgH_(2) but can weaken the Mg-H bonds in the local regions as evident by theoretical calculation.Microstructure studies reveal that the metallic Ni will react with MgH_(2) to form Mg_(2)NiH_(0.3),which can act as a hydrogen pump,while the layered MoS_(2) serves as a support for the well dispersion of MgH_(2) and Ni.It is believed that the synergy of Mg_(2)NiH_(0.3) and layered MoS_(2) contributes to the significantly enhanced hydrogen storage of MgH_(2).This work provides a promising and simple strategy for enhancing the Mg-based hydrogen storage materials by combination of transition metals and layered materials introduced via simple ball milling. 展开更多
关键词 Hydrogen storage Magnesium hydride NICKEL Molybdenum sulfide 2D materials
在线阅读 下载PDF
Deciphering and overcoming the high-voltage limitations of halide and sulfide-based all-solid-state lithium batteries 被引量:1
13
作者 Xiang Qi Gang Wu +5 位作者 Meng Wu Dabing Li Chao Wang Lei Gao Shichao Zhang Li-Zhen Fan 《Journal of Energy Chemistry》 2025年第4期926-935,共10页
Adopting high-voltage Ni-rich cathodes in halide and sulfide-based all-solid-state lithium batteries(ASSLBs)holds great promise for breaking through the 400 Wh kg^(-1)bottleneck.However,both cell configurations are co... Adopting high-voltage Ni-rich cathodes in halide and sulfide-based all-solid-state lithium batteries(ASSLBs)holds great promise for breaking through the 400 Wh kg^(-1)bottleneck.However,both cell configurations are confronted with intricate interfacial challenges in high-voltage regines(>4.5 V),resulting in inadequate cathode utilization and premature cell degradation.Moreover,contrary to previous studies,coupled with LiNi_(0.85)Co_(0.1)Mn_(0.05)O_(2)cathodes,typical halide(Li_(2)ZrCl_(6))-based cells at 4.5 V feature unlimited interfacial degradation and poor long cycle stability,while typical sulfide(Li_(6)PS_(5)Cl)-based cells feature self-limited interfacial degradation and poor initial cycle stability.Herein,this work addresses the high-voltage limitations of Li_(2)ZrCl_(6)and Li_(6)PS_(5)Cl catholyte-based cells by manipulating electrode mass fraction and tailoring interfacial composition,thereby effectively improving interfacial charge-transfer kinetics and(electro)chemical stability within cathodes.After appropriate interface design,both optimized cells at 4.5 V demonstrate remarkably increased initial discharge capacities(>195 mA h g^(-1)at0.1 C),improved cycle stabilities(>80%after 600 cycles at 0.5 C),and enhanced rate performances(>115 mA h g^(-1)at 1.0 C).This work deepens our understanding of high-voltage applications for halide/sulfide electrolytes and provides generalized interfacial design strategies for advancing high-voltage ASSLBs. 展开更多
关键词 All-solid-state lithium batteries Halide solid electrolytes Sulfide solid electrolytes High voltage Interface design
在线阅读 下载PDF
Properties, applications, and challenges of copper- and zinc-based multinary metal sulfide photocatalysts for photocatalytic hydrogen evolution 被引量:1
14
作者 Xinlong Zheng Yiming Song +12 位作者 Chongtai Wang Qizhi Gao Zhongyun Shao Jiaxin Lin Jiadi Zhai Jing Li Xiaodong Shi Daoxiong Wu Weifeng Liu Wei Huang Qi Chen Xinlong Tian Yuhao Liu 《Chinese Journal of Catalysis》 2025年第7期22-70,共49页
The issues of fossil energy shortage and environmental pollution caused by the excessive consumption of conventional fossil fuels necessitates the exploration of renewable and clean energy sources such as hydrogen,whi... The issues of fossil energy shortage and environmental pollution caused by the excessive consumption of conventional fossil fuels necessitates the exploration of renewable and clean energy sources such as hydrogen,which is viable alternative to traditional energy sources in view of its high energy density and nonpolluting nature.In this regard,photocatalytic technology powered by inexhaustible solar energy is an ideal hydrogen production method.The recently developed copper-and zinc-based multinary metal sulfide(MMS)semiconductor photocatalysts exhibit the advantages of suitable bandgap,wide light-harvesting range,and flexible elemental composition,thus possessing great potential for achieving considerable photocatalytic hydrogen evolution(PHE)performance.Despite great progress has been achieved,the current photocatalysts still cannot meet the commercial application demands,which highlights the mechanisms understanding and optimization strategies for efficient PHE.Herein,the basic mechanisms of PHE,and effective optimization strategies are firstly introduced.Afterwards,the research process and the performance of copper-and zinc-based MMS photocatalysts,are thoroughly reviewed.Finally,the unresolved issues,and challenges hindering the achievement of overall water splitting have been discussed. 展开更多
关键词 Multinary metal sulfide Semiconductor photocatalyst Photocatalytic hydrogen evolution Optimization strategy Overall water splitting
在线阅读 下载PDF
Orbital hybridization-engineered electronic structure in multicomponent sulfides boosts the performance of polysulfide/iodide flow batteries 被引量:1
15
作者 Wenjing Li Renhua Qian +7 位作者 Boxu Dong Zhou Xu Changyu Yan Menghan Yang Yuxuan Liu Xinrui Yan Jiantao Zai Xuefeng Qian 《International Journal of Minerals,Metallurgy and Materials》 2025年第11期2814-2820,共7页
Despite their attractive features of high energy density,low cost,and safety,polysulfide/iodide flow batteries(SIFBs)are hampered by the sluggish kinetics of the iodide redox couple,which restricts overall performance... Despite their attractive features of high energy density,low cost,and safety,polysulfide/iodide flow batteries(SIFBs)are hampered by the sluggish kinetics of the iodide redox couple,which restricts overall performance.Multicomponent sulfides are demonstrated as promising catalysts for accelerating I^(-)/I_(3)^(-) redox reactions.Concurrently,the enhanced configurational entropy arising from multinary compositions drives synergistic effects among constituent elements,establishing a viable pathway to optimize catalytic performance.Building on these foundations,this work introduces a targeted orbital hybridization-optimized electron density strategy to enhance the catalytic activity.Implementing this concept,we developed an in-situ solvothermal synthesis process for an entropy-enhanced AgCuZnSnS_(4) loaded graphite felt(ACZTS/GF)electrode.The engineered electrode demonstrates exceptional electrocatalytic performance with improved bulk conductivity and interfacial charge transfer kinetics within a SIFB.The cell achieves a high energy efficiency of 88.5%at 20 mA·cm^(−2) with 10%state-of-charge.Furthermore,the battery delivers a maximum power density of 119.8 mW·cm^(−2) and exhibits excellent long-term cycling stability.These significant results stem from orbital hybridization-driven electronic state optimization and entropy effect-induced synergistic catalysis. 展开更多
关键词 multicomponent sulfides electronic properties synergistic effect polysulfide/iodide redox flow batteries
在线阅读 下载PDF
Newly Discovered High-Sulfidation Mineralization in the Yueyang Silver-Polymetallic Deposit,Zijinshan Ore Field,and Implications for Mineral Exploration 被引量:1
16
作者 Jieyi Li Wenyuan Liu +4 位作者 Hua Long Jingwen Chen Jianhuan Qiu Xiaodan Lai Guiqing Xie 《Journal of Earth Science》 2025年第3期1309-1314,共6页
The Zijinshan ore field located in southwestern Fujian Province,China,is a representative porphyry-epithermal ore system hosting diverse mineralization types(Mao et al.,2013).The ore field comprises of the Zijinshan h... The Zijinshan ore field located in southwestern Fujian Province,China,is a representative porphyry-epithermal ore system hosting diverse mineralization types(Mao et al.,2013).The ore field comprises of the Zijinshan highsulfidation Cu-Au deposit,the Luoboling porphyry Cu-Mo deposit,the transitional style Cu deposit(Longjiangting and Wuziqilong)and the Yueyang low-sulfidation Agpolymetallic deposit(Zhang,2013;Zhang et al.,2003) 展开更多
关键词 transitional style cu high sulfidation mineralization Zijinshan ore field Yueyang silver polymetallic deposit porphyry epithermal ore system ore field mineral exploration diverse mineralization types
原文传递
Construction of 3D porous Cu_(1.81)S/nitrogen-doped carbon frameworks for ultrafast and long-cycle life sodium-ion storage
17
作者 Chen Chen Hongyu Xue +6 位作者 Qilin Hu Mengfan Wang Pan Shang Ziyan Liu Tao Peng Deyang Zhang Yongsong Luo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期191-200,共10页
Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation d... Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation during sodiation-desodiation processes seriously affect its high-rate and long-cyde performance,unbeneficial for the application as fast-charging and long-cycling SIBs anode.Herein,the three-dimensional porous Cu_(1.81)S/nitrogen-doped carbon frameworks(Cu_(1.81)S/NC)are synthesized by the simple and facile sol-gel and annealing processes,which can accommodate the volumetric expansion of Cu_(1.81)S nanoparticles and accelerate the transmission of ions and electrons during Na^(+)insertion/extraction processes,exhibiting the excellent rate capability(250.6 mA·g^(-1)at 20.0 A·g^(-1))and outstanding cycling stability(70% capacity retention for 6000 cycles at 10.0 A·g^(-1))for SIBs.Moreover,the Na-ion full cells coupled with Na_(3)V_(2)(PO_(4))_(3)/C cathode also demonstrate the satisfactory reversible specific capacity of 330.5 mAh·g^(-1)at 5.0 A·g^(-1)and long-cycle performance with the 86.9% capacity retention at 2.0 A·g^(-1)after 750 cycles.This work proposes a promising way for the conversionbased metal sulfides for the applications as fast-charging sodium-ion battery anode. 展开更多
关键词 copper sulfide nanoparticles porous carbon framework fast charging long-cycle performance sodium-ion full batteries
在线阅读 下载PDF
Structural engineering of a bimetallic iron-cobalt sulfide composite anode for superior sodium-ion battery performance
18
作者 FU Zheng-guang LI Nan +2 位作者 SHAO Xin-yu HONG Min SUN Ju-tao 《新型炭材料(中英文)》 北大核心 2025年第5期1113-1122,I0029-I0035,共17页
Transition metal sulfides are considered promising anode materials for sodium-ion batteries(SIBs)due to their high theoretical capacity and low synthesis cost.However,is-sues such as poor cyclic stability and rate per... Transition metal sulfides are considered promising anode materials for sodium-ion batteries(SIBs)due to their high theoretical capacity and low synthesis cost.However,is-sues such as poor cyclic stability and rate performance,arising from volume expansion and structural degradation,remain sig-nificant challenges.We report a novel FeS_(2)/CoS_(2) heterostruc-ture embedded in a 3D carbon aerogel matrix(FeS_(2)/CoS_(2)@C)synthesized by a cross-linking and vulcanization process.The resulting core-shell structure,with bimetallic FeS_(2)/CoS_(2) nano-particles encapsulated in a conductive carbon shell,effectively reduces the adverse effects of volume changes during sodiation/desodiation cycles.The 3D porous carbon network increases both ion and electron diffusion,while preventing agglomeration of the active material and maintaining interface integrity.The FeS_(2)/CoS_(2)@C composite has an outstanding electrochemical performance,including a high specific capacity of 725 mAh g^(-1)at 0.5 A g^(-1)and an exceptional rate capability of 572 mAh g^(-1)at 10 A g^(-1).It also has remarkable cycling stability with no signific-ant capacity decay over 1000 cycles at 5 A g^(-1). 展开更多
关键词 Sodium-ion battery ANODE Metal sulfide High capacity Electrochemical performance
在线阅读 下载PDF
Nanoflower Copper Sulfide as Cathode Materials for Magnesium Ion Batteries
19
作者 He Yuantai Wu Liang +3 位作者 Shi Yongan Zhong Zhiyong Yao Wenhui Pan Fusheng 《稀有金属材料与工程》 北大核心 2025年第3期545-553,共9页
CuS-C50,the cathode materials for magnesium ion batteries,was synthesized by adding the surfactant cetyltrimethyl ammonium bromide(CTAB)and adjusting the percentage of ethylene glycol to 50vol%in hydrothermal synthesi... CuS-C50,the cathode materials for magnesium ion batteries,was synthesized by adding the surfactant cetyltrimethyl ammonium bromide(CTAB)and adjusting the percentage of ethylene glycol to 50vol%in hydrothermal synthesis process.Results show that CuS-C50 has the complete nanoflower structure.In aluminum chloride-pentamethylcydopentodiene/tetrahydrofuran(APC/THF)electrolyte,the CuS-C50 exhibits a high specific capacity of 331.19 mAh/g when the current density is 50 mA/g and still keeps a specific capacity of 136.92 mAh/g over 50 cycles when the current density is 200 mA/g.Results of morphology characterizations indicate that the complete nanoflower structure can provide more active sites and reduce the barriers for Mg^(2+)movement,eventually improving the charge and discharge performance of the CuS cathode materials for magnesium ion batteries. 展开更多
关键词 copper sulfide nanoflower magnesium ion batteries CTAB hydrothermal synthesis
原文传递
Porous spherical MnCo_(2)S_(4) as high⁃performance electrode material for hybrid supercapacitors
20
作者 LUO Min WANG Xiaonan +3 位作者 ZHANG Yaqin PANG Tian LI Fuzhi SHI Pu 《无机化学学报》 北大核心 2025年第2期413-424,共12页
Porous spherical MnCo_(2)S_(4) was synthesized by a simple solvothermal method.Thanks to the well-designedbimetallic composition and the unique porous spherical structure,the MnCo_(2)S_(4) electrode exhibited an excep... Porous spherical MnCo_(2)S_(4) was synthesized by a simple solvothermal method.Thanks to the well-designedbimetallic composition and the unique porous spherical structure,the MnCo_(2)S_(4) electrode exhibited an exceptionalspecific capacitance of 190.8 mAh·g^(-1)at 1 A·g^(-1),greatly higher than the corresponding monometallic sulfides MnS(31.7 mAh·g^(-1))and Co_(3)S_(4)(86.7 mAh·g^(-1)).Impressively,the as-assembled MnCo_(2)S_(4)||porous carbon(PC)hybridsupercapacitor(HSC),showed an outstanding energy density of 76.88 Wh·kg^(-1)at a power density of 374.5 W·kg^(-1),remarkable cyclic performance with a capacity retention of 86.8% after 10000 charge-discharge cycles at 5 A·g^(-1),and excellent Coulombic efficiency of 99.7%. 展开更多
关键词 transitional metal sulfide SUPERCAPACITOR porous spherical structure
在线阅读 下载PDF
上一页 1 2 75 下一页 到第
使用帮助 返回顶部