Lithium-sulfur(Li-S)batteries with high energy density suffer from the soluble lithium polysulfide species,Traditional metal sulfides containing a single metal element used as electrocatalysts for Li-S batteries commo...Lithium-sulfur(Li-S)batteries with high energy density suffer from the soluble lithium polysulfide species,Traditional metal sulfides containing a single metal element used as electrocatalysts for Li-S batteries commonly have limited catalytic abilities to improve battery performance.Herein,based on the Hume-Rothery rule and solvothermal method,the high-entropy sulfide NiCoCuTiVS_(x)derived from Co_(9)S_(8)was designed and synthesized,to realize the combination of small local strain and excellent catalytic performance.With all five metal elements(Ni,Co,Cu,Ti,and V)capable of chemical interactions with soluble polysulfides,NiCoCuTiVS_(x)exhibited strong chemical confinement of polysulfides and promoted fast kinetics for polysulfides conversion.Consequently,the S/NiCoCuTiVS_(x)cathode can maintain a high discharge capacity of 968.9 mA h g^(-1)after 200 cycles at 0.5 C and its capacity retention is 1.3 times higher than that of S/Co_(9)S_(8).The improved cycle stability can be attributed to the synergistic effect originating from the multiple metal elements,coupled with the reduced nucleation and activation barriers of Li_(2)S.The present work opens a path to explore novel electrocatalyst materials based on high entropy materials for the achievement of advanced Li-S batteries.展开更多
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how...Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.展开更多
Despite their attractive features of high energy density,low cost,and safety,polysulfide/iodide flow batteries(SIFBs)are hampered by the sluggish kinetics of the iodide redox couple,which restricts overall performance...Despite their attractive features of high energy density,low cost,and safety,polysulfide/iodide flow batteries(SIFBs)are hampered by the sluggish kinetics of the iodide redox couple,which restricts overall performance.Multicomponent sulfides are demonstrated as promising catalysts for accelerating I^(-)/I_(3)^(-) redox reactions.Concurrently,the enhanced configurational entropy arising from multinary compositions drives synergistic effects among constituent elements,establishing a viable pathway to optimize catalytic performance.Building on these foundations,this work introduces a targeted orbital hybridization-optimized electron density strategy to enhance the catalytic activity.Implementing this concept,we developed an in-situ solvothermal synthesis process for an entropy-enhanced AgCuZnSnS_(4) loaded graphite felt(ACZTS/GF)electrode.The engineered electrode demonstrates exceptional electrocatalytic performance with improved bulk conductivity and interfacial charge transfer kinetics within a SIFB.The cell achieves a high energy efficiency of 88.5%at 20 mA·cm^(−2) with 10%state-of-charge.Furthermore,the battery delivers a maximum power density of 119.8 mW·cm^(−2) and exhibits excellent long-term cycling stability.These significant results stem from orbital hybridization-driven electronic state optimization and entropy effect-induced synergistic catalysis.展开更多
Development of accurate analytical protocols for cancer biomarkers is used for the initial prescreening of malignant tumors,disease surveillance,and efficacy assessment with significant clinical benefits.In this work,...Development of accurate analytical protocols for cancer biomarkers is used for the initial prescreening of malignant tumors,disease surveillance,and efficacy assessment with significant clinical benefits.In this work,we reported a liposome-mediated signal-off photoelectrochemical(PEC)immunoassay for the sensitive detection of carcinoembryonic antigen(CEA)using ternary transition metal sulfide CuS/ZnCdS as the photoactive material.Good photocurrents were acquired on the basis of specific oxidation reaction of dopamine on the CuS/ZnCdS.The energy band relationship of CuS/ZnCdS was determined,and the wellmatched oxidation potential of dopamine was verified.To achieve accurate recovery of low-abundance CEA,systematic PEC evaluation from human serum samples was performed by combining with classical immunoreaction and liposome-induced dopamine amplification strategy with high stability and selectivity.Under optimum conditions,PEC immunoassay displayed good photocurrent responses toward target CEA with a dynamic linear range of 0.1-50 ng/mL with a detection limit of 31.6 pg/mL.Importantly,this system by combining with a discussion of energy level matching between semiconductor energy bands and small-molecules opens a new horizon for development of high-efficient PEC immunoassays.展开更多
The unprecedented growth of electric vehicles featuring lithium-ion batteries has led to a significant increase in the amount of waste generated,posing pressing waste management challenges for both industry professio ...The unprecedented growth of electric vehicles featuring lithium-ion batteries has led to a significant increase in the amount of waste generated,posing pressing waste management challenges for both industry professio nals and environmental regulators.To address these issues,conventio nal pyrometallurgical,hydrometallurgical,and direct recycling methods are commonly employed to promote sustainable battery development.However,these methods are often hindered by laborious purification processes and the generation of low-profit products such as Li_(2)CO_(3),CoSO_(4),NiSO_(4),etc.Herein,an upcycling technology involving a low-temperature solid-to-solid reaction and water leaching procedures is introduced to transform spent LiCoO_(2)cathode materials into value-added cobalt sulfide-based electrocatalysts.The regenerated electrocatalysts exhibit exceptional performance in the oxygen evolution reaction,surpassing that of the benchmark RuO_(2)catalyst.This proposed upcycling method provides researchers with an alternative way to convert the metallic components of waste lithium-ion batteries into high-value Co-,Ni-,Fe-,and Mn-based catalysts.展开更多
Facing the dual challenges of environmental pollution and energy crisis,photocatalytic water splitting for hydrogen(H_(2))production has emerged as a promising strategy to convert solar energy into storable chemical e...Facing the dual challenges of environmental pollution and energy crisis,photocatalytic water splitting for hydrogen(H_(2))production has emerged as a promising strategy to convert solar energy into storable chemical energy.In this work,the medium-entropy metal sulfides((FeCoNi)S_(2))as cocatalysts are successfully anchored onto protonated g-C_(3)N_(4)nanosheets(HCN NSs)to fabricated(FeCo-Ni)S_(2)-HCN composite via a solvothermal method.The photocatalytic hydrogen production rate of(FeCoNi)S_(2)-HCN composite reaches 2996μmol·h^(-1)·g^(-1),representing 83.22,9.16,and 1.34-fold enhancements compared to HCN(36μmol·h^(-1)·g^(-1)),FeS_(2)-HCN(327μmol·h^(-1)·g^(-1))and(FeCo)S_(2)-HCN(2240μmol·h^(-1)·g^(-1)).The apparent quantum efficiency of(FeCoNi)S_(2)-HCN composite attains 12.29% at λ=370 nm.Comprehensive characterizations and experimental analyses reveal that the superior photocatalytic performance stems from three synergistic mechanisms:(1)The curled-edge lamellar morphology of HCN nanosheets provides a large specific surface area,which enhances light absorption,facilitates electron transfer,and promotes cocatalyst loading.(2)(FeCoNi)S_(2)as cocatalyst expands the light absorption range and capacity,accelerates the separation and transfer of electron-hole pairs,and creates abundant active sites to trap photogenerated carriers for surface hydrogen evolution reactions.(3)The synergistic interactions among multiple metallic elements(Fe,Co and Ni)further enhance surface activity,increase photogenerated carrier density,and reduce charge transport resistance,ultimately optimizing hydrogen production efficiency.展开更多
Increasing environmental pollution and shortage of conventional fossil fuels have made it urgent to develop renewable and clean energy sources. Electrocatalytic water splitting, with its abundant raw materials, simple...Increasing environmental pollution and shortage of conventional fossil fuels have made it urgent to develop renewable and clean energy sources. Electrocatalytic water splitting, with its abundant raw materials, simple process, and zero carbon emission, is considered one of the most promising processes for producing carbon-neutral hydrogen which has excellent energy conversion efficiency and high gravimetric energy density. Among them, oxygen evolution reaction (OER) electrocatalysts and hydrogen evolution reaction (HER) electrocatalysts are critical to decreasing the intrinsic reaction energy barrier and boosting the hydrogen evolution efficiency. Therefore, it is imperative to develop and design low-cost, highly active, and stable OER and HER electrocatalysts to lower the overpotential and drive the electrocatalytic reactions. Transition metal sulfides, especially iron-based sulfides, have attracted extensive exploration by researchers as a result of its high abundance in the Earth's crust and near-metallic conductivity. Consequently, in this review, we systematically and comprehensively summarize the progress in the application of iron-based sulfides and their composites as OER and HER electrocatalysts in electrocatalysis. Detailed descriptions and illustrations of the special relationships among their composition, structure, and electrocatalytic performance are presented. Finally, this review points out the challenges and future prospects of iron-based sulfides in practical applications for designing and fabricating more promising iron-based sulfide OER and HER electrocatalysts. We believe that iron-based sulfide materials will have a wide range of application prospects as OER and HER electrocatalysts in the future.展开更多
Rechargeable alkaline aqueous zinc batteries(RAZBs)have attracted increasing attention.However,most RAZBs are hindered by the limited availability of cathode materials.The practical electrochemical performance of most...Rechargeable alkaline aqueous zinc batteries(RAZBs)have attracted increasing attention.However,most RAZBs are hindered by the limited availability of cathode materials.The practical electrochemical performance of most cathode materials is lower than the theoretical value due to their poor electrical conductivity and low utilization capacity.In this work,we develop a facile hydrothermal procedure to prepare highly uniform bimetallic sulfides as novel cathode materials for RAZBs.Copper-cobalt binary metallic oxides materials possess higher conductivity and larger capacity compared with their mono-metal oxides compounds due to bimetallic synergistic effects and multiple oxidation states.Furthermore,bimetallic sulfide compounds have smaller bond energy and longer bond length than their oxides,leading to less structural damage,faster kinetics of electrochemical reactions,and better stability.The as-prepared Co-Cu bimetallic sulfides show enhanced electrochemical performance due to various valences of Co and Cu as well as the existence of S.As a result,aqueous Zn/CuCo_(2)S_(4) battery shows a high specific capacity of 117.4 mAh/g at 4 A/g and a good cycle life of over 8000 cycles.Based on PANa hydrogel electrolytes,a flexible Zn/CuCo_(2)S_(4) battery demonstrates excellent cycling stability.This battery can also meet the requirements of electronic devices with different shapes and performs well in extreme environments,such as freezing,drilling,and hammering.This work opens new avenues to obtain high-rate and long-life cathode materials for RAZBs by utilizing the synergistic effects of bimetallic sulfides and provides a new platform for flexible energy storage devices.展开更多
An industrial experiment was conducted at a certain steel plant in China to compare and analyze the effects of Ca treatment and Mg–Ca treatment on inclusions in 45MnVS non-quenched and tempered steel. Through scannin...An industrial experiment was conducted at a certain steel plant in China to compare and analyze the effects of Ca treatment and Mg–Ca treatment on inclusions in 45MnVS non-quenched and tempered steel. Through scanning electron microscopy-energy dispersive scanning analysis of the morphology and composition of inclusions, as well as Aspex quantitative analysis of their quantity, type and size, the formation mechanism of MnS–oxide (MnS inclusions with oxide cores) was intensively studied. The influence of sulfide morphology on the impact properties of steel was also analyzed. The results show that the quantity percentage of spindle-shaped sulfides in Ca-treated steel is 19.99%, and that in Mg–Ca-treated steel is 35.38%. Compared with Ca-treated steel, there are more MnS–oxide inclusions in Mg–Ca-treated steel. Controlling the content of Ca and Mg in the oxide core of MnS–oxide inclusion above 10 wt.% and the area ratio below 5 would contribute to the formation of spindle-shaped inclusions after rolling. The mismatch between MnS and oxides decreases with the increase in MgO content in the oxides, which is beneficial to nucleation and precipitation of MnS with this type of oxides as the core. Under the same deformation conditions, the size of sulfide does not affect its aspect ratio. Under the experimental conditions, the inclusion containing a certain amount of MgO can enhance its sulfur capacity, facilitating the formation of composite sulfides. The transverse impact energy of Ca-treated steel is 25.785 J, and that of Mg–Ca-treated steel is 32.119 J. Compared with the traditional Ca-treatment, Mg–Ca treatment can increase the number of spindle-shaped sulfides in the steel, thereby improving the transverse impact toughness of the steel and reducing the anisotropy of the mechanical properties of the material.展开更多
The composites of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy and 3 wt.%M(M=CoS,CoS_(2),MoS_(2))catalyst were prepared by high-speed vibration ball mill.The effects of metal sulfides on the hydrogenation and dehy...The composites of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy and 3 wt.%M(M=CoS,CoS_(2),MoS_(2))catalyst were prepared by high-speed vibration ball mill.The effects of metal sulfides on the hydrogenation and dehydrogenation dynamics of alloys were compared.The results show that the as-milled composites contain a large number of amorphous embedded by a small amount of nanocrystals,and there are many point defects.After ball milling,the crystal grain size in the composites containing CoS is relatively larger,followed by CoS_(2)and MoS_(2)again.After hydrogenation,the amorphous phase is crystallized to form Mg_(2)NiH_(4),YH_(3),Pr_(8)H_(18.96),Sm_(3)H_7,Mg,Co or Mo phases,however,Mg_(2)Ni,YH_(2),PrH_(2)and Ni_(3)Y phases appeared after dehydrogenation.The maximum hydrogenation capacity of the composites containing CoS,CoS_(2)and MoS_(2)are 3.939,4.265 and 4.507 wt.%,respectively.The hydrogenation saturation ratio of composite containing MoS_(2)is higher than that of the composites containing CoS and CoS_(2).The dehydrogenation activation energy of the composites containing CoS,CoS_(2)and MoS_(2)is 107.76,68.43 and 63.28 kJ.mol^(-1).H_(2).On the improvement of hydrogen storage performance of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)alloy,the catalytic effect of MoS_(2)sulfide is better than that of CoS_(2)sulfide,and which is better than CoS sulfide.展开更多
Rare earth sulfides were systematically synthesized via the sulfurization of their commercial oxide powders using CS2 gas to shorten sulfurization time, and their UV-vis absorption spectra were investigated. The appro...Rare earth sulfides were systematically synthesized via the sulfurization of their commercial oxide powders using CS2 gas to shorten sulfurization time, and their UV-vis absorption spectra were investigated. The appropriate sulfurization conditions were studied. For the rare earth sulfides with the same crystal structure, the sulfurization temperature showed increasing tendency with the decrease of rare earth element atomic radii. The UV-vis absorption spectra of rare earth sulfides did not depend on the crystal structure of rare earth sulfides, but on the 4f electronic structure of rare earth element. The data showed that the optical band gaps of rare earth sulfides were irregular, and the values ranged from 1.65 to 3.75 eV.展开更多
Study of petrophysical properties of rocks in seafioor hydrothermal fields has great significance for inves- tigation of seafloor hydrothermal activities, especially for polymetallic sulfides prospecting. In the prese...Study of petrophysical properties of rocks in seafioor hydrothermal fields has great significance for inves- tigation of seafloor hydrothermal activities, especially for polymetallic sulfides prospecting. In the present study, based on the current experimental conditions, we conducted systematic experiments to measure the magnetic susceptibility, electrical resistivity, porosity, density, as well as acoustic wave velocity of seafloor rocks and sulfides. Subsequently, we measured the physical characteristics of hydrothermal sulfides, basalts and peridotites which were collected from newly discovered seafloor hydrothermal fields at 49.6°E, 50.5°E, 5 1°E, 63.5°E, and 63.9°E of the Southwest Indian Ridge (SWIR). Previously available and newly collected data were combined to characterize the physical differences between polymetallic sulfides and rocks. We also discussed the impact of hydrothermal alteration on the bedrock and demonstrated how these petrophysical properties of rocks can help in geophysical prospecting of seafloor hydrothermal fields as indicators.展开更多
The increasingly severe electromagnetic microwave pollution raises higher requirements for the development of efficient microwave absorption(MA)materials.Metal sulfides are regarded as potential robust MA materials be...The increasingly severe electromagnetic microwave pollution raises higher requirements for the development of efficient microwave absorption(MA)materials.Metal sulfides are regarded as potential robust MA materials because of their unique optical,thermal,electrical,and magnetic properties,as well as the controllable microstructures.However,due to the limited MA performances of unary metal sulfides,morphology regulations and foreign materials hybridizations are adopted as effective strategies to improve their MA performances.Recent years witnessed the fast research progresses on the metal sulfides based MA materials and thus,a systematic literature survey on the materials design,fabrication,characterizations,MA behaviors,and the mechanisms behind is,highly desirable to summarize the rapid progress of this hot research area so as to provide guidance for the future development trend.This review firstly reviewed the research background,research progress,and basic principles of MA materials.Subsequently,the present synthetic methods and performance improvement strategies of metal sulfides based MA materials are systematically introduced.Then,by comparing the MA properties of one-dimensional,two-dimensional,and three-dimensional metal sulfides based composites,the influence of dimensionality and morphology on the MA properties are analyzed.By summarizing the research process of metal sulfides/dielectrics composites,metal sulfides/magnets composites,and metal sulfides/dielectrics/magnets composites MA materials,the influence of foreign materials hybridizations on the loss mechanisms and impedance matching conditions of metal sulfides based composites are revealed.Finally,the challenges and development prospects of metal sulfides based MA materials are presented.This review would provide a comprehensive understanding and insightful guidance for the exploration and development of efficient MA materials with thin thickness,light weight,wide absorption bandwidth,and strong absorption intensity.展开更多
With wide application of electric vehicles and large-scale in energy storage systems, the requirement ofsecondary batteries with higher power density and better safety gets urgent. Owing to the merits of hightheoretic...With wide application of electric vehicles and large-scale in energy storage systems, the requirement ofsecondary batteries with higher power density and better safety gets urgent. Owing to the merits of hightheoretical capacity, relatively low cost and suitable discharge voltage, much attention has been paid tothe transition metal sulfides. Recently, a large amount of research papers have reported about the appli-cation of transition metal sulfides in lithium ion batteries. However, the practical application of transitionmetal sulfides is still impeded by their fast capacity fading and poor rate performance. More well-focusedresearches should be operated towards the commercialization of transition metal sulfides in lithium ionbatteries. In this review, recent development of using transition metal sulfides such as copper sulfides,molybdenum sulfides, cobalt sulfides, and iron sulfides as electrode materials for lithium ion batteriesis presented. In addition, the electrochemical reaction mechanisms and synthetic strategy of transitionmetal sulfides are briefly summarized. The critical issues, challenges, and perspectives providing a fur-ther understanding of the associated electrochemical processes are also discussed.展开更多
Large quantities of metal sulfides are widely distributed in uranium ores from the Middle Jurassic Zhiluo Formation of the Shuanglong uranium deposit,southern Ordos Basin,providing a convenient condition to study the ...Large quantities of metal sulfides are widely distributed in uranium ores from the Middle Jurassic Zhiluo Formation of the Shuanglong uranium deposit,southern Ordos Basin,providing a convenient condition to study the relationship between metal sulfides and uranium minerals.The morphology and composition of uranium minerals and metal sulfides are illustrated to study uranium mineralization and mechanisms of metallogenesis.Uranium minerals can be broadly categorized as pitchblende,coffinite and brannerite.Metal sulfides associated with uranium minerals are pyrite,sphalerite,chalcopyrite and galena.Some assemblages of various metal sulfides and uranium minerals indicate that they are coeval,but the order of formation is different.Based on mineralogical observations,paragenetic sequences for mineral assemblages are discussed.Alteration of Fe-Ti oxides forms Ti oxides,brannerite and pyrite.The formation of chalcopyrite was later than that of pyrite.Clausthalite(Pb Se)replaces sphalerite or shows isomorphism with galena.There are three genetic types of galena,of which typeⅠis related to tectonic thermal events and can interact with uranyl ions to form uranium oxides and Pb;.When sulfur activity is relatively high,Pb;can form new anhedral galena,that is,typeⅡ.TypeⅢof galena is related to the decay of uranium minerals.The genetic order of the main minerals was determined as follows:Fe-Ti oxides>Ti oxides/sphalerite/pyrite>clausthalite/galenaⅠ/chalcopyrite>galenaⅡ/uranium minerals>galenaⅢduring the diagenetic stage.Hydrogen sulfide(H;S)is a decisive factor in the interaction between metal sulfides and uranium.Metal ions can react with H;S,accompanied by precipitation and enrichment of uranium minerals.展开更多
The Yangla Cu deposit is the largest ore deposit in the Jinshajiang polymetallic metallogenic belt,northwest Yunnan,China.There is no consensus on the genesis of the ore deposit owing to the limited studies on the che...The Yangla Cu deposit is the largest ore deposit in the Jinshajiang polymetallic metallogenic belt,northwest Yunnan,China.There is no consensus on the genesis of the ore deposit owing to the limited studies on the chemical compositions of sulfides.This study used an electron probe micro-analyzer to constrain the chemical compositions of pyrite,chalcopyrite,molybdenite,and sphalerite in the porphyry Cu ore of the Yangla Cu deposit and compared them with the chemical compositions of sulfides in the skarn Cu ore.The trace element contents and their occurrences were used to estimate the metallogenic temperature and infer the genesis of the Yangla deposit.The results show that the sulfides in the porphyry Cu ores have variations of ore element concentrations relative to their theoretical values.Pyrite is depleted in S but elevated in Fe;chalcopyrite is depleted in Cu,Fe,and S;and molybdenite and sphalerite are enriched in S whilst depleted in Mo and Zn.The concentrations of the main metallogenic elements Cu,Fe,Mo,Zn,and S in the porphyry are generally lower than those in skarn,suggesting that the porphyry ore was formed in a moderate to moderate-high temperature metallogenic environment.The formation time may also be slightly later than that of the skarn Cu ore.Elements such as As,Co,Cu.Pb,Zn,Mo,Cd,and Ni mainly exist as isomorphic replacements and mineral inclusions in the sulfides of both porphyry and skarn Cu ores.The trace element features of sulfides in the two ore bodies show that the Yangla Cu deposit may be a composite super imposed ore deposit,and让s formation has undergone the process of exhalative-sedimentary to skarnporphyry mineralization.展开更多
The exploration of low-cost and efficient bifunctional electrocatalysts for oxygen evolution reaction and hydrogen evolution reaction through tuning the chemical composition is strongly required for sustainable resour...The exploration of low-cost and efficient bifunctional electrocatalysts for oxygen evolution reaction and hydrogen evolution reaction through tuning the chemical composition is strongly required for sustainable resources. Herein, we developed a bimetallic cobalt–manganese sulfide supported on Ni foam(CMS/Ni) via a solvothermal method. It has discovered that after combining with the pure Co_9S_8 and Mn S, the morphologies of CMS/Ni have modulated. The obtained three-dimensionally hexagram-like CMS/Ni nanosheets have a significant increase in electrochemical active surface area and charge transport ability. More than that, the synergetic effect of Co and Mn has also presented in this composite. Benefiting from these, the CMS/Ni electrode shows great performance toward hydrogen evolution reaction and oxygen evolution reaction in basic medium, comparing favorably to that ofthe pure Co_9S_8/Ni and Mn S/Ni. More importantly, this versatile CMS/Ni can catalyze the water splitting in a twoelectrode system at a potential of 1.47 V, and this electrolyzer can be efficiently driven by a 1.50 V commercial dry battery.展开更多
The recovery of heterogeneous catalysts can save costs and avoid secondary pollution,but its separation efficiency and recovery cost are limited by conventional separation methods such as precipitation–flocculation,c...The recovery of heterogeneous catalysts can save costs and avoid secondary pollution,but its separation efficiency and recovery cost are limited by conventional separation methods such as precipitation–flocculation,centrifugation and filtration.In this paper,we found that surface-defective metal sulfides/oxides(WS2,CuS,ZnS,MoS2,CdS,TiO2,MoO2 and ZnO)commonly used in advanced oxidation processes(AOPs)could be magnetically recovered at room temperature and atmospheric pressure by mechanically mixing with Fe3O4.Zeta potential,Raman,X-ray photoelectron spectroscopy(XPS)and electro-spin resonance(ESR)spectra were measured to explore the mechanism of the magnetic separation phenomenon.The exposed active metal sites on the surface of defective metal sulfides/oxides are beneficial for the formation of chemical bonds,which are combined with electrostatic force to be responsible for the magnetic separation.Moreover,other factors affecting the magnetic separation were also investigated,such as the addition of amount of Fe3O4,different solvents and particle sizes.Finally,WS2 was chosen to be applied as a co-catalyst in Fenton reaction,which could be well separated by the magnetic Fe3O4 to achieve the recycle of catalyst in Fenton reaction.Our research provides a general strategy for the recycle of metal sulfides/oxides in the catalytic applications.展开更多
Helium, neon and argon isotope compositions of fluid inclusions have been measured in massive sulfide samples from theJade hydrothermal field in the central Okinawa Trough. Fluid-inclusion 3He/4He ratios are between 6...Helium, neon and argon isotope compositions of fluid inclusions have been measured in massive sulfide samples from theJade hydrothermal field in the central Okinawa Trough. Fluid-inclusion 3He/4He ratios are between 6.2 and 10.1 times theair value (Ra), and with a mean of 7.8Ra, which are consistent with the mid-ocean ridge basalt values [3He/4He≈(6Ra^11Ra)]. Values for 20Ne/22Ne are from 10.7 to 11.3, which are significantly higher than the atmospheric ratio (9.8).And the fluid-inclusion 40Ar/36Ar ratios range from 287 to 334, which are close to the atmosperic values (295.5). Theseresults indicate that the noble gases of trapped hydrothermal fluids in massive sulfides are a mixture of mantle- andseawater-derived components, and the helium of fluid inclusions is mainly from mantle, the nelium and argon isotopecompositions are mainly from seawater.展开更多
Bimetallic cobalt-nickel sulfide nanoparticles anchored on S-,N-codoped holey carbon nanosheets(CoNiS-T@NCFs)with a hydrangea-like morphology,were synthesized via a confinement synthesis route,in which an intercalated...Bimetallic cobalt-nickel sulfide nanoparticles anchored on S-,N-codoped holey carbon nanosheets(CoNiS-T@NCFs)with a hydrangea-like morphology,were synthesized via a confinement synthesis route,in which an intercalated LDH precursor was subjected to the interlayer-confined carbonization and host-layer sulfurization.The phase transformation and structure evolution(e.g.,atom site occupancy,crystallite size,and cell volume)of the CoNi-S-T@NCFs electrocatalysts,as a function of sulfurization temperatures,were confirmed by X-ray diffraction and Rietveld analyses.The sulfur vacancies effectively enhance the electrocatalytic activity,while the synergistic effect of(Co,Ni)7 S8 alloy and S,N-codoped carbon matrix facilitates the electron transfer and accelerates reaction kinetics,making CoNi-S-900@NCFs an efficient and stable bifunctional electrocatalyst for oxygen reduction reaction(ORR).The rich highvalence Co(Ⅲ)and Ni(Ⅲ)of CoNi-S-900@NCFs facilitates the in-situ transformation of the metal(oxy)hydroxides intermediates with high catalytic activity for oxygen evolution reaction(OER).Thus,with a bifunctional parameter,ΔE,of 0.75 V(E_(j=10,OER)-E_(1/2,ORR)),this electrocatalyst slightly outperforms the state-of-the-art commercial Pt/C+RuO_(2)/C catalyst(ΔE=0.76 V)in alkaline medium.This work demonstrates the influence that the sulfurization temperature has on the relationship between the structure and electrocatalytic performance of bimetallic sulfides prepared by the synthesis strategy using the intercalated LDH precursor.This strategy can be extended to prepare other chalcogenides with binary or ternary transition metals.展开更多
基金financially supported by the National Natural Science Foundation of China(U22A20113,52261135543)。
文摘Lithium-sulfur(Li-S)batteries with high energy density suffer from the soluble lithium polysulfide species,Traditional metal sulfides containing a single metal element used as electrocatalysts for Li-S batteries commonly have limited catalytic abilities to improve battery performance.Herein,based on the Hume-Rothery rule and solvothermal method,the high-entropy sulfide NiCoCuTiVS_(x)derived from Co_(9)S_(8)was designed and synthesized,to realize the combination of small local strain and excellent catalytic performance.With all five metal elements(Ni,Co,Cu,Ti,and V)capable of chemical interactions with soluble polysulfides,NiCoCuTiVS_(x)exhibited strong chemical confinement of polysulfides and promoted fast kinetics for polysulfides conversion.Consequently,the S/NiCoCuTiVS_(x)cathode can maintain a high discharge capacity of 968.9 mA h g^(-1)after 200 cycles at 0.5 C and its capacity retention is 1.3 times higher than that of S/Co_(9)S_(8).The improved cycle stability can be attributed to the synergistic effect originating from the multiple metal elements,coupled with the reduced nucleation and activation barriers of Li_(2)S.The present work opens a path to explore novel electrocatalyst materials based on high entropy materials for the achievement of advanced Li-S batteries.
基金financially supported by the National Natural Science Foundation of China(Grants nos.62201411,62371378,22205168,52302150 and 62304171)the China Postdoctoral Science Foundation(2022M722500)+1 种基金the Fundamental Research Funds for the Central Universities(Grants nos.ZYTS2308 and 20103237929)Startup Foundation of Xidian University(10251220001).
文摘Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.
基金supported by the National Natural Science Foundation of China(Nos.22171180,22461142137,and 22478242)the Shanghai Municipal Science and Technology Major Project,China.
文摘Despite their attractive features of high energy density,low cost,and safety,polysulfide/iodide flow batteries(SIFBs)are hampered by the sluggish kinetics of the iodide redox couple,which restricts overall performance.Multicomponent sulfides are demonstrated as promising catalysts for accelerating I^(-)/I_(3)^(-) redox reactions.Concurrently,the enhanced configurational entropy arising from multinary compositions drives synergistic effects among constituent elements,establishing a viable pathway to optimize catalytic performance.Building on these foundations,this work introduces a targeted orbital hybridization-optimized electron density strategy to enhance the catalytic activity.Implementing this concept,we developed an in-situ solvothermal synthesis process for an entropy-enhanced AgCuZnSnS_(4) loaded graphite felt(ACZTS/GF)electrode.The engineered electrode demonstrates exceptional electrocatalytic performance with improved bulk conductivity and interfacial charge transfer kinetics within a SIFB.The cell achieves a high energy efficiency of 88.5%at 20 mA·cm^(−2) with 10%state-of-charge.Furthermore,the battery delivers a maximum power density of 119.8 mW·cm^(−2) and exhibits excellent long-term cycling stability.These significant results stem from orbital hybridization-driven electronic state optimization and entropy effect-induced synergistic catalysis.
基金financial support from the National Natural Science Foundation of China(Nos.22274022 and 21874022).
文摘Development of accurate analytical protocols for cancer biomarkers is used for the initial prescreening of malignant tumors,disease surveillance,and efficacy assessment with significant clinical benefits.In this work,we reported a liposome-mediated signal-off photoelectrochemical(PEC)immunoassay for the sensitive detection of carcinoembryonic antigen(CEA)using ternary transition metal sulfide CuS/ZnCdS as the photoactive material.Good photocurrents were acquired on the basis of specific oxidation reaction of dopamine on the CuS/ZnCdS.The energy band relationship of CuS/ZnCdS was determined,and the wellmatched oxidation potential of dopamine was verified.To achieve accurate recovery of low-abundance CEA,systematic PEC evaluation from human serum samples was performed by combining with classical immunoreaction and liposome-induced dopamine amplification strategy with high stability and selectivity.Under optimum conditions,PEC immunoassay displayed good photocurrent responses toward target CEA with a dynamic linear range of 0.1-50 ng/mL with a detection limit of 31.6 pg/mL.Importantly,this system by combining with a discussion of energy level matching between semiconductor energy bands and small-molecules opens a new horizon for development of high-efficient PEC immunoassays.
基金financial support from the National Natural Science Foundation of China(21702143,52303092)Talent Recruitment Project of Guangdong Province(No.2023QN10X078)+1 种基金Open Project of Yunnan Precious Metals Laboratory Co.,Ltd(No.YPML-2023050278)Guangdong Basic and Applied Basic Research Foundation Special Projects——GuangdongShenzhen Joint Funds(2022A1515110027)。
文摘The unprecedented growth of electric vehicles featuring lithium-ion batteries has led to a significant increase in the amount of waste generated,posing pressing waste management challenges for both industry professio nals and environmental regulators.To address these issues,conventio nal pyrometallurgical,hydrometallurgical,and direct recycling methods are commonly employed to promote sustainable battery development.However,these methods are often hindered by laborious purification processes and the generation of low-profit products such as Li_(2)CO_(3),CoSO_(4),NiSO_(4),etc.Herein,an upcycling technology involving a low-temperature solid-to-solid reaction and water leaching procedures is introduced to transform spent LiCoO_(2)cathode materials into value-added cobalt sulfide-based electrocatalysts.The regenerated electrocatalysts exhibit exceptional performance in the oxygen evolution reaction,surpassing that of the benchmark RuO_(2)catalyst.This proposed upcycling method provides researchers with an alternative way to convert the metallic components of waste lithium-ion batteries into high-value Co-,Ni-,Fe-,and Mn-based catalysts.
文摘Facing the dual challenges of environmental pollution and energy crisis,photocatalytic water splitting for hydrogen(H_(2))production has emerged as a promising strategy to convert solar energy into storable chemical energy.In this work,the medium-entropy metal sulfides((FeCoNi)S_(2))as cocatalysts are successfully anchored onto protonated g-C_(3)N_(4)nanosheets(HCN NSs)to fabricated(FeCo-Ni)S_(2)-HCN composite via a solvothermal method.The photocatalytic hydrogen production rate of(FeCoNi)S_(2)-HCN composite reaches 2996μmol·h^(-1)·g^(-1),representing 83.22,9.16,and 1.34-fold enhancements compared to HCN(36μmol·h^(-1)·g^(-1)),FeS_(2)-HCN(327μmol·h^(-1)·g^(-1))and(FeCo)S_(2)-HCN(2240μmol·h^(-1)·g^(-1)).The apparent quantum efficiency of(FeCoNi)S_(2)-HCN composite attains 12.29% at λ=370 nm.Comprehensive characterizations and experimental analyses reveal that the superior photocatalytic performance stems from three synergistic mechanisms:(1)The curled-edge lamellar morphology of HCN nanosheets provides a large specific surface area,which enhances light absorption,facilitates electron transfer,and promotes cocatalyst loading.(2)(FeCoNi)S_(2)as cocatalyst expands the light absorption range and capacity,accelerates the separation and transfer of electron-hole pairs,and creates abundant active sites to trap photogenerated carriers for surface hydrogen evolution reactions.(3)The synergistic interactions among multiple metallic elements(Fe,Co and Ni)further enhance surface activity,increase photogenerated carrier density,and reduce charge transport resistance,ultimately optimizing hydrogen production efficiency.
基金the National Natural Science Foundation of China(No.22275052)the Natural Science Foundation of Hubei Province(No.2019CFB569)。
文摘Increasing environmental pollution and shortage of conventional fossil fuels have made it urgent to develop renewable and clean energy sources. Electrocatalytic water splitting, with its abundant raw materials, simple process, and zero carbon emission, is considered one of the most promising processes for producing carbon-neutral hydrogen which has excellent energy conversion efficiency and high gravimetric energy density. Among them, oxygen evolution reaction (OER) electrocatalysts and hydrogen evolution reaction (HER) electrocatalysts are critical to decreasing the intrinsic reaction energy barrier and boosting the hydrogen evolution efficiency. Therefore, it is imperative to develop and design low-cost, highly active, and stable OER and HER electrocatalysts to lower the overpotential and drive the electrocatalytic reactions. Transition metal sulfides, especially iron-based sulfides, have attracted extensive exploration by researchers as a result of its high abundance in the Earth's crust and near-metallic conductivity. Consequently, in this review, we systematically and comprehensively summarize the progress in the application of iron-based sulfides and their composites as OER and HER electrocatalysts in electrocatalysis. Detailed descriptions and illustrations of the special relationships among their composition, structure, and electrocatalytic performance are presented. Finally, this review points out the challenges and future prospects of iron-based sulfides in practical applications for designing and fabricating more promising iron-based sulfide OER and HER electrocatalysts. We believe that iron-based sulfide materials will have a wide range of application prospects as OER and HER electrocatalysts in the future.
基金supported by National Natural Science Foundation of China(No.22005207)Guangdong Basic and Applied Basic Research Foundation(Nos.2019A1515011819,2020A1515110442)。
文摘Rechargeable alkaline aqueous zinc batteries(RAZBs)have attracted increasing attention.However,most RAZBs are hindered by the limited availability of cathode materials.The practical electrochemical performance of most cathode materials is lower than the theoretical value due to their poor electrical conductivity and low utilization capacity.In this work,we develop a facile hydrothermal procedure to prepare highly uniform bimetallic sulfides as novel cathode materials for RAZBs.Copper-cobalt binary metallic oxides materials possess higher conductivity and larger capacity compared with their mono-metal oxides compounds due to bimetallic synergistic effects and multiple oxidation states.Furthermore,bimetallic sulfide compounds have smaller bond energy and longer bond length than their oxides,leading to less structural damage,faster kinetics of electrochemical reactions,and better stability.The as-prepared Co-Cu bimetallic sulfides show enhanced electrochemical performance due to various valences of Co and Cu as well as the existence of S.As a result,aqueous Zn/CuCo_(2)S_(4) battery shows a high specific capacity of 117.4 mAh/g at 4 A/g and a good cycle life of over 8000 cycles.Based on PANa hydrogel electrolytes,a flexible Zn/CuCo_(2)S_(4) battery demonstrates excellent cycling stability.This battery can also meet the requirements of electronic devices with different shapes and performs well in extreme environments,such as freezing,drilling,and hammering.This work opens new avenues to obtain high-rate and long-life cathode materials for RAZBs by utilizing the synergistic effects of bimetallic sulfides and provides a new platform for flexible energy storage devices.
基金supported by the National Natural Science Foundation of China(Nos.52074186 and 51704200)Jiangsu province Natural Science Fund(No.BK20150336)Project sponsored by the State Key Laboratory of Refractories and Metallurgy(Wuhan University of Science and Technology)(No.G202304).
文摘An industrial experiment was conducted at a certain steel plant in China to compare and analyze the effects of Ca treatment and Mg–Ca treatment on inclusions in 45MnVS non-quenched and tempered steel. Through scanning electron microscopy-energy dispersive scanning analysis of the morphology and composition of inclusions, as well as Aspex quantitative analysis of their quantity, type and size, the formation mechanism of MnS–oxide (MnS inclusions with oxide cores) was intensively studied. The influence of sulfide morphology on the impact properties of steel was also analyzed. The results show that the quantity percentage of spindle-shaped sulfides in Ca-treated steel is 19.99%, and that in Mg–Ca-treated steel is 35.38%. Compared with Ca-treated steel, there are more MnS–oxide inclusions in Mg–Ca-treated steel. Controlling the content of Ca and Mg in the oxide core of MnS–oxide inclusion above 10 wt.% and the area ratio below 5 would contribute to the formation of spindle-shaped inclusions after rolling. The mismatch between MnS and oxides decreases with the increase in MgO content in the oxides, which is beneficial to nucleation and precipitation of MnS with this type of oxides as the core. Under the same deformation conditions, the size of sulfide does not affect its aspect ratio. Under the experimental conditions, the inclusion containing a certain amount of MgO can enhance its sulfur capacity, facilitating the formation of composite sulfides. The transverse impact energy of Ca-treated steel is 25.785 J, and that of Mg–Ca-treated steel is 32.119 J. Compared with the traditional Ca-treatment, Mg–Ca treatment can increase the number of spindle-shaped sulfides in the steel, thereby improving the transverse impact toughness of the steel and reducing the anisotropy of the mechanical properties of the material.
基金the financial support provided by the Natural Science Foundations in Hebei Province(No.E2018201235)Baoding Science and Technology Planning Project(No.2074P019)+2 种基金Higher Education in Hebei Province School Science and Technology Research Project(No.QN2019209)Horizontal project(horizontal 20230048)2022 Hebei Province and Hebei University College Students Innovation and Entrepreneurship Training Program(Nos.2022265 and 2022266)。
文摘The composites of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy and 3 wt.%M(M=CoS,CoS_(2),MoS_(2))catalyst were prepared by high-speed vibration ball mill.The effects of metal sulfides on the hydrogenation and dehydrogenation dynamics of alloys were compared.The results show that the as-milled composites contain a large number of amorphous embedded by a small amount of nanocrystals,and there are many point defects.After ball milling,the crystal grain size in the composites containing CoS is relatively larger,followed by CoS_(2)and MoS_(2)again.After hydrogenation,the amorphous phase is crystallized to form Mg_(2)NiH_(4),YH_(3),Pr_(8)H_(18.96),Sm_(3)H_7,Mg,Co or Mo phases,however,Mg_(2)Ni,YH_(2),PrH_(2)and Ni_(3)Y phases appeared after dehydrogenation.The maximum hydrogenation capacity of the composites containing CoS,CoS_(2)and MoS_(2)are 3.939,4.265 and 4.507 wt.%,respectively.The hydrogenation saturation ratio of composite containing MoS_(2)is higher than that of the composites containing CoS and CoS_(2).The dehydrogenation activation energy of the composites containing CoS,CoS_(2)and MoS_(2)is 107.76,68.43 and 63.28 kJ.mol^(-1).H_(2).On the improvement of hydrogen storage performance of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)alloy,the catalytic effect of MoS_(2)sulfide is better than that of CoS_(2)sulfide,and which is better than CoS sulfide.
基金supported by the National Natural Science Foundation of China (20501023)the Natural Science Foundation of Guangdong for Doctorial Training Base (5300527)
文摘Rare earth sulfides were systematically synthesized via the sulfurization of their commercial oxide powders using CS2 gas to shorten sulfurization time, and their UV-vis absorption spectra were investigated. The appropriate sulfurization conditions were studied. For the rare earth sulfides with the same crystal structure, the sulfurization temperature showed increasing tendency with the decrease of rare earth element atomic radii. The UV-vis absorption spectra of rare earth sulfides did not depend on the crystal structure of rare earth sulfides, but on the 4f electronic structure of rare earth element. The data showed that the optical band gaps of rare earth sulfides were irregular, and the values ranged from 1.65 to 3.75 eV.
基金The National Basic Research Program of China (973 Program) under contract No.2012CB417305COMRA Major Project under contract No.DY125-11-R-01-05the National Natural Science Foundation of China under contract Nos 49906004 and 41104073
文摘Study of petrophysical properties of rocks in seafioor hydrothermal fields has great significance for inves- tigation of seafloor hydrothermal activities, especially for polymetallic sulfides prospecting. In the present study, based on the current experimental conditions, we conducted systematic experiments to measure the magnetic susceptibility, electrical resistivity, porosity, density, as well as acoustic wave velocity of seafloor rocks and sulfides. Subsequently, we measured the physical characteristics of hydrothermal sulfides, basalts and peridotites which were collected from newly discovered seafloor hydrothermal fields at 49.6°E, 50.5°E, 5 1°E, 63.5°E, and 63.9°E of the Southwest Indian Ridge (SWIR). Previously available and newly collected data were combined to characterize the physical differences between polymetallic sulfides and rocks. We also discussed the impact of hydrothermal alteration on the bedrock and demonstrated how these petrophysical properties of rocks can help in geophysical prospecting of seafloor hydrothermal fields as indicators.
基金financially supported by the National Natural Science Foundation of China(Nos.51572157,21902085 and 51702188)Natural Science Foundation of Shandong Province(No.ZR2019QF012)+1 种基金Fundamental Research Funds for the Central Universities(Nos.2018JC036 and 2018JC046)Shandong Key Research and Development Program(No.2019JZZY010312)。
文摘The increasingly severe electromagnetic microwave pollution raises higher requirements for the development of efficient microwave absorption(MA)materials.Metal sulfides are regarded as potential robust MA materials because of their unique optical,thermal,electrical,and magnetic properties,as well as the controllable microstructures.However,due to the limited MA performances of unary metal sulfides,morphology regulations and foreign materials hybridizations are adopted as effective strategies to improve their MA performances.Recent years witnessed the fast research progresses on the metal sulfides based MA materials and thus,a systematic literature survey on the materials design,fabrication,characterizations,MA behaviors,and the mechanisms behind is,highly desirable to summarize the rapid progress of this hot research area so as to provide guidance for the future development trend.This review firstly reviewed the research background,research progress,and basic principles of MA materials.Subsequently,the present synthetic methods and performance improvement strategies of metal sulfides based MA materials are systematically introduced.Then,by comparing the MA properties of one-dimensional,two-dimensional,and three-dimensional metal sulfides based composites,the influence of dimensionality and morphology on the MA properties are analyzed.By summarizing the research process of metal sulfides/dielectrics composites,metal sulfides/magnets composites,and metal sulfides/dielectrics/magnets composites MA materials,the influence of foreign materials hybridizations on the loss mechanisms and impedance matching conditions of metal sulfides based composites are revealed.Finally,the challenges and development prospects of metal sulfides based MA materials are presented.This review would provide a comprehensive understanding and insightful guidance for the exploration and development of efficient MA materials with thin thickness,light weight,wide absorption bandwidth,and strong absorption intensity.
基金the financial support of the National Natural Science Foundation of China (21273185 and 21621091)the National Found for Fostering Talents of Basic Science (J1310024)
文摘With wide application of electric vehicles and large-scale in energy storage systems, the requirement ofsecondary batteries with higher power density and better safety gets urgent. Owing to the merits of hightheoretical capacity, relatively low cost and suitable discharge voltage, much attention has been paid tothe transition metal sulfides. Recently, a large amount of research papers have reported about the appli-cation of transition metal sulfides in lithium ion batteries. However, the practical application of transitionmetal sulfides is still impeded by their fast capacity fading and poor rate performance. More well-focusedresearches should be operated towards the commercialization of transition metal sulfides in lithium ionbatteries. In this review, recent development of using transition metal sulfides such as copper sulfides,molybdenum sulfides, cobalt sulfides, and iron sulfides as electrode materials for lithium ion batteriesis presented. In addition, the electrochemical reaction mechanisms and synthetic strategy of transitionmetal sulfides are briefly summarized. The critical issues, challenges, and perspectives providing a fur-ther understanding of the associated electrochemical processes are also discussed.
基金supported by the National Key Research and Development Program of China(No.2018YFC0604202)the National Science Fund Project(No.42172128)the International Geoscience Programme(No.IGCP-675)
文摘Large quantities of metal sulfides are widely distributed in uranium ores from the Middle Jurassic Zhiluo Formation of the Shuanglong uranium deposit,southern Ordos Basin,providing a convenient condition to study the relationship between metal sulfides and uranium minerals.The morphology and composition of uranium minerals and metal sulfides are illustrated to study uranium mineralization and mechanisms of metallogenesis.Uranium minerals can be broadly categorized as pitchblende,coffinite and brannerite.Metal sulfides associated with uranium minerals are pyrite,sphalerite,chalcopyrite and galena.Some assemblages of various metal sulfides and uranium minerals indicate that they are coeval,but the order of formation is different.Based on mineralogical observations,paragenetic sequences for mineral assemblages are discussed.Alteration of Fe-Ti oxides forms Ti oxides,brannerite and pyrite.The formation of chalcopyrite was later than that of pyrite.Clausthalite(Pb Se)replaces sphalerite or shows isomorphism with galena.There are three genetic types of galena,of which typeⅠis related to tectonic thermal events and can interact with uranyl ions to form uranium oxides and Pb;.When sulfur activity is relatively high,Pb;can form new anhedral galena,that is,typeⅡ.TypeⅢof galena is related to the decay of uranium minerals.The genetic order of the main minerals was determined as follows:Fe-Ti oxides>Ti oxides/sphalerite/pyrite>clausthalite/galenaⅠ/chalcopyrite>galenaⅡ/uranium minerals>galenaⅢduring the diagenetic stage.Hydrogen sulfide(H;S)is a decisive factor in the interaction between metal sulfides and uranium.Metal ions can react with H;S,accompanied by precipitation and enrichment of uranium minerals.
基金jointly by the National Natural Science Foundation of China(41862007 and 41402072)Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(No.YNWR-QNBJ-2018-093)+2 种基金the Key Disciplines Construction of Kunming University of Science and Technology(No.14078384)the Analysis and Testing Foundation of Kunming University of Science and Technology(2017T20160006)We are grateful to Dr.Jianping Liu,Dr.Weikang Chen,and Dr.Shaoqing Liu(School of Geosciences and Info-physics,Central South University)for sulfides EPMA analyses:and Dr.Yuedong Liu,Dr.Cheng Luo.Dr.Xiaoqing Liu and Dr.Zaizao Li(Yunnan Diqin Mining Industry Group)for their field work.The authors would also like to thank anonymous reviewers for their useful comments and constructive reviews,which significantly improved the manuscript.
文摘The Yangla Cu deposit is the largest ore deposit in the Jinshajiang polymetallic metallogenic belt,northwest Yunnan,China.There is no consensus on the genesis of the ore deposit owing to the limited studies on the chemical compositions of sulfides.This study used an electron probe micro-analyzer to constrain the chemical compositions of pyrite,chalcopyrite,molybdenite,and sphalerite in the porphyry Cu ore of the Yangla Cu deposit and compared them with the chemical compositions of sulfides in the skarn Cu ore.The trace element contents and their occurrences were used to estimate the metallogenic temperature and infer the genesis of the Yangla deposit.The results show that the sulfides in the porphyry Cu ores have variations of ore element concentrations relative to their theoretical values.Pyrite is depleted in S but elevated in Fe;chalcopyrite is depleted in Cu,Fe,and S;and molybdenite and sphalerite are enriched in S whilst depleted in Mo and Zn.The concentrations of the main metallogenic elements Cu,Fe,Mo,Zn,and S in the porphyry are generally lower than those in skarn,suggesting that the porphyry ore was formed in a moderate to moderate-high temperature metallogenic environment.The formation time may also be slightly later than that of the skarn Cu ore.Elements such as As,Co,Cu.Pb,Zn,Mo,Cd,and Ni mainly exist as isomorphic replacements and mineral inclusions in the sulfides of both porphyry and skarn Cu ores.The trace element features of sulfides in the two ore bodies show that the Yangla Cu deposit may be a composite super imposed ore deposit,and让s formation has undergone the process of exhalative-sedimentary to skarnporphyry mineralization.
基金supported by National Natural Science Foundation of China(21576113 and 21376105)Foshan Innovative and Entrepreneurial Research Team Program(No.2014IT100062)
文摘The exploration of low-cost and efficient bifunctional electrocatalysts for oxygen evolution reaction and hydrogen evolution reaction through tuning the chemical composition is strongly required for sustainable resources. Herein, we developed a bimetallic cobalt–manganese sulfide supported on Ni foam(CMS/Ni) via a solvothermal method. It has discovered that after combining with the pure Co_9S_8 and Mn S, the morphologies of CMS/Ni have modulated. The obtained three-dimensionally hexagram-like CMS/Ni nanosheets have a significant increase in electrochemical active surface area and charge transport ability. More than that, the synergetic effect of Co and Mn has also presented in this composite. Benefiting from these, the CMS/Ni electrode shows great performance toward hydrogen evolution reaction and oxygen evolution reaction in basic medium, comparing favorably to that ofthe pure Co_9S_8/Ni and Mn S/Ni. More importantly, this versatile CMS/Ni can catalyze the water splitting in a twoelectrode system at a potential of 1.47 V, and this electrolyzer can be efficiently driven by a 1.50 V commercial dry battery.
基金financially supported by the State Key Research Development Program of China (No. 2016YFA0204200the National Natural Science Foundation of China (Nos. 21822603, 21773062, 21577036, 21377038 and 21237003)+1 种基金Shanghai Pujiang Program (No. 17PJD011)the Fundamental Research Funds for the Central Universities (No. 22A201514021)
文摘The recovery of heterogeneous catalysts can save costs and avoid secondary pollution,but its separation efficiency and recovery cost are limited by conventional separation methods such as precipitation–flocculation,centrifugation and filtration.In this paper,we found that surface-defective metal sulfides/oxides(WS2,CuS,ZnS,MoS2,CdS,TiO2,MoO2 and ZnO)commonly used in advanced oxidation processes(AOPs)could be magnetically recovered at room temperature and atmospheric pressure by mechanically mixing with Fe3O4.Zeta potential,Raman,X-ray photoelectron spectroscopy(XPS)and electro-spin resonance(ESR)spectra were measured to explore the mechanism of the magnetic separation phenomenon.The exposed active metal sites on the surface of defective metal sulfides/oxides are beneficial for the formation of chemical bonds,which are combined with electrostatic force to be responsible for the magnetic separation.Moreover,other factors affecting the magnetic separation were also investigated,such as the addition of amount of Fe3O4,different solvents and particle sizes.Finally,WS2 was chosen to be applied as a co-catalyst in Fenton reaction,which could be well separated by the magnetic Fe3O4 to achieve the recycle of catalyst in Fenton reaction.Our research provides a general strategy for the recycle of metal sulfides/oxides in the catalytic applications.
基金This work was financially supported in part by the Pilot Project of Knowledge Innovation Project,Chinese Academy of Sciences under contract No.KZCX3-SW-223the Special Foundation for the Tenth Five Plan of COMR A under contract No.DY 105-01-03-1+1 种基金the National M ajor Fundamental Research and Development Project of China under contract No.G2000046701the National Natural Science Foundation of China under contract No.40376020,40176020.
文摘Helium, neon and argon isotope compositions of fluid inclusions have been measured in massive sulfide samples from theJade hydrothermal field in the central Okinawa Trough. Fluid-inclusion 3He/4He ratios are between 6.2 and 10.1 times theair value (Ra), and with a mean of 7.8Ra, which are consistent with the mid-ocean ridge basalt values [3He/4He≈(6Ra^11Ra)]. Values for 20Ne/22Ne are from 10.7 to 11.3, which are significantly higher than the atmospheric ratio (9.8).And the fluid-inclusion 40Ar/36Ar ratios range from 287 to 334, which are close to the atmosperic values (295.5). Theseresults indicate that the noble gases of trapped hydrothermal fluids in massive sulfides are a mixture of mantle- andseawater-derived components, and the helium of fluid inclusions is mainly from mantle, the nelium and argon isotopecompositions are mainly from seawater.
基金the support by the Fundamental Research Funds for the Central Universities(ZY2117)financial support from the European Union(ERDF)‘Région Nouvelle Aquitaine’+2 种基金the financial support from the projects CIIEMAD-SIP-IPN No.20196152 and20220825Yfinancial support from the Joint Funds of the National Natural Science Foundation of China(ZK20180055)Programs for Foreign Talent(G2021106012L)。
文摘Bimetallic cobalt-nickel sulfide nanoparticles anchored on S-,N-codoped holey carbon nanosheets(CoNiS-T@NCFs)with a hydrangea-like morphology,were synthesized via a confinement synthesis route,in which an intercalated LDH precursor was subjected to the interlayer-confined carbonization and host-layer sulfurization.The phase transformation and structure evolution(e.g.,atom site occupancy,crystallite size,and cell volume)of the CoNi-S-T@NCFs electrocatalysts,as a function of sulfurization temperatures,were confirmed by X-ray diffraction and Rietveld analyses.The sulfur vacancies effectively enhance the electrocatalytic activity,while the synergistic effect of(Co,Ni)7 S8 alloy and S,N-codoped carbon matrix facilitates the electron transfer and accelerates reaction kinetics,making CoNi-S-900@NCFs an efficient and stable bifunctional electrocatalyst for oxygen reduction reaction(ORR).The rich highvalence Co(Ⅲ)and Ni(Ⅲ)of CoNi-S-900@NCFs facilitates the in-situ transformation of the metal(oxy)hydroxides intermediates with high catalytic activity for oxygen evolution reaction(OER).Thus,with a bifunctional parameter,ΔE,of 0.75 V(E_(j=10,OER)-E_(1/2,ORR)),this electrocatalyst slightly outperforms the state-of-the-art commercial Pt/C+RuO_(2)/C catalyst(ΔE=0.76 V)in alkaline medium.This work demonstrates the influence that the sulfurization temperature has on the relationship between the structure and electrocatalytic performance of bimetallic sulfides prepared by the synthesis strategy using the intercalated LDH precursor.This strategy can be extended to prepare other chalcogenides with binary or ternary transition metals.