A novel process for sulfidation of ZnO by co-grinding with sulfur and reductive additives (P, Fe, A1, and Mg) was developed. The sulfidation extent of ZnO with the addition of P, Fe, A1 or Mg can reach 85.2%, 81.6%,...A novel process for sulfidation of ZnO by co-grinding with sulfur and reductive additives (P, Fe, A1, and Mg) was developed. The sulfidation extent of ZnO with the addition of P, Fe, A1 or Mg can reach 85.2%, 81.6%, 96.7% and 92.6% after grinding for 4, 6, 1 and 1 h, respectively. Based on the chemical phase composition analysis and morphological characteristics of sulfidized products by XRD, SEM and TEM, a possible reaction mechanism, mechanically induced self-propagating reaction (MSR), was proposed to explain the sulfidization reaction. In addition, the floatability of sulfidized products was investigated for the recovery of metal sulfide and ZnS can be concentrated with a high concentration ratio and concentrate grade. By using the sulfidizing process, it is expected that the recovery of zinc from the wastes or purification of heavy-metal-containing hazardous residues is technically feasible.展开更多
Hydrogen peroxide was used as an oxidant to modify the cuprite surface and enhance its sulfidization.Surface-adsorption and infrared spectroscopy measurements indicated that the modification of the cuprite surface wit...Hydrogen peroxide was used as an oxidant to modify the cuprite surface and enhance its sulfidization.Surface-adsorption and infrared spectroscopy measurements indicated that the modification of the cuprite surface with hydrogen peroxide before sulfidization increased the adsorption capacity of xanthate.Zeta potential,scanning electron microscopy-energy dispersive X-ray spectroscopy,X-ray photoelectron spectroscopy,and time-of-flight secondary ion mass spectrometry results showed that the modification with hydrogen peroxide increased the contents of S^(2−)and Sn^(2−)species on the cuprite surface.Microflotation tests showed that the recovery of cuprite increased from 61.74%to 83.30%after the modification of the surface with hydrogen peroxide.These results confirm that the modification of the cuprite surface with hydrogen peroxide enhances the sulfidization of cuprite,which in turn improves its flotation.展开更多
Mechanochemical sulfidization of a mixed sulfide/oxide copper ore by co-grinding with sulfur and additives including Mg(NO3)2 and Fe(NO3)3 salts and iron,aluminum and magnesium powders was investigated for the first t...Mechanochemical sulfidization of a mixed sulfide/oxide copper ore by co-grinding with sulfur and additives including Mg(NO3)2 and Fe(NO3)3 salts and iron,aluminum and magnesium powders was investigated for the first time.Also,the influence of sulfidization during the wet-milling process was examined on the separation efficiency and recovery of copper in detail.The results demonstrated that co-grinding with sulfur solely had the best flotation performance at the value of 0.5 wt.%and it was attributed to the possible existence of S\\O bonding on copper oxides surfaces.In addition,adding magnesium nitrate salt,magnesium powder,iron nitrate salt and aluminum powder as additive associated with 0.5 wt%sulfur into ball milling caused the flotation improvement at the amounts of 0.2 wt%,0.2 wt%,0.5 wt%and 0.5 wt%,respectively.Also,the effect of grinding time and sulfidization pH with 0.5 wt%sulfur solely was determined and pH s of 7.5 to 8.5 gave the best results.The highest recovery(75.76%)and separation efficiency(63.44%)were achieved at pH of 7.5 and 8.5,respectively.展开更多
Malachite is one of the main minerals used for the industrial enrichment and recovery of copper oxide resources, and copper ions are unavoidable metal ions in the flotation pulp. The microflotation, contact angle, and...Malachite is one of the main minerals used for the industrial enrichment and recovery of copper oxide resources, and copper ions are unavoidable metal ions in the flotation pulp. The microflotation, contact angle, and adsorption experiments indicated that pretreatment with an appropriate concentration of copper ions could improve the malachite recovery, and the addition of excess copper ions reduced the hydrophobicity of the malachite surface. The results of zeta potential tests indicated that sodium sulfide and butyl xanthate were also adsorbed on the surface of malachite pretreated with copper ions. X-ray photoelectron spectroscopy(XPS) results indicated that —Cu—O and —Cu—OH bonds were formed on the surface of the samples. After pretreatment with an appropriate concentration of copper ions, the number of —OH groups on the mineral surface decreased, whereas the number of Cu—S groups on the mineral surface increased, which was conducive to the sulfidization of malachite. After adding a high concentration of copper ions, the —OH groups on the mineral surface increased, whereas the number of Cu—S groups decreased, which had an adverse effect on the sulfidization flotation of malachite. Time-of-flight secondary ion mass spectrometry showed that pretreatment with copper ions resulted in a thicker sulfidization layer on the mineral surface.展开更多
Although azurite is one of the most important copper oxide minerals,the recovery of this mineral via sulfidization-xanthate flotation is typically unsatisfactory.The present work demonstrated the enhanced sulfidizatio...Although azurite is one of the most important copper oxide minerals,the recovery of this mineral via sulfidization-xanthate flotation is typically unsatisfactory.The present work demonstrated the enhanced sulfidization of azurite surfaces using ammonia phosphate((NH_(4))_(3)PO_(4)) together with Na_(2)S,based on micro-flotation experiments,time-of-flight secondary ion mass spectrometry(ToF-SIMS),X-ray photoelectron spectroscopy(XPS),zeta-potential measurements,contact angle measurements,Fourier-transform infrared(FT-IR)spectroscopy,and ultraviolet-visible(UV-Vis)spectroscopy.Micro-flotation experiments showed that the floatability of azurite was increased following the simultaneous addition of(NH_(4))_(3)PO_(4)and Na_(2)S.ToF-SIMS and XPS analyses demonstrated the formation of a high content of S species on the azurite surface and an increase in the number of Cu(I)species after exposure to(NH_(4))_(3)PO_(4)and Na_(2)S,compared with the azurite-Na_(2)S system.The zeta potential of azurite particles was negatively shifted and the contact angle on the azurite surface was increased with the addition of(NH_(4))_(3)PO_(4)prior to Na_(2)S.These results indicate that treatment with(NH_(4))_(3)PO_(4) enhances the sulfidization of azurite surfaces,which in turn promotes xanthate attachment.FT-IR and UV-Vis analyses confirmed that the addition of(NH_(4))_(3)PO_(4) increased the adsorption of xanthate with reducing the consumption of xanthate during the azurite flotation process.Thus,(NH_(4))_(3)PO_(4) has a beneficial effect on the sulfidization flotation of azurite.展开更多
The direct sulfidization of cuprite is inefficient because cuprite is a copper-oxide mineral with a strong surface hydrophilicity.In this study,oxidant was used to modify cuprite surfaces to regulate the sulfidization...The direct sulfidization of cuprite is inefficient because cuprite is a copper-oxide mineral with a strong surface hydrophilicity.In this study,oxidant was used to modify cuprite surfaces to regulate the sulfidization of cuprite.Microflotation tests showed that the flotation recovery of pre-oxidized cuprite was nearly25% higher than that of direct sulfidization flotation,which indicates that the cuprite surface activity was enhanced after pre-oxidation by Cu(Ⅰ) species(weak affinity with sulfur ions) transformation to Cu(Ⅱ)species(strong affinity with sulfur ions).Zeta potential,scanning electron microscopy-energy dispersive X-ray spectroscopy,X-ray photoelectron spectroscopy,and time-of-flight secondary ion mass spectrometry results showed that pre-oxidation improved cuprite sulfidization and promoted the formation of copper-sulfide species on the cuprite surfaces.The mineral surface stability and thus,xanthate species adsorption on the cuprite surfaces were improved.The surface-adsorption measurements and infrared spectroscopy showed that a large amount of xanthate species was adsorbed onto the sulfidized cuprite surfaces after pre-oxidation,which enhanced the cuprite hydrophobicity and improved the cuprite flotation.展开更多
The technique of DGT(diffusive gradients in thin films) using three diffusive gel thicknesses was applied to estimate the mobility and bioavailability of heavy metals in sediments and porewater of Lake Taihu, China....The technique of DGT(diffusive gradients in thin films) using three diffusive gel thicknesses was applied to estimate the mobility and bioavailability of heavy metals in sediments and porewater of Lake Taihu, China. The DGT results showed significantly positive correlations between Co, Pb, Cd and Mn, and Ni and Fe concentrations in porewater. Cu and Zn showed a significantly negative correlation with Mn, due to Cu combination with carbonates and Zn derived from agricultural pollution, respectively. The rank order of average concentrations of Co, Ni and Cd at each station was DGT1.92〉DGT0.78〉 DGT0.39, suggesting stronger resupply from sediments to porewater when using thicker diffusive gels. Comparing centrifugation and DGT measurements, Co, Ni and Cd are highly labile; Mn and Fe are moderately labile; and Cu, Zn and Pb are slightly labile. The variations of AVS concentrations in sediment cores indicate that metal sulfides in deeper layers are easily diffused into surface sediments.展开更多
Evaluation of flotation behavior, solution measurements, and surface analyses were performed to investigate the effects of chloride ion addition on the sulfidization of cerussite in this study. Micro-flotation tests i...Evaluation of flotation behavior, solution measurements, and surface analyses were performed to investigate the effects of chloride ion addition on the sulfidization of cerussite in this study. Micro-flotation tests indicate that the addition of chloride ions prior to sulfidization can significantly increase the flotation recovery of cerussite, which is attributed to the formation of more lead sulfide species on the mineral surface. Solution measurement results suggest that the addition of chloride ions prior to sulfidization induces the transformation of more sulfide ions from pulp solution onto the mineral surface by the formation of more lead sulfide species. X-ray diffraction and energy-dispersive spectroscopy indicate that more lead sulfide species form on the mineral surface when chloride ions are added prior to sulfidization. These results demonstrate that the addition of chloride ions prior to sulfidization can significantly improve the sulfidization of cerussite, thereby enhancing the flotation performance.展开更多
The low reactivity of hemimorphite surfaces hinders the effective action of sulfidizing agents and xanthate,resulting in unsatisfactory flotation performance.To enhance the surface reactivity of hemi-morphite with sul...The low reactivity of hemimorphite surfaces hinders the effective action of sulfidizing agents and xanthate,resulting in unsatisfactory flotation performance.To enhance the surface reactivity of hemi-morphite with sulfidizing agents and xanthate,Cu/Pb binary metal ions were introduced into the sul-fidization flotation system to enhance the sulfidization process and thereby promote hemimorphite flotation.The flotation results demonstrated a remarkable improvement in the hemimorphite flotation recovery when Cu/Pb binary metal ions were added prior to sulfidization.The flotation recovery of hemi-morphite increased from less than 5%to over 80%.After strengthening the sulfidization of hemimorphite with Cu/Pb binary metal ions,the mineral surface formed multicomponent sulfide products composed of zinc,copper,and lead sulfide.The reactivity of the copper-lead sulfide components exceeds that of the zinc sulfide component;thus,the enhancement by Cu/Pb binary metal ions not only increases the content of sulfide products on the hemimorphite surface but also augments their reactivity.Contact angle and adsorption experiments indicated that after enhanced sulfidization with Cu/Pb binary metal ions,the hemimorphite surface adsorbed a greater amount of xanthate,significantly increasing the mineral sur-face hydrophobicity.Consequently,the enhanced sulfidization by Cu/Pb binary metal ions effectively improved the flotation behavior of hemimorphite,presenting an innovative sulfidization system for the flotation recovery of zinc silicate minerals in zinc oxide ores.展开更多
It is difficult to recover chrysocolla from sulfidation flotation which is closely related to the mineral surface composition.In this study,the effects of fluoride roasting on the surface composition of chrysocolla we...It is difficult to recover chrysocolla from sulfidation flotation which is closely related to the mineral surface composition.In this study,the effects of fluoride roasting on the surface composition of chrysocolla were investigated,its impact on sulfidation flotation was explored,and the mechanisms involved in both fluoride roasting and sulfidation flotation were discussed.With CaF_(2)as the roasting reagent,Na_(2)S·9H_(2)O as the sulfidation reagent,and sodium butyl xanthate(NaBX)as the collector,the results of the flotation experiments showed that fluoride roasting improved the floatability of chrysocolla,and the recovery rate increased from 16.87%to 82.74%.X-ray diffraction analysis revealed that after fluoride roasting,approximately all the Cu on the chrysocolla surface was exposed in the form of CuO,which could provide a basis for subsequent sulfidation flotation.The microscopy and elemental analyses revealed that large quantities of"pagoda-like"grains were observed on the sulfidation surface of the fluoride-roasted chrysocolla,indicating high crystallinity particles of copper sulfide.This suggests that the effect of sulfide formation on the chrysocolla surface was more pronounced.X-ray photoelectron spectroscopy revealed that fluoride roasting increased the relative contents of sulfur and copper on the surface and that both the Cu~+and polysulfide fractions on the surface of the minerals increased.This enhances the effect of sulfidation,which is conducive to flotation recovery.Therefore,fluoride roasting improved the effect of copper species transformation and sulfidation on the surface of chysocolla,promoted the adsorption of collectors,and improved the recovery of chrysocolla from sulfidation flotation.展开更多
The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular an...The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.展开更多
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how...Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.展开更多
This study shows that sulfide solid-state electrolytes,β-Li_(3)PS_(4)and Li_(6)PS_(5)Cl,are flammable solids.Both solid-state electrolytes release sulfur vapor in a dry,oxidizing environment at elevated temperature&l...This study shows that sulfide solid-state electrolytes,β-Li_(3)PS_(4)and Li_(6)PS_(5)Cl,are flammable solids.Both solid-state electrolytes release sulfur vapor in a dry,oxidizing environment at elevated temperature<300℃.Sulfur vapor is a highly flammable gas,which then auto-ignites to produce a flame.This behavior suggests that an O_(2)-S gas-gas reaction mechanism may contribute to all-solid-state battery thermal runaway.To improve all-solid-state battery safety,current work focuses on eliminating the O_(2)source by changing the cathode active material.The conclusion of this study suggests that all-solidstate battery safety can also be realized by the development of solid-state electrolytes with less susceptibility to sulfur volatilization.展开更多
Reasonable manipulation of component and microstructure is considered as a potential route to realize high-performance microwave absorber.In this paper,micro-sized hexapod-like CuS/Cu_(9)S_(5) composites were synthesi...Reasonable manipulation of component and microstructure is considered as a potential route to realize high-performance microwave absorber.In this paper,micro-sized hexapod-like CuS/Cu_(9)S_(5) composites were synthesized via a facile approach involving the solvothermal method and subsequent sulfuration treatment.The resultant CuS/Cu_(9)S_(5) exhibited superb microwave absorbing capacity with a minimum reflection loss(RLmin)of-59.38 dB at 2.7 mm.The maximum effective absorption bandwidth(EABmax)was 7.44 GHz(10.56-18 GHz)when the thickness was reduced to 2.3 mm.The outstanding microwave absorbing ability of CuS/Cu_(9)S_(5) composites is mainly related to its unique hexapod shape and the formation of heterogeneous interfaces.The unique hexapod shape significantly promotes the multi-reflection of the incident electromagnetic wave(EMW)increasing the attenuation path of EMWs in the material.Hetero-geneous interfaces between CuS/Cu_(9)S_(5) enable powerful interface polarization,contributing to the atten-uation of EMWs propagating in the medium.In addition,the EMW absorption performance of CuS/Cu_(9)S_(5) composites is also inseparable from the conduction loss.This study provides a strong reference for the research of EMW absorbent materials based on transition metal sulfides.展开更多
Mg-based hydrogen storage materials have attracted much attention due to their high hydrogen content,abundant resources,and environmental friendliness.However,the high dehydrogenation temperature,slow kinetics and poo...Mg-based hydrogen storage materials have attracted much attention due to their high hydrogen content,abundant resources,and environmental friendliness.However,the high dehydrogenation temperature,slow kinetics and poor cycling stability are limiting its practical application.This work demonstrates the improved dehydrogenation kinetics and cycling stability of MgH_(2) modified by a hybrid of metallic Ni and layered MoS_(2)(denoted as“Ni-MoS_(2)”)introduced by ball milling,with Ni as the catalyst for MgH_(2) and MoS_(2) as the support for both Ni and MgH_(2).The onset dehydrogenation temperature of MgH_(2) is reduced to 198℃,and the rehydrogenation begins at a low temperature of 50℃.The MgH_(2)+10 wt%Ni-MoS_(2) composite has a fast dehydrogenation kinetics and can release 6.1 wt% hydrogen in 10 min at a constant temperature of 300℃,with the dehydrogenation activation energy significantly reduced from 151 to 85 kJ mol^(-1).During the cycling,the reversible capacity of the composite first exhibits a gradual increase for the initial 22 cycles and then maintains at 6.1 wt% from the 23th cycle to the 50th cycle.The Ni/MoS_(2) addition does not change the overall thermodynamic properties of MgH_(2) but can weaken the Mg-H bonds in the local regions as evident by theoretical calculation.Microstructure studies reveal that the metallic Ni will react with MgH_(2) to form Mg_(2)NiH_(0.3),which can act as a hydrogen pump,while the layered MoS_(2) serves as a support for the well dispersion of MgH_(2) and Ni.It is believed that the synergy of Mg_(2)NiH_(0.3) and layered MoS_(2) contributes to the significantly enhanced hydrogen storage of MgH_(2).This work provides a promising and simple strategy for enhancing the Mg-based hydrogen storage materials by combination of transition metals and layered materials introduced via simple ball milling.展开更多
The issues of fossil energy shortage and environmental pollution caused by the excessive consumption of conventional fossil fuels necessitates the exploration of renewable and clean energy sources such as hydrogen,whi...The issues of fossil energy shortage and environmental pollution caused by the excessive consumption of conventional fossil fuels necessitates the exploration of renewable and clean energy sources such as hydrogen,which is viable alternative to traditional energy sources in view of its high energy density and nonpolluting nature.In this regard,photocatalytic technology powered by inexhaustible solar energy is an ideal hydrogen production method.The recently developed copper-and zinc-based multinary metal sulfide(MMS)semiconductor photocatalysts exhibit the advantages of suitable bandgap,wide light-harvesting range,and flexible elemental composition,thus possessing great potential for achieving considerable photocatalytic hydrogen evolution(PHE)performance.Despite great progress has been achieved,the current photocatalysts still cannot meet the commercial application demands,which highlights the mechanisms understanding and optimization strategies for efficient PHE.Herein,the basic mechanisms of PHE,and effective optimization strategies are firstly introduced.Afterwards,the research process and the performance of copper-and zinc-based MMS photocatalysts,are thoroughly reviewed.Finally,the unresolved issues,and challenges hindering the achievement of overall water splitting have been discussed.展开更多
Despite their attractive features of high energy density,low cost,and safety,polysulfide/iodide flow batteries(SIFBs)are hampered by the sluggish kinetics of the iodide redox couple,which restricts overall performance...Despite their attractive features of high energy density,low cost,and safety,polysulfide/iodide flow batteries(SIFBs)are hampered by the sluggish kinetics of the iodide redox couple,which restricts overall performance.Multicomponent sulfides are demonstrated as promising catalysts for accelerating I^(-)/I_(3)^(-) redox reactions.Concurrently,the enhanced configurational entropy arising from multinary compositions drives synergistic effects among constituent elements,establishing a viable pathway to optimize catalytic performance.Building on these foundations,this work introduces a targeted orbital hybridization-optimized electron density strategy to enhance the catalytic activity.Implementing this concept,we developed an in-situ solvothermal synthesis process for an entropy-enhanced AgCuZnSnS_(4) loaded graphite felt(ACZTS/GF)electrode.The engineered electrode demonstrates exceptional electrocatalytic performance with improved bulk conductivity and interfacial charge transfer kinetics within a SIFB.The cell achieves a high energy efficiency of 88.5%at 20 mA·cm^(−2) with 10%state-of-charge.Furthermore,the battery delivers a maximum power density of 119.8 mW·cm^(−2) and exhibits excellent long-term cycling stability.These significant results stem from orbital hybridization-driven electronic state optimization and entropy effect-induced synergistic catalysis.展开更多
The Zijinshan ore field located in southwestern Fujian Province,China,is a representative porphyry-epithermal ore system hosting diverse mineralization types(Mao et al.,2013).The ore field comprises of the Zijinshan h...The Zijinshan ore field located in southwestern Fujian Province,China,is a representative porphyry-epithermal ore system hosting diverse mineralization types(Mao et al.,2013).The ore field comprises of the Zijinshan highsulfidation Cu-Au deposit,the Luoboling porphyry Cu-Mo deposit,the transitional style Cu deposit(Longjiangting and Wuziqilong)and the Yueyang low-sulfidation Agpolymetallic deposit(Zhang,2013;Zhang et al.,2003)展开更多
Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation d...Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation during sodiation-desodiation processes seriously affect its high-rate and long-cyde performance,unbeneficial for the application as fast-charging and long-cycling SIBs anode.Herein,the three-dimensional porous Cu_(1.81)S/nitrogen-doped carbon frameworks(Cu_(1.81)S/NC)are synthesized by the simple and facile sol-gel and annealing processes,which can accommodate the volumetric expansion of Cu_(1.81)S nanoparticles and accelerate the transmission of ions and electrons during Na^(+)insertion/extraction processes,exhibiting the excellent rate capability(250.6 mA·g^(-1)at 20.0 A·g^(-1))and outstanding cycling stability(70% capacity retention for 6000 cycles at 10.0 A·g^(-1))for SIBs.Moreover,the Na-ion full cells coupled with Na_(3)V_(2)(PO_(4))_(3)/C cathode also demonstrate the satisfactory reversible specific capacity of 330.5 mAh·g^(-1)at 5.0 A·g^(-1)and long-cycle performance with the 86.9% capacity retention at 2.0 A·g^(-1)after 750 cycles.This work proposes a promising way for the conversionbased metal sulfides for the applications as fast-charging sodium-ion battery anode.展开更多
The use of visible-light responsive photocatalysts for removing heavy metal ions in wastewater has received great attention.However,the development of photocatalysts with high activity and recyclability remains a huge...The use of visible-light responsive photocatalysts for removing heavy metal ions in wastewater has received great attention.However,the development of photocatalysts with high activity and recyclability remains a huge challenge.Herein,a recyclable carbon fiber cloth-supported porous CdS nanorod photocatalyst was fabricated by a two-step hydrothermal treatment using AgVO_(3) nanowires as templates.The results indicated that under visible-light illumination,the carbon cloth-supported porous CdS nanorods showed improved photocatalytic activity for the reduction of Cr(Ⅵ),with an apparent rate constant exceeding that of carbon cloth-supported CdS nanospheres by a factor of 1.65 times.Moreover,the carbon cloth-supported porous CdS nanorods can be easily separated and be reused.This brings a new perspective for developing photocatalysts with high efficiency and recyclability for wastewater treatment.展开更多
基金Project(50925417) supported by the China National Funds for Distinguished Young ScientistsProject(50830301) supported by the National Natural Science Foundation of China+1 种基金Projects(2010AA065203,2011AA061001) supported by the National High-tech Research Program of ChinaProject(NCET-10-0840) supported by the Program for New Century Excellent Talents in University,China
文摘A novel process for sulfidation of ZnO by co-grinding with sulfur and reductive additives (P, Fe, A1, and Mg) was developed. The sulfidation extent of ZnO with the addition of P, Fe, A1 or Mg can reach 85.2%, 81.6%, 96.7% and 92.6% after grinding for 4, 6, 1 and 1 h, respectively. Based on the chemical phase composition analysis and morphological characteristics of sulfidized products by XRD, SEM and TEM, a possible reaction mechanism, mechanically induced self-propagating reaction (MSR), was proposed to explain the sulfidization reaction. In addition, the floatability of sulfidized products was investigated for the recovery of metal sulfide and ZnS can be concentrated with a high concentration ratio and concentrate grade. By using the sulfidizing process, it is expected that the recovery of zinc from the wastes or purification of heavy-metal-containing hazardous residues is technically feasible.
基金Project funded by Ten Thousand Talent Plans for Young Top-notch Talents of Yunnan Province, China (No. YNWR-QNBJ-2018-051)。
文摘Hydrogen peroxide was used as an oxidant to modify the cuprite surface and enhance its sulfidization.Surface-adsorption and infrared spectroscopy measurements indicated that the modification of the cuprite surface with hydrogen peroxide before sulfidization increased the adsorption capacity of xanthate.Zeta potential,scanning electron microscopy-energy dispersive X-ray spectroscopy,X-ray photoelectron spectroscopy,and time-of-flight secondary ion mass spectrometry results showed that the modification with hydrogen peroxide increased the contents of S^(2−)and Sn^(2−)species on the cuprite surface.Microflotation tests showed that the recovery of cuprite increased from 61.74%to 83.30%after the modification of the surface with hydrogen peroxide.These results confirm that the modification of the cuprite surface with hydrogen peroxide enhances the sulfidization of cuprite,which in turn improves its flotation.
基金the AbbasAbad copper mineShahrood University of Technology for their financial support during this research。
文摘Mechanochemical sulfidization of a mixed sulfide/oxide copper ore by co-grinding with sulfur and additives including Mg(NO3)2 and Fe(NO3)3 salts and iron,aluminum and magnesium powders was investigated for the first time.Also,the influence of sulfidization during the wet-milling process was examined on the separation efficiency and recovery of copper in detail.The results demonstrated that co-grinding with sulfur solely had the best flotation performance at the value of 0.5 wt.%and it was attributed to the possible existence of S\\O bonding on copper oxides surfaces.In addition,adding magnesium nitrate salt,magnesium powder,iron nitrate salt and aluminum powder as additive associated with 0.5 wt%sulfur into ball milling caused the flotation improvement at the amounts of 0.2 wt%,0.2 wt%,0.5 wt%and 0.5 wt%,respectively.Also,the effect of grinding time and sulfidization pH with 0.5 wt%sulfur solely was determined and pH s of 7.5 to 8.5 gave the best results.The highest recovery(75.76%)and separation efficiency(63.44%)were achieved at pH of 7.5 and 8.5,respectively.
基金supported by Yunnan Fundamental Research Projects (No. 202101BE070001-009)Open Foundation of State Key Laboratory of Mineral Processing (No. BGRIMM-KJSKL-202124)Ten Thousand Talent Plans for Young Top-notch Talents of Yunnan Province (No. YNWR-QNBJ-2018-051)。
文摘Malachite is one of the main minerals used for the industrial enrichment and recovery of copper oxide resources, and copper ions are unavoidable metal ions in the flotation pulp. The microflotation, contact angle, and adsorption experiments indicated that pretreatment with an appropriate concentration of copper ions could improve the malachite recovery, and the addition of excess copper ions reduced the hydrophobicity of the malachite surface. The results of zeta potential tests indicated that sodium sulfide and butyl xanthate were also adsorbed on the surface of malachite pretreated with copper ions. X-ray photoelectron spectroscopy(XPS) results indicated that —Cu—O and —Cu—OH bonds were formed on the surface of the samples. After pretreatment with an appropriate concentration of copper ions, the number of —OH groups on the mineral surface decreased, whereas the number of Cu—S groups on the mineral surface increased, which was conducive to the sulfidization of malachite. After adding a high concentration of copper ions, the —OH groups on the mineral surface increased, whereas the number of Cu—S groups decreased, which had an adverse effect on the sulfidization flotation of malachite. Time-of-flight secondary ion mass spectrometry showed that pretreatment with copper ions resulted in a thicker sulfidization layer on the mineral surface.
基金supported by the Yunnan Fundamental Research Projects,China(No.202101BE070001-009)Ten Thousand Talent Plans for Young Top-notch Talents of Yunnan Province,China(No.YNWR-QNBJ-2018-051).
文摘Although azurite is one of the most important copper oxide minerals,the recovery of this mineral via sulfidization-xanthate flotation is typically unsatisfactory.The present work demonstrated the enhanced sulfidization of azurite surfaces using ammonia phosphate((NH_(4))_(3)PO_(4)) together with Na_(2)S,based on micro-flotation experiments,time-of-flight secondary ion mass spectrometry(ToF-SIMS),X-ray photoelectron spectroscopy(XPS),zeta-potential measurements,contact angle measurements,Fourier-transform infrared(FT-IR)spectroscopy,and ultraviolet-visible(UV-Vis)spectroscopy.Micro-flotation experiments showed that the floatability of azurite was increased following the simultaneous addition of(NH_(4))_(3)PO_(4)and Na_(2)S.ToF-SIMS and XPS analyses demonstrated the formation of a high content of S species on the azurite surface and an increase in the number of Cu(I)species after exposure to(NH_(4))_(3)PO_(4)and Na_(2)S,compared with the azurite-Na_(2)S system.The zeta potential of azurite particles was negatively shifted and the contact angle on the azurite surface was increased with the addition of(NH_(4))_(3)PO_(4)prior to Na_(2)S.These results indicate that treatment with(NH_(4))_(3)PO_(4) enhances the sulfidization of azurite surfaces,which in turn promotes xanthate attachment.FT-IR and UV-Vis analyses confirmed that the addition of(NH_(4))_(3)PO_(4) increased the adsorption of xanthate with reducing the consumption of xanthate during the azurite flotation process.Thus,(NH_(4))_(3)PO_(4) has a beneficial effect on the sulfidization flotation of azurite.
基金the Project funded by Ten Thousand Talent Plans for Young Top-notch Talents of Yunnan Province (Grant No. YNWR-QNBJ-2018-051)。
文摘The direct sulfidization of cuprite is inefficient because cuprite is a copper-oxide mineral with a strong surface hydrophilicity.In this study,oxidant was used to modify cuprite surfaces to regulate the sulfidization of cuprite.Microflotation tests showed that the flotation recovery of pre-oxidized cuprite was nearly25% higher than that of direct sulfidization flotation,which indicates that the cuprite surface activity was enhanced after pre-oxidation by Cu(Ⅰ) species(weak affinity with sulfur ions) transformation to Cu(Ⅱ)species(strong affinity with sulfur ions).Zeta potential,scanning electron microscopy-energy dispersive X-ray spectroscopy,X-ray photoelectron spectroscopy,and time-of-flight secondary ion mass spectrometry results showed that pre-oxidation improved cuprite sulfidization and promoted the formation of copper-sulfide species on the cuprite surfaces.The mineral surface stability and thus,xanthate species adsorption on the cuprite surfaces were improved.The surface-adsorption measurements and infrared spectroscopy showed that a large amount of xanthate species was adsorbed onto the sulfidized cuprite surfaces after pre-oxidation,which enhanced the cuprite hydrophobicity and improved the cuprite flotation.
基金supported by the Mega-projects of Science Research for Water Environment Improvement (No. 2012ZX07101-002)the National Natural Science Foundation of China (No. 41303085)
文摘The technique of DGT(diffusive gradients in thin films) using three diffusive gel thicknesses was applied to estimate the mobility and bioavailability of heavy metals in sediments and porewater of Lake Taihu, China. The DGT results showed significantly positive correlations between Co, Pb, Cd and Mn, and Ni and Fe concentrations in porewater. Cu and Zn showed a significantly negative correlation with Mn, due to Cu combination with carbonates and Zn derived from agricultural pollution, respectively. The rank order of average concentrations of Co, Ni and Cd at each station was DGT1.92〉DGT0.78〉 DGT0.39, suggesting stronger resupply from sediments to porewater when using thicker diffusive gels. Comparing centrifugation and DGT measurements, Co, Ni and Cd are highly labile; Mn and Fe are moderately labile; and Cu, Zn and Pb are slightly labile. The variations of AVS concentrations in sediment cores indicate that metal sulfides in deeper layers are easily diffused into surface sediments.
基金financially supported by the National Natural Science Foundation of China (Nos. 51464029 and 51304089)the Analysis and Testing Foundation of Kunming University of Science and Technology (Nos. 20130534 and 20140876)the Academic New Artist Award for Doctoral Post Graduate in Yunnan Province of China (2014)
文摘Evaluation of flotation behavior, solution measurements, and surface analyses were performed to investigate the effects of chloride ion addition on the sulfidization of cerussite in this study. Micro-flotation tests indicate that the addition of chloride ions prior to sulfidization can significantly increase the flotation recovery of cerussite, which is attributed to the formation of more lead sulfide species on the mineral surface. Solution measurement results suggest that the addition of chloride ions prior to sulfidization induces the transformation of more sulfide ions from pulp solution onto the mineral surface by the formation of more lead sulfide species. X-ray diffraction and energy-dispersive spectroscopy indicate that more lead sulfide species form on the mineral surface when chloride ions are added prior to sulfidization. These results demonstrate that the addition of chloride ions prior to sulfidization can significantly improve the sulfidization of cerussite, thereby enhancing the flotation performance.
基金supported by National Natural Science Foundation of China(Nos.52304291 and 52264026)Yunnan Fundamental Research Projects(No.202301AW070018).
文摘The low reactivity of hemimorphite surfaces hinders the effective action of sulfidizing agents and xanthate,resulting in unsatisfactory flotation performance.To enhance the surface reactivity of hemi-morphite with sulfidizing agents and xanthate,Cu/Pb binary metal ions were introduced into the sul-fidization flotation system to enhance the sulfidization process and thereby promote hemimorphite flotation.The flotation results demonstrated a remarkable improvement in the hemimorphite flotation recovery when Cu/Pb binary metal ions were added prior to sulfidization.The flotation recovery of hemi-morphite increased from less than 5%to over 80%.After strengthening the sulfidization of hemimorphite with Cu/Pb binary metal ions,the mineral surface formed multicomponent sulfide products composed of zinc,copper,and lead sulfide.The reactivity of the copper-lead sulfide components exceeds that of the zinc sulfide component;thus,the enhancement by Cu/Pb binary metal ions not only increases the content of sulfide products on the hemimorphite surface but also augments their reactivity.Contact angle and adsorption experiments indicated that after enhanced sulfidization with Cu/Pb binary metal ions,the hemimorphite surface adsorbed a greater amount of xanthate,significantly increasing the mineral sur-face hydrophobicity.Consequently,the enhanced sulfidization by Cu/Pb binary metal ions effectively improved the flotation behavior of hemimorphite,presenting an innovative sulfidization system for the flotation recovery of zinc silicate minerals in zinc oxide ores.
基金financially supported by the National Natural Science Foundation of China(No.52374259)the Open Fund of the State Key Laboratory of Mineral Processing Science and Technology,China(No.BGRIMM-KJSKL-2023-11)the Major Science and Technology Projects in Yunnan Province,China(No.202302 AF080004)。
文摘It is difficult to recover chrysocolla from sulfidation flotation which is closely related to the mineral surface composition.In this study,the effects of fluoride roasting on the surface composition of chrysocolla were investigated,its impact on sulfidation flotation was explored,and the mechanisms involved in both fluoride roasting and sulfidation flotation were discussed.With CaF_(2)as the roasting reagent,Na_(2)S·9H_(2)O as the sulfidation reagent,and sodium butyl xanthate(NaBX)as the collector,the results of the flotation experiments showed that fluoride roasting improved the floatability of chrysocolla,and the recovery rate increased from 16.87%to 82.74%.X-ray diffraction analysis revealed that after fluoride roasting,approximately all the Cu on the chrysocolla surface was exposed in the form of CuO,which could provide a basis for subsequent sulfidation flotation.The microscopy and elemental analyses revealed that large quantities of"pagoda-like"grains were observed on the sulfidation surface of the fluoride-roasted chrysocolla,indicating high crystallinity particles of copper sulfide.This suggests that the effect of sulfide formation on the chrysocolla surface was more pronounced.X-ray photoelectron spectroscopy revealed that fluoride roasting increased the relative contents of sulfur and copper on the surface and that both the Cu~+and polysulfide fractions on the surface of the minerals increased.This enhances the effect of sulfidation,which is conducive to flotation recovery.Therefore,fluoride roasting improved the effect of copper species transformation and sulfidation on the surface of chysocolla,promoted the adsorption of collectors,and improved the recovery of chrysocolla from sulfidation flotation.
基金supported by the National Natural Science Foundation of China,Nos.82271327 (to ZW),82072535 (to ZW),81873768 (to ZW),and 82001253 (to TL)。
文摘The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.
基金financially supported by the National Natural Science Foundation of China(Grants nos.62201411,62371378,22205168,52302150 and 62304171)the China Postdoctoral Science Foundation(2022M722500)+1 种基金the Fundamental Research Funds for the Central Universities(Grants nos.ZYTS2308 and 20103237929)Startup Foundation of Xidian University(10251220001).
文摘Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.
文摘This study shows that sulfide solid-state electrolytes,β-Li_(3)PS_(4)and Li_(6)PS_(5)Cl,are flammable solids.Both solid-state electrolytes release sulfur vapor in a dry,oxidizing environment at elevated temperature<300℃.Sulfur vapor is a highly flammable gas,which then auto-ignites to produce a flame.This behavior suggests that an O_(2)-S gas-gas reaction mechanism may contribute to all-solid-state battery thermal runaway.To improve all-solid-state battery safety,current work focuses on eliminating the O_(2)source by changing the cathode active material.The conclusion of this study suggests that all-solidstate battery safety can also be realized by the development of solid-state electrolytes with less susceptibility to sulfur volatilization.
基金supported by the National Natural Science Foundation of China(Nos.52377026 and 52301192)the Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)+3 种基金the Postdoctoral Fellow-ship Program of CPSF under Grant Number(No.GZB20240327)the Shandong Postdoctoral Science Foundation(No.SDCX-ZG-202400275)the Qingdao Postdoctoral Application Research Project(No.QDBSH20240102023)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites).
文摘Reasonable manipulation of component and microstructure is considered as a potential route to realize high-performance microwave absorber.In this paper,micro-sized hexapod-like CuS/Cu_(9)S_(5) composites were synthesized via a facile approach involving the solvothermal method and subsequent sulfuration treatment.The resultant CuS/Cu_(9)S_(5) exhibited superb microwave absorbing capacity with a minimum reflection loss(RLmin)of-59.38 dB at 2.7 mm.The maximum effective absorption bandwidth(EABmax)was 7.44 GHz(10.56-18 GHz)when the thickness was reduced to 2.3 mm.The outstanding microwave absorbing ability of CuS/Cu_(9)S_(5) composites is mainly related to its unique hexapod shape and the formation of heterogeneous interfaces.The unique hexapod shape significantly promotes the multi-reflection of the incident electromagnetic wave(EMW)increasing the attenuation path of EMWs in the material.Hetero-geneous interfaces between CuS/Cu_(9)S_(5) enable powerful interface polarization,contributing to the atten-uation of EMWs propagating in the medium.In addition,the EMW absorption performance of CuS/Cu_(9)S_(5) composites is also inseparable from the conduction loss.This study provides a strong reference for the research of EMW absorbent materials based on transition metal sulfides.
基金supported by the Science and Technology Department of Guangxi Zhuang Autonomous[grant numbers 2025GXNSFFA069003]the National Natural Science Foundation of China[grant numbers 22379030]+1 种基金Bagui Young Scholars Program of Guangxi Zhuang Autonomous Regionthe high-performance computing platform of Guangxi University.
文摘Mg-based hydrogen storage materials have attracted much attention due to their high hydrogen content,abundant resources,and environmental friendliness.However,the high dehydrogenation temperature,slow kinetics and poor cycling stability are limiting its practical application.This work demonstrates the improved dehydrogenation kinetics and cycling stability of MgH_(2) modified by a hybrid of metallic Ni and layered MoS_(2)(denoted as“Ni-MoS_(2)”)introduced by ball milling,with Ni as the catalyst for MgH_(2) and MoS_(2) as the support for both Ni and MgH_(2).The onset dehydrogenation temperature of MgH_(2) is reduced to 198℃,and the rehydrogenation begins at a low temperature of 50℃.The MgH_(2)+10 wt%Ni-MoS_(2) composite has a fast dehydrogenation kinetics and can release 6.1 wt% hydrogen in 10 min at a constant temperature of 300℃,with the dehydrogenation activation energy significantly reduced from 151 to 85 kJ mol^(-1).During the cycling,the reversible capacity of the composite first exhibits a gradual increase for the initial 22 cycles and then maintains at 6.1 wt% from the 23th cycle to the 50th cycle.The Ni/MoS_(2) addition does not change the overall thermodynamic properties of MgH_(2) but can weaken the Mg-H bonds in the local regions as evident by theoretical calculation.Microstructure studies reveal that the metallic Ni will react with MgH_(2) to form Mg_(2)NiH_(0.3),which can act as a hydrogen pump,while the layered MoS_(2) serves as a support for the well dispersion of MgH_(2) and Ni.It is believed that the synergy of Mg_(2)NiH_(0.3) and layered MoS_(2) contributes to the significantly enhanced hydrogen storage of MgH_(2).This work provides a promising and simple strategy for enhancing the Mg-based hydrogen storage materials by combination of transition metals and layered materials introduced via simple ball milling.
文摘The issues of fossil energy shortage and environmental pollution caused by the excessive consumption of conventional fossil fuels necessitates the exploration of renewable and clean energy sources such as hydrogen,which is viable alternative to traditional energy sources in view of its high energy density and nonpolluting nature.In this regard,photocatalytic technology powered by inexhaustible solar energy is an ideal hydrogen production method.The recently developed copper-and zinc-based multinary metal sulfide(MMS)semiconductor photocatalysts exhibit the advantages of suitable bandgap,wide light-harvesting range,and flexible elemental composition,thus possessing great potential for achieving considerable photocatalytic hydrogen evolution(PHE)performance.Despite great progress has been achieved,the current photocatalysts still cannot meet the commercial application demands,which highlights the mechanisms understanding and optimization strategies for efficient PHE.Herein,the basic mechanisms of PHE,and effective optimization strategies are firstly introduced.Afterwards,the research process and the performance of copper-and zinc-based MMS photocatalysts,are thoroughly reviewed.Finally,the unresolved issues,and challenges hindering the achievement of overall water splitting have been discussed.
基金supported by the National Natural Science Foundation of China(Nos.22171180,22461142137,and 22478242)the Shanghai Municipal Science and Technology Major Project,China.
文摘Despite their attractive features of high energy density,low cost,and safety,polysulfide/iodide flow batteries(SIFBs)are hampered by the sluggish kinetics of the iodide redox couple,which restricts overall performance.Multicomponent sulfides are demonstrated as promising catalysts for accelerating I^(-)/I_(3)^(-) redox reactions.Concurrently,the enhanced configurational entropy arising from multinary compositions drives synergistic effects among constituent elements,establishing a viable pathway to optimize catalytic performance.Building on these foundations,this work introduces a targeted orbital hybridization-optimized electron density strategy to enhance the catalytic activity.Implementing this concept,we developed an in-situ solvothermal synthesis process for an entropy-enhanced AgCuZnSnS_(4) loaded graphite felt(ACZTS/GF)electrode.The engineered electrode demonstrates exceptional electrocatalytic performance with improved bulk conductivity and interfacial charge transfer kinetics within a SIFB.The cell achieves a high energy efficiency of 88.5%at 20 mA·cm^(−2) with 10%state-of-charge.Furthermore,the battery delivers a maximum power density of 119.8 mW·cm^(−2) and exhibits excellent long-term cycling stability.These significant results stem from orbital hybridization-driven electronic state optimization and entropy effect-induced synergistic catalysis.
基金financially supported by Zijin Mining Group(No.01612216)the Ministry of Natural Resources,China(No.ZKKJ202426)。
文摘The Zijinshan ore field located in southwestern Fujian Province,China,is a representative porphyry-epithermal ore system hosting diverse mineralization types(Mao et al.,2013).The ore field comprises of the Zijinshan highsulfidation Cu-Au deposit,the Luoboling porphyry Cu-Mo deposit,the transitional style Cu deposit(Longjiangting and Wuziqilong)and the Yueyang low-sulfidation Agpolymetallic deposit(Zhang,2013;Zhang et al.,2003)
基金financially supported by the National Natural Science Foundation of China(Nos.U1904173 and 52272219)the Key Research Projects of Henan Provincial Department of Education(No.19A150043)+2 种基金the Natural Science Foundation of Henan Province(Nos.202300410330 and 222300420276)the Nanhu Scholars Program for Young Scholars of Xinyang Normal Universitythe Xinyang Normal University Analysis&Testing Center。
文摘Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation during sodiation-desodiation processes seriously affect its high-rate and long-cyde performance,unbeneficial for the application as fast-charging and long-cycling SIBs anode.Herein,the three-dimensional porous Cu_(1.81)S/nitrogen-doped carbon frameworks(Cu_(1.81)S/NC)are synthesized by the simple and facile sol-gel and annealing processes,which can accommodate the volumetric expansion of Cu_(1.81)S nanoparticles and accelerate the transmission of ions and electrons during Na^(+)insertion/extraction processes,exhibiting the excellent rate capability(250.6 mA·g^(-1)at 20.0 A·g^(-1))and outstanding cycling stability(70% capacity retention for 6000 cycles at 10.0 A·g^(-1))for SIBs.Moreover,the Na-ion full cells coupled with Na_(3)V_(2)(PO_(4))_(3)/C cathode also demonstrate the satisfactory reversible specific capacity of 330.5 mAh·g^(-1)at 5.0 A·g^(-1)and long-cycle performance with the 86.9% capacity retention at 2.0 A·g^(-1)after 750 cycles.This work proposes a promising way for the conversionbased metal sulfides for the applications as fast-charging sodium-ion battery anode.
文摘The use of visible-light responsive photocatalysts for removing heavy metal ions in wastewater has received great attention.However,the development of photocatalysts with high activity and recyclability remains a huge challenge.Herein,a recyclable carbon fiber cloth-supported porous CdS nanorod photocatalyst was fabricated by a two-step hydrothermal treatment using AgVO_(3) nanowires as templates.The results indicated that under visible-light illumination,the carbon cloth-supported porous CdS nanorods showed improved photocatalytic activity for the reduction of Cr(Ⅵ),with an apparent rate constant exceeding that of carbon cloth-supported CdS nanospheres by a factor of 1.65 times.Moreover,the carbon cloth-supported porous CdS nanorods can be easily separated and be reused.This brings a new perspective for developing photocatalysts with high efficiency and recyclability for wastewater treatment.