Hydrogen is recognized as a clean energy carrier that can decarbonize heavy industry and the aviation system.However,the infrastructure is not yet ready for a hydrogen economy and large-scale hydrogen storage is neede...Hydrogen is recognized as a clean energy carrier that can decarbonize heavy industry and the aviation system.However,the infrastructure is not yet ready for a hydrogen economy and large-scale hydrogen storage is needed to balance the mismatch between supply and demand.Therefore,depleted gas fields have been proposed as suitable storage sites,given the presence of infrastructure and pipeline network for distribution and utilization.Attempts have been made to analyze the suitability of these reservoirs for hydrogen storage,with a focus on choosing higher temperature and salinity conditions to neutralize the effects of microbial activities as one of the main sources of hydrogen loss in the depleted gas reservoirs.However,thermochemical sulfate reduction(TSR)is activated at high temperatures and has a huge potential not only to consume hydrogen through abiotic reactions but also to generate a huge amount of H_(2)S.In this study,a onedimensional diffusion-based mass transport model was built using PHREEQC to highlight the potential challenges posed by the TSR in depleted gas fields.The results obtained indicated that the presence of iron minerals(pyrite and hematite)is crucial for H_(2)S generation through TSR reactions.An increase in temperature also leads to an increase in H_(2)S concentration in the brine and gas phase.However,since most of the H_(2)S formation comes from pyrite dissolution and pyrite dissolution is still strong at lower temperatures,a low temperature is not necessarily the best selection criterion to avoid H_(2)S formation.Thus,precautions must be taken to ensure that activation of TSR does not pose significant environmental problems.展开更多
Thiadiamondoids(TDs)have recently attracted increasing attention as molecular proxies for thermochemical sulfate reduction(TSR)reactions in reservoirs.However,their formation mechanisms,as well as the generation and e...Thiadiamondoids(TDs)have recently attracted increasing attention as molecular proxies for thermochemical sulfate reduction(TSR)reactions in reservoirs.However,their formation mechanisms,as well as the generation and evolution processes,remain poorly understood.In this study,simulation experiments with a duration of 160 h were conducted on the model compound 1,3-dimethyladamantane(1,3-DMA)using the CaSO_(4),MgSO_(4),and elemental S systems,with measurements at the 10th,20th,40th,80th and 160th hours during the simulation process being presented.The results indicate that at the end of simulation,the MgSO_(4) system exhibited the lowest residual amounts of 1,3-DMA,suggesting the highest degree of TSR.Four types of non-hydrocarbon compounds with adamantane structures were detected in the liquid products in the three experiment systems:adamantanones,adamantanols,adamantanethiols(ATs),and thiaadamantanes(TAs).Among these,adamantanones exhibited the highest concentrations in the three simulation systems.In addition,TAs were dominated by C_(3)-TAs in the CaSO_(4) and MgSO_(4) systems and by C_(2)-TAs in the elemental S system.The simulation experiments revealed a strong correlation between the concentrations of TAs and adamantanones,suggesting that adamantanones might be the intermediates for TAs.Combined with the synthesis mechanism of TAs from thiaadamamantane-4,8-dione,TDs might have two different genetic mechanisms:(a)low temperature cationic carbon ion rearrangement from diagenesis to early catagenesis stage,and(b)a free sulfur radical mechanism in high-temperature TSR process during middle-late catagenesis.TAs exhibited different generation and evolution processes across different experiment systems.Notably,the MgSO_(4) system revealed that TAs undergo generation,accumulation,and destruction process,corresponding to Easy%Ro values of 0.89%-0.98%,0.98%-1.21%,and>1.21%,respectively.Among these three simulation systems,dibenzothiophenes(DBTs)concentrations consistently trended upwards,indicating TAs have lower thermal stability than DBTs.展开更多
Subtropical sediment cores (QA09-1 and QA12-9) from the coastal zone of Qi’ao Island in the Zhujiang River Estuary were used to determine the rates of sulfate reduction and their response to experimental tempera-tu...Subtropical sediment cores (QA09-1 and QA12-9) from the coastal zone of Qi’ao Island in the Zhujiang River Estuary were used to determine the rates of sulfate reduction and their response to experimental tempera-ture changes. The depth distribution of the sulfate reduction rates was measured from whole-core incu-bations with radioactive tracer35SO42-, and peaks of 181.19 nmol/(cm3·d) and 107.49 nmol/(cm3·d) were exhibited at stations QA09-1 and QA12-9, respectively. The profiles of the pore water methane and sulfate concentrations demonstrated that anaerobic oxidation of methane occurred in the study area, which result-ed in an increase in the sulfate reduction rate at the base of the sulfate-reducing zone. Meanwhile, the sulfate concentration was not a major limiting factor for controlling the rates of sulfate reduction. In addition, the incubation of the sediment slurries in a block with a temperature gradient showed that the optimum tem-perature for the sulfate reduction reaction was 36°C. The Arrhenius plot was linear from the lowest tempera-ture to the optimum temperature, and the activation energy was at the lower end of the range of previously reported values. The results suggested that the ambient temperature regime of marine environments prob-ably selected for the microbial population with the best-suited physiology for the respective environment.展开更多
Systematic analyses of the formation water and natural gas geochemistry in the Central Uplift of the Tarim Basin (CUTB) show that gas invasion at the late stage is accompanied by an increase of the contents of HeS a...Systematic analyses of the formation water and natural gas geochemistry in the Central Uplift of the Tarim Basin (CUTB) show that gas invasion at the late stage is accompanied by an increase of the contents of HeS and CO2 in natural gas, by the forming of the high total dissolved solids formation water, by an increase of the content of HCO3^-, relative to Cl^-, by an increase of the 2nd family ions (Ca^2+, Mg^2+, Sr^2+ and Ba^2+) and by a decrease of the content of SO4^2-, relative to Cl^-. The above phenomena can be explained only by way of thermochemicai sulfate reduction (TSR). TSR often occurs in the transition zone of oil and water and is often described in the following reaction formula: ∑CH+CaSO4+H-2O→H2S+CO2+CaCO3. (1) Dissolved SO4^2- in the formation water is consumed in the above reaction, when HeS and CO2 are generated, resulting in a decrease of SO4^2- in the formation water and an increase of both HeS and CO2 in the natural gas. If formation water exists, the generated CO2 will go on reacting with the carbonate to form bicarbonate, which can be dissolved in the formation water, thus resulting in the enrichment of Ca^2+ and HCO3^-. The above reaction can be described by the following equation: CO2+HeO+CaCO3→Ca^2++2HCO3^-. The stratigraphic temperatures of the Cambrian and lower Ordovician in CUTB exceeded 120℃, which is the minimum for TSR to occur. At the same time, dolomitization, which might be a direct result of TSR, has been found in both the Cambrian and the lower Ordovician. The above evidence indicates that TSR is in an active reaction, providing a novel way to reevaluate the exploration potentials of natural gas in this district.展开更多
Attention should be paid to the sulfate reduction behavior in a pressure-bearing leachate saturated zone.In this study,within the relative pressure range of 0–0.6 MPa,the ambient temperature with the highest sulfate ...Attention should be paid to the sulfate reduction behavior in a pressure-bearing leachate saturated zone.In this study,within the relative pressure range of 0–0.6 MPa,the ambient temperature with the highest sulfate reduction rate of 50℃ was selected to explore the difference in sulfate reduction behavior in a pressure-bearing leachate saturated zone.The results showed that the sulfate reduction rate might further increase with an increase in pressure;however,owing to the effect of pressure increase,the generated hydrogen sulfide (H_(2)S) could not be released on time,thereby decreasing its highest concentration by approximately 85%,and the duration extended to about two times that of the atmospheric pressure.Microbial community structure and functional gene abundance analyses showed that the community distribution of sulfate-reducing bacteria was significantly affected by pressure conditions,and there was a negative correlation between disulfide reductase B(dsrB) gene abundance and H_(2)S release rate.Other sulfate reduction processes that do not require disulfide reductase A (dsrA) and dsrB genes may be the key pathways affecting the sulfate reduction rate in the pressure-bearing leachate saturated zone.This study improves the understanding of sulfate reduction in landfills as well as provides a theoretical basis for the operation and management of landfills.展开更多
Thermochemical sulfate reduction (TSR) is the reaction between anhydrite and petroleum fluids at elevated temperatures to produce H2S and CO2. TSR has been studied in many sedimentary basins such as China's Sichuan...Thermochemical sulfate reduction (TSR) is the reaction between anhydrite and petroleum fluids at elevated temperatures to produce H2S and CO2. TSR has been studied in many sedimentary basins such as China's Sichuan and Tarim basins because it has a profound impact on the commercial viability of petroleum resources, with HzS typically being undesirable.展开更多
Methane(CH4)production from ruminants accounts for 16%of the global greenhouse gas emissions and represents 2%to 12%of feed energy.Mitigating CH_(4) production from ruminants is of great importance for sustainable dev...Methane(CH4)production from ruminants accounts for 16%of the global greenhouse gas emissions and represents 2%to 12%of feed energy.Mitigating CH_(4) production from ruminants is of great importance for sustainable development of the ruminant industry.H_(2) is the primary substrate for CH_(4) production in the processes of ruminal methanogenesis.Sulfate reducing bacteria are able to compete with methanogens for H_(2) in the rumen,and consequently inhibit the methanogenesis.Enhancing the ruminal sulfate reducing pathway is an important approach to mitigate CH_(4) emissions in ruminants.The review summarized the effects of sulfate and elemental S on ruminal methanogenesis,and clarified the related mechanisms through the impacts of sulfate and elemental S on major ruminal sulfate reducing bacteria.Enhancing the activities of the major ruminal sulfate reducing bacteria including Desulfovibrio,Desulfohalobium and Sulfolobus through dietary sulfate addition,elemental S and dried distillers grains with solubles can effectively decrease the ruminal CH_(4) emissions.Suitable levels of dietary addition with different S sources for reducing the ruminal CH_(4) production,as well as maintaining the performance and health of ruminants,need to be investigated in the future.展开更多
For comprehensive insights into the influences of sulfate on performance,microbial community and metabolic pathways in the acidification phase of a two-phase anaerobic system,a laboratory-scale acidogenic bioreactor w...For comprehensive insights into the influences of sulfate on performance,microbial community and metabolic pathways in the acidification phase of a two-phase anaerobic system,a laboratory-scale acidogenic bioreactor was continuously operated to treat wastewater with elevated sulfate concentrations from 2000 to 14000 mg/L.The results showed that the acidogenic bioreactor could achieve sulfate reduction efficiency of greater than 70%for influent sulfate content less than 12000 mg/L.Increased sulfate induced the accumulation of volatile fatty acids(VPAs),especially propionate and butyrate,which was the primary negative effects to system performance under the high-sulfate environment.High-throughput sequencing coupled with PICRUSt2 uncovered that the accumulation of VFAs was triggered by the decreasing of genes encoding short-chain acyl-CoA dehydrogenase(EC:1.3.8.1),regulating the transformation of propanoyl-CoA to propenoyl-CoA and butanoyl-CoA to crotonyl-CoA of propionate and butyrate oxidation pathways,which made these two process hardly proceed.Besides,genes encoding(EC:1.3.8.1)were mainly carried by order Clostridiales.Desulfovibrio was the most abundant sulfate-reducing bacteria and identified as the primary host of dissimilatory sulfate reduction ftinctional genes.Functional analysis indicated the dissimilatory sulfate reduction process predominated under a low sulfate environment,but was not favored under the circumstance of high-sulfate.With the increase of sulfate,the assimilatory sulfate reduction process finally overwhelmed dissimilatory as the dominant sulfate reduction pathway in acidogenic bioreactor.展开更多
The kinetic characteristics of alkenes involved in thermochemical sulfate reduction (TSR) have been never reported in geological literature. In this study, TSR by ethene under hydrothermal conditions was performed in ...The kinetic characteristics of alkenes involved in thermochemical sulfate reduction (TSR) have been never reported in geological literature. In this study, TSR by ethene under hydrothermal conditions was performed in the constrained simulation experiments. Typical TSR products consisted of H<sub>2</sub>S, CO<sub>2</sub>, mercaptans, sulfides, thiophenes derivatives and benzothiophene. The apparent activation energy E and apparent frequency factor A for TSR by ethene were determined as 76.370 kJ/mol and 4.579 s<sup>-1</sup>, respectively. The lower activation energy for ethene involved in TSR relative to ethane suggested that the reactivity of ethene is much higher than that of ethane, in accordance with the thermodynamic analysis. Rate constants were determined experimentally using first-order kinetics extrapolate to MgSO<sub>4</sub> half-lives of 67.329 years - 3.053 years in deep burial diagenetic settings (120°C - 180°C). These values demonstrate that the reaction rate for TSR by ethene is extraordinarily fast in high-temperature gas reservoirs (120°C - 180°C). Consequently, the newly formed ethene from thermal cracking and TSR alteration of natural gas and/or petroleum could not survive after TSR process and were rarely detected in natural TSR reservoirs.展开更多
The effect of sodium sulfate on direct reduction of beach titanomagnetite,followed by magnetic separation,to separate iron and titanium was investigated. Direct reduced iron( DRI) with a high Fe content,low TiO_2 co...The effect of sodium sulfate on direct reduction of beach titanomagnetite,followed by magnetic separation,to separate iron and titanium was investigated. Direct reduced iron( DRI) with a high Fe content,low TiO_2 content and low iron recovery was obtained after adding sodium sulfate. When the sodium sulfate dosage was increased from 0 to 10 mass%,the Fe content of the DRI increased from 90. 00 mass% to 93. 55 mass% and the TiO_2 content decreased from 1. 27 mass% to 0. 70 mass%. The reduction mechanism of sodium sulfate was investigated by X-ray diffraction( XRD) and scanning electron microscopy( SEM) with energy dispersive spectrometer( EDS). Results revealed that the metallic iron grains in the reduced ore with sodium sulfate were larger than those in the ore without sodium sulfate. Sodium sulfate promoted the migration of iron as well as the accumulation and growth of metallic iron grains by low-melting-point carnegieite and troilite formed in the redox system. Low-melting-point carnegieite decreased the melting point of the system and then promoted liquefaction. Troilite could decrease the surface tension and melting point of metallic iron grains.展开更多
For an improved understanding of gas enrichment mechanism in the eastern Sichuan Basin,South China,twelve natural gas samples were obtained from carbonate reservoirs of the Upper Permian strata to analyze the hydrocar...For an improved understanding of gas enrichment mechanism in the eastern Sichuan Basin,South China,twelve natural gas samples were obtained from carbonate reservoirs of the Upper Permian strata to analyze the hydrocarbon and non-hydrocarbon gas compositions,stable carbon and hydrogen isotopes ratios of hydrocarbons,and noble gas isotope ratios.The gas samples in the Upper Permian reservoirs principally consist of alkane gas with a dryness ratio ranging from 127.9 to 1564.4.The carbon isotope ratio of methane(δ^(13)C_(1))was almost constant at-34.1 to-31.3‰,but the carbon isotope ratio of ethane(δ^(13)C2)varied from-36.6‰to-25.8‰.The hydrogen isotope ratio of methane(δ^2HC_(1))also displayed a wide range from-137‰to-127‰.The large variations in the dryness ratio,δ^(13)C_(2),andδ^2HC_(1)with almost constantδ^(13)C_(1)suggest the mixing of sapropelic and humic origins for hydrocarbon gases in these reservoirs.A high concentration of hydrogen sulfide(H_(2)S)originated from the thermochemical sulfate reduction(TSR),which was positively correlated withδ^(13)C_(1)(orδ^(13)C_(2))in individual gas fields.TSR alteredδ^(13)C_(1)(orδ^(13)C_(2))and resulted in the abnormal character of isotopic reversal in the individual samples.Theδ^(13)C_(1)(orδ^(13)C_(2))in most gas samples,independent of H_(2)S concentration,further displayed reversed carbon isotopes because of the mixture of thermogenic gases with various thermal maturity levels.The measured argon isotope ratio(^(40)Ar/^(36)Ar)varied from 310 to 1225,which suggests that the oldest 320 Ma source rock age corresponds to Permian shales.The analysis of the gas origin and the identification of primary source rock have made a significant contribution to further understanding the resource potential and distribution of natural gas in the Upper Permian,and have great implications for gas exploration in the eastern Sichuan Basin.展开更多
Taking the natural gas reservoirs of the Sinian Dengying Formation on the east and west sides(Gaoshiti-Moxi area and north slope of central Sichuan paleo-uplift on the east;Weiyuan and Well Datan-1 block on the west)o...Taking the natural gas reservoirs of the Sinian Dengying Formation on the east and west sides(Gaoshiti-Moxi area and north slope of central Sichuan paleo-uplift on the east;Weiyuan and Well Datan-1 block on the west)of the Deyang-Anyue rift trough in the Sichuan Basin,China,as the research object,the geochemical parameters(component,isotopic composition)of natural gas from the Dengying Formation in different areas are compared,and then the differences in geochemical characteristics of Dengying natural gas on the east and west sides of the Deyang-Anyue rift trough and their genesis are clarified.First,the Dengying gas reservoirs on both sides of the rift trough are predominantly composed of oil-cracking gas with high maturity,which is typical dry gas.Second,severely modified by thermochemical sulfate reduction(TSR)reaction,the Dengying gas reservoirs on the east side exhibit high H2S and CO_(2) contents,with an elevated δ^(13)C_(2) value(average value higher than-29‰).The Dengying gas reservoirs in the Weiyuan area are less affected by TSR modification,though the δ^(13)C_(1) values are slightly greater than that of the reservoirs on the east side with partial reversal of carbon isotope composition,likely due to the water-soluble gas precipitation and accumulation mechanism.The Dengying gas reservoir of Well Datan-1 shows no influence from TSR.Third,the Dengying gas reservoirs reflect high helium contents(significantly higher than that on the east side)in the Weiyuan and Datan-1 areas on the west side,which is supposed to attribute to the widespread granites in basement and efficient vertical transport along faults.Fourth,controlled by the paleo-salinity of water medium in the depositional period of the source rock,the δ^(2)HCH_(4) values of the Dengying gas reservoirs on the west side are slightly lighter than those on the east side.Fifth,the Dengying natural gas in the Datan-1 area is contributed by the source rocks of the Sinian Doushantuo Formation and the third member of the Dengying Formation,in addition to the Cambrian Qiongzhusi Formation.展开更多
An enriched and domesticated bacteria consortium of sulfate-reducing bacteria(SRB)was used to treat wastewater from zinc pyrithione(ZPT)production,and the effects of different reaction parameters on sulfate reduction ...An enriched and domesticated bacteria consortium of sulfate-reducing bacteria(SRB)was used to treat wastewater from zinc pyrithione(ZPT)production,and the effects of different reaction parameters on sulfate reduction and zinc precipitation were evaluated.The single-factor experimental results showed that the removal rates of Zn2+and24SO?decreased with an increased ZPT concentration ranging from3.0to5.0mg/L.Zn2+and24SO?in wastewater were effectively removed under the conditions of30?35°C,pH7?8and an inoculum concentration of10%?25%.The presence of Fe0in the SRB system enhanced Zn2+and24SO?removal and may increase the resistance of SRB to the toxicity of Zn2+and ZPT in wastewater.A Box?Behnken design was used to evaluate the influence of the main operating parameters on the removal rate of24SO?.The optimum parameter values were found to be pH7.45,33.61°C and ZPT concentration of0.62mg/L,and the removal rate of24SO?reached a maximum of91.62%under these optimum conditions.展开更多
Reductive soil disinfestation(RSD), namely amending organic materials and mulching or flooding to create strong reductive status, has been widely applied to improve degraded soils.However, there is little informatio...Reductive soil disinfestation(RSD), namely amending organic materials and mulching or flooding to create strong reductive status, has been widely applied to improve degraded soils.However, there is little information available about sulfate(SO4^2-) transformation and sulfur(S)gas emissions during RSD treatment to degraded vegetable soils, in which S is generally accumulated. To investigate the effects of liming on SO4^2-transformation and S gas emissions,two SO4^2--accumulated vegetable soils(denoted as S1 and S2) were treated by RSD, and RSD plus lime, denoted as RSD0 and RSD1, respectively. The results showed that RSD0 treatment reduced soil SO4^2-by 51% and 61% in S1 and S2, respectively. The disappeared SO4^2-was mainly transformed into the undissolved form. During RSD treatment, hydrogen sulfide(H2S),carbonyl sulfide(COS), and dimethyl sulfide(DMS) were detected, but the total S gas emission accounted for 〈 0.006% of total S in both soils. Compared to RSD0, lime addition stimulated the conversion of SO42-into undissolved form, reduced soil SO4^2-by 81% in S1 and 84% in S2 and reduced total S gas emissions by 32% in S1 and 57% in S2, respectively. In addition to H2S, COS and DMS, the emissions of carbon disulfide, methyl mercaptan, and dimethyl disulfide were also detected in RSD1 treatment. The results indicated that RSD was an effective method to remove SO4^2-, liming stimulates the conversion of dissolved SO4^2-into undissolved form,probably due to the precipitation with calcium.展开更多
An up-flow anaerobic sludge blanket(UASB)reactor targeting sulfate reduction was operated under a constant TOC/S-SO2-4ratio of 1.5±0.3 g C/g S for 639 days using crude glycerol as carbon source.A filamentous and ...An up-flow anaerobic sludge blanket(UASB)reactor targeting sulfate reduction was operated under a constant TOC/S-SO2-4ratio of 1.5±0.3 g C/g S for 639 days using crude glycerol as carbon source.A filamentous and fluffy flocculant material,namely slime-like substances(SLS),was gradually accumulated in the bioreactor after the cease of methanogenic activity.The accumulation of SLS was followed by a decrease in the removal efficiencies and a deterioration in the performance.Selected characteristics of SLS were investigated to explore the causes of its formation and the effect of SLS on the UASB performance.Results showed that glycerol fermentation and sulfate reduction processes taking place in the reactor were mainly accomplished in the bottom part of the UASB reactor,as the sludge concentration in the bottom was higher.The accumulation of SLS in the UASB reactor caused sludge flotation that further led to biomass washout,which decreased the sulfate and glycerol removal efficiencies.Batch activity tests performed with granular sludge(GS),slime-covered granular sludge(SCGS)and SLS showed that there was no difference between GS and SLS in the mechanism of glycerol fermentation and sulfate reduction.However,the specific sulfate reduction rate of GS was higher than that of SLS,while SLS showed a higher glycerol fermentation rate than that of GS.The different rates in GS and SLS were attributed to the higher relative abundances of fermentative microorganisms found in SLS and higher relative abundances of sulfate reducing bacteria(SRB)found in GS.展开更多
Natural gas containing hydrogen sulphide (H2S) has been found in several petroliferous basins in China, such as the Sichuan Basin, Bohai Bay Basin, Ordos Basin, Tarim Basin, etc. Natural gas with higher HES contents...Natural gas containing hydrogen sulphide (H2S) has been found in several petroliferous basins in China, such as the Sichuan Basin, Bohai Bay Basin, Ordos Basin, Tarim Basin, etc. Natural gas with higher HES contents (HES 〉5 % mol.) is mostly distributed in both the gas reservoirs of Dukouhe, Luojiazhai, Puguang and Tieshanpo, which belong to the Triassic Feixianguan Formation in the northeastern Sichuan Basin and those of the Kongdian-Shahejie formations in the northeastern Jinxian Sag of the Jizhong Depression, Bohai Bay Basin. In the Sichuan Basin, the HES contents of natural gas average over 9% and some can be 17 %, while those of the Bohai Bay Basin range from 40 % to 92 %, being then one of the gas reservoirs with the highest H2S contents in the world. Based on detailed observation and sample analysis results of a total 5000 m of core from over 70 wells in the above-mentioned two basins, especially sulfur isotopic analysis of gypsum, brimstone, pyrite and natural gas, also with integrated study of the geochemical characteristics of hydrocarbons, it is thought that the natural gas with high HES contents resulted from thermochemical sulfate reduction (TSR) reactions. Among them, the natural gas in the Feixianguan Formation resulted from TSR reactions participated by hydrocarbon gas, while that in the Zhaolanzhuang of the Jinxian Sag being the product of TSR participated by crude oil. During the consumption process of hydrocarbons due to TSR, the heavy hydrocarbons were apt to react with sulfate, which accordingly resulted in the dry coefficient of natural gas increasing and the carbon isotopes becoming heavier.展开更多
The Jinshachang lead-zinc deposit is mainly hosted in the Upper Neoproterozoic carbonate rocks of the Dengying Group and located in the Sichuan-Yunnan-Guizhou (SYG) Pb-Zn-Ag multi- metal mineralization area in China...The Jinshachang lead-zinc deposit is mainly hosted in the Upper Neoproterozoic carbonate rocks of the Dengying Group and located in the Sichuan-Yunnan-Guizhou (SYG) Pb-Zn-Ag multi- metal mineralization area in China. Sulfides minerals including sphalerite, galena and pyrite postdate or coprecipitate with gangue mainly consisting of fluorite, quartz, and barite, making this deposit distinct from most lead-zinc deposits in the SYG. This deposit is controlled by tectonic structures, and most mineralization is located along or near faults zones. Emeishan basalts near the ore district might have contributed to the formation of orebodies. The j34S values of sphalerite, galena, pyrite and barite were estimated to be 3.6‰-13.4‰, 3.7‰-9.0‰, -6.4‰ to 29.2‰ and 32.1‰34.7‰, respectively. In view of the similar δ34S values of barite and sulfates being from the Cambrian strata, the sulfur of barite was likely derived from the Cambrian strata. The homogenization temperatures (T ≈ 134--383℃) of fluid inclusions were not suitable for reducing bacteria, therefore, the bacterial sulfate reduction could not have been an efficient path to generate reduced sulfur in this district. Although thermochemical sulfate reduction process had contributed to the production of reduced sulfur, it was not the main mechanism. Considering other aspects, it can be suggested that sulfur of sulfides should have been derived from magmatic activities. The δ34S values of sphalerite were found to be higher than those of coexisting galena. The equilibrium temperatures calculated by using the sulfur isotopic composition of mineral pairs matched well with the homogenization temperature of fluid inclusions, suggesting that the sulfur isotopic composition in ore-forming fluids had reached a partial equilibrium.展开更多
High-sulfur,heavy petroleum is widely occurring in the Tertiary lacustrine Jiyang sub-basin, Bohai Bay Basin.They are differentiated into two families based on the bulk properties and biomarker compositions.Family 1 i...High-sulfur,heavy petroleum is widely occurring in the Tertiary lacustrine Jiyang sub-basin, Bohai Bay Basin.They are differentiated into two families based on the bulk properties and biomarker compositions.Family 1 is characterized by high resins(40%-71%)and sulfur(2%-4%),and low wax (l%-6%),with n-alkanes removed by biodegradation,whereas family 2 is characterized by extremely abundant sulfur(3%-10%),and high asphaltenes(7%-31%)and wax(2%-19%),with no evidence of microbial attack.The oils of family 1 are distributed in the reservoir,lower than 1500 m throughout the sub-basin.Biomarker assemblages,such as low pristane/phytane ratios(1 Pr/Ph)and a high abundance of carotane,gammacerane,and dinosterane,suggest that they are derived from the calcareous mudstones and shales among the stratified,saline Es_4~u unit,in addition to the in situ biodegradation-concentrated sulfur content.However,the oils of family 2 are identified only in the western Zhanhua and eastern Chezhen depressions,with a depth deeper than 1700 m.Physical properties,together with biomarker ratios,including even-numbered n-alkanes,1 Pr/Ph,trace diasteranes,higher C35 homohopanes,and abundant dibenzothiophene series,with1 dibenzothiophene/phenanthrene,indicate an origin from carbonate source rocks.The X-ray diffraction analysis showed that the carbonate source rock is limited in the Es_4~u unit of the Bonan sag,which is different from most other source rocks in the same horizon.It is suggested that the high-sulfur,heavy oils are generated at the early stage of the oil window.Bacterial sulfate reduction might be responsible for the occurrence of sulfur species in the high-sulfur,heavy oils,while heavy biodegradation will enhance sulfur concentrations.展开更多
Thermochemical sulfate reduction (TSR) in geological deposits can account for the accumulation of H2S in deep sour gas reservoirs. In this paper, thermal simulation experiments on the reaction of CH4-CaSO4 were carri...Thermochemical sulfate reduction (TSR) in geological deposits can account for the accumulation of H2S in deep sour gas reservoirs. In this paper, thermal simulation experiments on the reaction of CH4-CaSO4 were carried out using an autoclave at high temperatures and high pressures. The products were characterized with analytical methods including carbon isotope analysis. It is found that the reaction can proceed to produce H2S, H2O and CaCO3 as the main products. Based on the experimental results, the carbon kinetic isotope fractionation was investigated, and the value of Ki (kinetic isotope effect) was calculated. The results obtained in this paper can provide useful information to explain the occurrence of H2S in deep carbonate gas reservoirs.展开更多
Based on the technology of balanced cross-section and physical simulation experiments associated with natural gas geochemical characteristic analyses, core and thin section observations, it has been proven that the Pu...Based on the technology of balanced cross-section and physical simulation experiments associated with natural gas geochemical characteristic analyses, core and thin section observations, it has been proven that the Puguang gas reservoir has experienced two periods of diagenesis and restructuring since the Late Indo-Chinese epoch. One is the fluid transfer controlled by the tectonic movement and the other is geochemical reconstruction controlled by thermochemical sulfate reduction (TSR). The middle Yanshan epoch was the main period that the Puguang gas reservoir experienced the geochemical reaction of TSR. TSR can recreate the fluid in the gas reservoir, which makes the gas drying index higher and carbon isotope heavier because C2+ (ethane and heavy hydrocarbon) and 12C (carbon 12 isotope) is first consumed relative to CH4 and 13C (carbon 13 isotope). However, the reciprocity between fluid regarding TSR (hydrocarbon, sulfureted hydrogen (H2S), and water) and reservoir rock results in reservoir rock erosion and anhydrite alteration, which increases porosity in reservoir, thereby improving the petrophysical properties. Superimposed by later tectonic movement, the fluid in Puguang reservoir has twice experienced adjustment, one in the late Yanshan epoch to the early Himalayan epoch and the other time in late Himalayan epoch, after which Puguang gas reservoir is finally developed.展开更多
文摘Hydrogen is recognized as a clean energy carrier that can decarbonize heavy industry and the aviation system.However,the infrastructure is not yet ready for a hydrogen economy and large-scale hydrogen storage is needed to balance the mismatch between supply and demand.Therefore,depleted gas fields have been proposed as suitable storage sites,given the presence of infrastructure and pipeline network for distribution and utilization.Attempts have been made to analyze the suitability of these reservoirs for hydrogen storage,with a focus on choosing higher temperature and salinity conditions to neutralize the effects of microbial activities as one of the main sources of hydrogen loss in the depleted gas reservoirs.However,thermochemical sulfate reduction(TSR)is activated at high temperatures and has a huge potential not only to consume hydrogen through abiotic reactions but also to generate a huge amount of H_(2)S.In this study,a onedimensional diffusion-based mass transport model was built using PHREEQC to highlight the potential challenges posed by the TSR in depleted gas fields.The results obtained indicated that the presence of iron minerals(pyrite and hematite)is crucial for H_(2)S generation through TSR reactions.An increase in temperature also leads to an increase in H_(2)S concentration in the brine and gas phase.However,since most of the H_(2)S formation comes from pyrite dissolution and pyrite dissolution is still strong at lower temperatures,a low temperature is not necessarily the best selection criterion to avoid H_(2)S formation.Thus,precautions must be taken to ensure that activation of TSR does not pose significant environmental problems.
基金funded by the Natural Science Foundation of China(Grants Nos.42272167,U24B6001,and 41772153)Science&Technology Project of Sinopec(Grant Nos.P23167 and P24173).
文摘Thiadiamondoids(TDs)have recently attracted increasing attention as molecular proxies for thermochemical sulfate reduction(TSR)reactions in reservoirs.However,their formation mechanisms,as well as the generation and evolution processes,remain poorly understood.In this study,simulation experiments with a duration of 160 h were conducted on the model compound 1,3-dimethyladamantane(1,3-DMA)using the CaSO_(4),MgSO_(4),and elemental S systems,with measurements at the 10th,20th,40th,80th and 160th hours during the simulation process being presented.The results indicate that at the end of simulation,the MgSO_(4) system exhibited the lowest residual amounts of 1,3-DMA,suggesting the highest degree of TSR.Four types of non-hydrocarbon compounds with adamantane structures were detected in the liquid products in the three experiment systems:adamantanones,adamantanols,adamantanethiols(ATs),and thiaadamantanes(TAs).Among these,adamantanones exhibited the highest concentrations in the three simulation systems.In addition,TAs were dominated by C_(3)-TAs in the CaSO_(4) and MgSO_(4) systems and by C_(2)-TAs in the elemental S system.The simulation experiments revealed a strong correlation between the concentrations of TAs and adamantanones,suggesting that adamantanones might be the intermediates for TAs.Combined with the synthesis mechanism of TAs from thiaadamamantane-4,8-dione,TDs might have two different genetic mechanisms:(a)low temperature cationic carbon ion rearrangement from diagenesis to early catagenesis stage,and(b)a free sulfur radical mechanism in high-temperature TSR process during middle-late catagenesis.TAs exhibited different generation and evolution processes across different experiment systems.Notably,the MgSO_(4) system revealed that TAs undergo generation,accumulation,and destruction process,corresponding to Easy%Ro values of 0.89%-0.98%,0.98%-1.21%,and>1.21%,respectively.Among these three simulation systems,dibenzothiophenes(DBTs)concentrations consistently trended upwards,indicating TAs have lower thermal stability than DBTs.
基金The National Natural Science Foundation of China under contract Nos 40803020 and 41176065
文摘Subtropical sediment cores (QA09-1 and QA12-9) from the coastal zone of Qi’ao Island in the Zhujiang River Estuary were used to determine the rates of sulfate reduction and their response to experimental tempera-ture changes. The depth distribution of the sulfate reduction rates was measured from whole-core incu-bations with radioactive tracer35SO42-, and peaks of 181.19 nmol/(cm3·d) and 107.49 nmol/(cm3·d) were exhibited at stations QA09-1 and QA12-9, respectively. The profiles of the pore water methane and sulfate concentrations demonstrated that anaerobic oxidation of methane occurred in the study area, which result-ed in an increase in the sulfate reduction rate at the base of the sulfate-reducing zone. Meanwhile, the sulfate concentration was not a major limiting factor for controlling the rates of sulfate reduction. In addition, the incubation of the sediment slurries in a block with a temperature gradient showed that the optimum tem-perature for the sulfate reduction reaction was 36°C. The Arrhenius plot was linear from the lowest tempera-ture to the optimum temperature, and the activation energy was at the lower end of the range of previously reported values. The results suggested that the ambient temperature regime of marine environments prob-ably selected for the microbial population with the best-suited physiology for the respective environment.
基金supported by the State 973 Project(Grant No.2006CB202308)the National Natural Science Foundation of China(Grant No.40872097)
文摘Systematic analyses of the formation water and natural gas geochemistry in the Central Uplift of the Tarim Basin (CUTB) show that gas invasion at the late stage is accompanied by an increase of the contents of HeS and CO2 in natural gas, by the forming of the high total dissolved solids formation water, by an increase of the content of HCO3^-, relative to Cl^-, by an increase of the 2nd family ions (Ca^2+, Mg^2+, Sr^2+ and Ba^2+) and by a decrease of the content of SO4^2-, relative to Cl^-. The above phenomena can be explained only by way of thermochemicai sulfate reduction (TSR). TSR often occurs in the transition zone of oil and water and is often described in the following reaction formula: ∑CH+CaSO4+H-2O→H2S+CO2+CaCO3. (1) Dissolved SO4^2- in the formation water is consumed in the above reaction, when HeS and CO2 are generated, resulting in a decrease of SO4^2- in the formation water and an increase of both HeS and CO2 in the natural gas. If formation water exists, the generated CO2 will go on reacting with the carbonate to form bicarbonate, which can be dissolved in the formation water, thus resulting in the enrichment of Ca^2+ and HCO3^-. The above reaction can be described by the following equation: CO2+HeO+CaCO3→Ca^2++2HCO3^-. The stratigraphic temperatures of the Cambrian and lower Ordovician in CUTB exceeded 120℃, which is the minimum for TSR to occur. At the same time, dolomitization, which might be a direct result of TSR, has been found in both the Cambrian and the lower Ordovician. The above evidence indicates that TSR is in an active reaction, providing a novel way to reevaluate the exploration potentials of natural gas in this district.
基金supported by the National Natural Science Foundation of China (Nos.41977331,51778579,21876165 and42177203)the Natural Science Foundation of Zhejiang Province (No.LGF20E080004).
文摘Attention should be paid to the sulfate reduction behavior in a pressure-bearing leachate saturated zone.In this study,within the relative pressure range of 0–0.6 MPa,the ambient temperature with the highest sulfate reduction rate of 50℃ was selected to explore the difference in sulfate reduction behavior in a pressure-bearing leachate saturated zone.The results showed that the sulfate reduction rate might further increase with an increase in pressure;however,owing to the effect of pressure increase,the generated hydrogen sulfide (H_(2)S) could not be released on time,thereby decreasing its highest concentration by approximately 85%,and the duration extended to about two times that of the atmospheric pressure.Microbial community structure and functional gene abundance analyses showed that the community distribution of sulfate-reducing bacteria was significantly affected by pressure conditions,and there was a negative correlation between disulfide reductase B(dsrB) gene abundance and H_(2)S release rate.Other sulfate reduction processes that do not require disulfide reductase A (dsrA) and dsrB genes may be the key pathways affecting the sulfate reduction rate in the pressure-bearing leachate saturated zone.This study improves the understanding of sulfate reduction in landfills as well as provides a theoretical basis for the operation and management of landfills.
基金supported by the National Natural Science Foundation of China(grant No.41530314)Geological Survey Program(grant No.1212291313016001)
文摘Thermochemical sulfate reduction (TSR) is the reaction between anhydrite and petroleum fluids at elevated temperatures to produce H2S and CO2. TSR has been studied in many sedimentary basins such as China's Sichuan and Tarim basins because it has a profound impact on the commercial viability of petroleum resources, with HzS typically being undesirable.
基金National Natural Science Foundation of China(Grant number 31572428).
文摘Methane(CH4)production from ruminants accounts for 16%of the global greenhouse gas emissions and represents 2%to 12%of feed energy.Mitigating CH_(4) production from ruminants is of great importance for sustainable development of the ruminant industry.H_(2) is the primary substrate for CH_(4) production in the processes of ruminal methanogenesis.Sulfate reducing bacteria are able to compete with methanogens for H_(2) in the rumen,and consequently inhibit the methanogenesis.Enhancing the ruminal sulfate reducing pathway is an important approach to mitigate CH_(4) emissions in ruminants.The review summarized the effects of sulfate and elemental S on ruminal methanogenesis,and clarified the related mechanisms through the impacts of sulfate and elemental S on major ruminal sulfate reducing bacteria.Enhancing the activities of the major ruminal sulfate reducing bacteria including Desulfovibrio,Desulfohalobium and Sulfolobus through dietary sulfate addition,elemental S and dried distillers grains with solubles can effectively decrease the ruminal CH_(4) emissions.Suitable levels of dietary addition with different S sources for reducing the ruminal CH_(4) production,as well as maintaining the performance and health of ruminants,need to be investigated in the future.
基金We gratefully acknowledge generous support provided by the National Natural Science Foundation of China(No.51978328).
文摘For comprehensive insights into the influences of sulfate on performance,microbial community and metabolic pathways in the acidification phase of a two-phase anaerobic system,a laboratory-scale acidogenic bioreactor was continuously operated to treat wastewater with elevated sulfate concentrations from 2000 to 14000 mg/L.The results showed that the acidogenic bioreactor could achieve sulfate reduction efficiency of greater than 70%for influent sulfate content less than 12000 mg/L.Increased sulfate induced the accumulation of volatile fatty acids(VPAs),especially propionate and butyrate,which was the primary negative effects to system performance under the high-sulfate environment.High-throughput sequencing coupled with PICRUSt2 uncovered that the accumulation of VFAs was triggered by the decreasing of genes encoding short-chain acyl-CoA dehydrogenase(EC:1.3.8.1),regulating the transformation of propanoyl-CoA to propenoyl-CoA and butanoyl-CoA to crotonyl-CoA of propionate and butyrate oxidation pathways,which made these two process hardly proceed.Besides,genes encoding(EC:1.3.8.1)were mainly carried by order Clostridiales.Desulfovibrio was the most abundant sulfate-reducing bacteria and identified as the primary host of dissimilatory sulfate reduction ftinctional genes.Functional analysis indicated the dissimilatory sulfate reduction process predominated under a low sulfate environment,but was not favored under the circumstance of high-sulfate.With the increase of sulfate,the assimilatory sulfate reduction process finally overwhelmed dissimilatory as the dominant sulfate reduction pathway in acidogenic bioreactor.
文摘The kinetic characteristics of alkenes involved in thermochemical sulfate reduction (TSR) have been never reported in geological literature. In this study, TSR by ethene under hydrothermal conditions was performed in the constrained simulation experiments. Typical TSR products consisted of H<sub>2</sub>S, CO<sub>2</sub>, mercaptans, sulfides, thiophenes derivatives and benzothiophene. The apparent activation energy E and apparent frequency factor A for TSR by ethene were determined as 76.370 kJ/mol and 4.579 s<sup>-1</sup>, respectively. The lower activation energy for ethene involved in TSR relative to ethane suggested that the reactivity of ethene is much higher than that of ethane, in accordance with the thermodynamic analysis. Rate constants were determined experimentally using first-order kinetics extrapolate to MgSO<sub>4</sub> half-lives of 67.329 years - 3.053 years in deep burial diagenetic settings (120°C - 180°C). These values demonstrate that the reaction rate for TSR by ethene is extraordinarily fast in high-temperature gas reservoirs (120°C - 180°C). Consequently, the newly formed ethene from thermal cracking and TSR alteration of natural gas and/or petroleum could not survive after TSR process and were rarely detected in natural TSR reservoirs.
基金Item Sponsored by National Natural Science Foundation of China(51474018)
文摘The effect of sodium sulfate on direct reduction of beach titanomagnetite,followed by magnetic separation,to separate iron and titanium was investigated. Direct reduced iron( DRI) with a high Fe content,low TiO_2 content and low iron recovery was obtained after adding sodium sulfate. When the sodium sulfate dosage was increased from 0 to 10 mass%,the Fe content of the DRI increased from 90. 00 mass% to 93. 55 mass% and the TiO_2 content decreased from 1. 27 mass% to 0. 70 mass%. The reduction mechanism of sodium sulfate was investigated by X-ray diffraction( XRD) and scanning electron microscopy( SEM) with energy dispersive spectrometer( EDS). Results revealed that the metallic iron grains in the reduced ore with sodium sulfate were larger than those in the ore without sodium sulfate. Sodium sulfate promoted the migration of iron as well as the accumulation and growth of metallic iron grains by low-melting-point carnegieite and troilite formed in the redox system. Low-melting-point carnegieite decreased the melting point of the system and then promoted liquefaction. Troilite could decrease the surface tension and melting point of metallic iron grains.
基金supported by the National Natural Science Foundation of China(Nos.42072184 and 41702157)the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance。
文摘For an improved understanding of gas enrichment mechanism in the eastern Sichuan Basin,South China,twelve natural gas samples were obtained from carbonate reservoirs of the Upper Permian strata to analyze the hydrocarbon and non-hydrocarbon gas compositions,stable carbon and hydrogen isotopes ratios of hydrocarbons,and noble gas isotope ratios.The gas samples in the Upper Permian reservoirs principally consist of alkane gas with a dryness ratio ranging from 127.9 to 1564.4.The carbon isotope ratio of methane(δ^(13)C_(1))was almost constant at-34.1 to-31.3‰,but the carbon isotope ratio of ethane(δ^(13)C2)varied from-36.6‰to-25.8‰.The hydrogen isotope ratio of methane(δ^2HC_(1))also displayed a wide range from-137‰to-127‰.The large variations in the dryness ratio,δ^(13)C_(2),andδ^2HC_(1)with almost constantδ^(13)C_(1)suggest the mixing of sapropelic and humic origins for hydrocarbon gases in these reservoirs.A high concentration of hydrogen sulfide(H_(2)S)originated from the thermochemical sulfate reduction(TSR),which was positively correlated withδ^(13)C_(1)(orδ^(13)C_(2))in individual gas fields.TSR alteredδ^(13)C_(1)(orδ^(13)C_(2))and resulted in the abnormal character of isotopic reversal in the individual samples.Theδ^(13)C_(1)(orδ^(13)C_(2))in most gas samples,independent of H_(2)S concentration,further displayed reversed carbon isotopes because of the mixture of thermogenic gases with various thermal maturity levels.The measured argon isotope ratio(^(40)Ar/^(36)Ar)varied from 310 to 1225,which suggests that the oldest 320 Ma source rock age corresponds to Permian shales.The analysis of the gas origin and the identification of primary source rock have made a significant contribution to further understanding the resource potential and distribution of natural gas in the Upper Permian,and have great implications for gas exploration in the eastern Sichuan Basin.
基金Supported by the National Natural Science Foundation of China(42272161)PetroChina Science and Technology Major Project(2023ZZ16)Research Institute of Exploration and Development,PetroChina Southwest Oil&Gasfield Company(2024D101-01-06)。
文摘Taking the natural gas reservoirs of the Sinian Dengying Formation on the east and west sides(Gaoshiti-Moxi area and north slope of central Sichuan paleo-uplift on the east;Weiyuan and Well Datan-1 block on the west)of the Deyang-Anyue rift trough in the Sichuan Basin,China,as the research object,the geochemical parameters(component,isotopic composition)of natural gas from the Dengying Formation in different areas are compared,and then the differences in geochemical characteristics of Dengying natural gas on the east and west sides of the Deyang-Anyue rift trough and their genesis are clarified.First,the Dengying gas reservoirs on both sides of the rift trough are predominantly composed of oil-cracking gas with high maturity,which is typical dry gas.Second,severely modified by thermochemical sulfate reduction(TSR)reaction,the Dengying gas reservoirs on the east side exhibit high H2S and CO_(2) contents,with an elevated δ^(13)C_(2) value(average value higher than-29‰).The Dengying gas reservoirs in the Weiyuan area are less affected by TSR modification,though the δ^(13)C_(1) values are slightly greater than that of the reservoirs on the east side with partial reversal of carbon isotope composition,likely due to the water-soluble gas precipitation and accumulation mechanism.The Dengying gas reservoir of Well Datan-1 shows no influence from TSR.Third,the Dengying gas reservoirs reflect high helium contents(significantly higher than that on the east side)in the Weiyuan and Datan-1 areas on the west side,which is supposed to attribute to the widespread granites in basement and efficient vertical transport along faults.Fourth,controlled by the paleo-salinity of water medium in the depositional period of the source rock,the δ^(2)HCH_(4) values of the Dengying gas reservoirs on the west side are slightly lighter than those on the east side.Fifth,the Dengying natural gas in the Datan-1 area is contributed by the source rocks of the Sinian Doushantuo Formation and the third member of the Dengying Formation,in addition to the Cambrian Qiongzhusi Formation.
基金Project(2015DFG92750)supported by the International S&T Cooperation Program of ChinaProjects(51278464,51478172)supported by the National Natural Science Foundation of ChinaProject(2014GK1012)supported by the Department of Science and Technology of Hunan Province,China
文摘An enriched and domesticated bacteria consortium of sulfate-reducing bacteria(SRB)was used to treat wastewater from zinc pyrithione(ZPT)production,and the effects of different reaction parameters on sulfate reduction and zinc precipitation were evaluated.The single-factor experimental results showed that the removal rates of Zn2+and24SO?decreased with an increased ZPT concentration ranging from3.0to5.0mg/L.Zn2+and24SO?in wastewater were effectively removed under the conditions of30?35°C,pH7?8and an inoculum concentration of10%?25%.The presence of Fe0in the SRB system enhanced Zn2+and24SO?removal and may increase the resistance of SRB to the toxicity of Zn2+and ZPT in wastewater.A Box?Behnken design was used to evaluate the influence of the main operating parameters on the removal rate of24SO?.The optimum parameter values were found to be pH7.45,33.61°C and ZPT concentration of0.62mg/L,and the removal rate of24SO?reached a maximum of91.62%under these optimum conditions.
基金supported by grants from the National Natural Science Foundation of China(Nos:41301313,41330744)the Natural Science Foundation of Jiangsu Province(No.BK20140062)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.13KJA210002)the Outstanding Innovation Team in Colleges and Universities in Jiangsu Province and the Priority Academic Program Development of Jiangsu Higher Education Institutions(164320H116)
文摘Reductive soil disinfestation(RSD), namely amending organic materials and mulching or flooding to create strong reductive status, has been widely applied to improve degraded soils.However, there is little information available about sulfate(SO4^2-) transformation and sulfur(S)gas emissions during RSD treatment to degraded vegetable soils, in which S is generally accumulated. To investigate the effects of liming on SO4^2-transformation and S gas emissions,two SO4^2--accumulated vegetable soils(denoted as S1 and S2) were treated by RSD, and RSD plus lime, denoted as RSD0 and RSD1, respectively. The results showed that RSD0 treatment reduced soil SO4^2-by 51% and 61% in S1 and S2, respectively. The disappeared SO4^2-was mainly transformed into the undissolved form. During RSD treatment, hydrogen sulfide(H2S),carbonyl sulfide(COS), and dimethyl sulfide(DMS) were detected, but the total S gas emission accounted for 〈 0.006% of total S in both soils. Compared to RSD0, lime addition stimulated the conversion of SO42-into undissolved form, reduced soil SO4^2-by 81% in S1 and 84% in S2 and reduced total S gas emissions by 32% in S1 and 57% in S2, respectively. In addition to H2S, COS and DMS, the emissions of carbon disulfide, methyl mercaptan, and dimethyl disulfide were also detected in RSD1 treatment. The results indicated that RSD was an effective method to remove SO4^2-, liming stimulates the conversion of dissolved SO4^2-into undissolved form,probably due to the precipitation with calcium.
基金the Spanish Government,through the project RTI2018-099362-B-C21 MINECO/FEDER,EU,for the financial support provided to perform this researchthe China Scholarship Council (CSC,201706300052)for financial support。
文摘An up-flow anaerobic sludge blanket(UASB)reactor targeting sulfate reduction was operated under a constant TOC/S-SO2-4ratio of 1.5±0.3 g C/g S for 639 days using crude glycerol as carbon source.A filamentous and fluffy flocculant material,namely slime-like substances(SLS),was gradually accumulated in the bioreactor after the cease of methanogenic activity.The accumulation of SLS was followed by a decrease in the removal efficiencies and a deterioration in the performance.Selected characteristics of SLS were investigated to explore the causes of its formation and the effect of SLS on the UASB performance.Results showed that glycerol fermentation and sulfate reduction processes taking place in the reactor were mainly accomplished in the bottom part of the UASB reactor,as the sludge concentration in the bottom was higher.The accumulation of SLS in the UASB reactor caused sludge flotation that further led to biomass washout,which decreased the sulfate and glycerol removal efficiencies.Batch activity tests performed with granular sludge(GS),slime-covered granular sludge(SCGS)and SLS showed that there was no difference between GS and SLS in the mechanism of glycerol fermentation and sulfate reduction.However,the specific sulfate reduction rate of GS was higher than that of SLS,while SLS showed a higher glycerol fermentation rate than that of GS.The different rates in GS and SLS were attributed to the higher relative abundances of fermentative microorganisms found in SLS and higher relative abundances of sulfate reducing bacteria(SRB)found in GS.
文摘Natural gas containing hydrogen sulphide (H2S) has been found in several petroliferous basins in China, such as the Sichuan Basin, Bohai Bay Basin, Ordos Basin, Tarim Basin, etc. Natural gas with higher HES contents (HES 〉5 % mol.) is mostly distributed in both the gas reservoirs of Dukouhe, Luojiazhai, Puguang and Tieshanpo, which belong to the Triassic Feixianguan Formation in the northeastern Sichuan Basin and those of the Kongdian-Shahejie formations in the northeastern Jinxian Sag of the Jizhong Depression, Bohai Bay Basin. In the Sichuan Basin, the HES contents of natural gas average over 9% and some can be 17 %, while those of the Bohai Bay Basin range from 40 % to 92 %, being then one of the gas reservoirs with the highest H2S contents in the world. Based on detailed observation and sample analysis results of a total 5000 m of core from over 70 wells in the above-mentioned two basins, especially sulfur isotopic analysis of gypsum, brimstone, pyrite and natural gas, also with integrated study of the geochemical characteristics of hydrocarbons, it is thought that the natural gas with high HES contents resulted from thermochemical sulfate reduction (TSR) reactions. Among them, the natural gas in the Feixianguan Formation resulted from TSR reactions participated by hydrocarbon gas, while that in the Zhaolanzhuang of the Jinxian Sag being the product of TSR participated by crude oil. During the consumption process of hydrocarbons due to TSR, the heavy hydrocarbons were apt to react with sulfate, which accordingly resulted in the dry coefficient of natural gas increasing and the carbon isotopes becoming heavier.
基金granted by the Key Research Program of the Chinese Academy of Sciences (KZCX2-YW-Q04-05)a Special Research Fund of the SKLOG, IGCAS (KCZX20090103)
文摘The Jinshachang lead-zinc deposit is mainly hosted in the Upper Neoproterozoic carbonate rocks of the Dengying Group and located in the Sichuan-Yunnan-Guizhou (SYG) Pb-Zn-Ag multi- metal mineralization area in China. Sulfides minerals including sphalerite, galena and pyrite postdate or coprecipitate with gangue mainly consisting of fluorite, quartz, and barite, making this deposit distinct from most lead-zinc deposits in the SYG. This deposit is controlled by tectonic structures, and most mineralization is located along or near faults zones. Emeishan basalts near the ore district might have contributed to the formation of orebodies. The j34S values of sphalerite, galena, pyrite and barite were estimated to be 3.6‰-13.4‰, 3.7‰-9.0‰, -6.4‰ to 29.2‰ and 32.1‰34.7‰, respectively. In view of the similar δ34S values of barite and sulfates being from the Cambrian strata, the sulfur of barite was likely derived from the Cambrian strata. The homogenization temperatures (T ≈ 134--383℃) of fluid inclusions were not suitable for reducing bacteria, therefore, the bacterial sulfate reduction could not have been an efficient path to generate reduced sulfur in this district. Although thermochemical sulfate reduction process had contributed to the production of reduced sulfur, it was not the main mechanism. Considering other aspects, it can be suggested that sulfur of sulfides should have been derived from magmatic activities. The δ34S values of sphalerite were found to be higher than those of coexisting galena. The equilibrium temperatures calculated by using the sulfur isotopic composition of mineral pairs matched well with the homogenization temperature of fluid inclusions, suggesting that the sulfur isotopic composition in ore-forming fluids had reached a partial equilibrium.
基金Funds to support this research were provided by the National Science Foundation of China(no. 40703011)
文摘High-sulfur,heavy petroleum is widely occurring in the Tertiary lacustrine Jiyang sub-basin, Bohai Bay Basin.They are differentiated into two families based on the bulk properties and biomarker compositions.Family 1 is characterized by high resins(40%-71%)and sulfur(2%-4%),and low wax (l%-6%),with n-alkanes removed by biodegradation,whereas family 2 is characterized by extremely abundant sulfur(3%-10%),and high asphaltenes(7%-31%)and wax(2%-19%),with no evidence of microbial attack.The oils of family 1 are distributed in the reservoir,lower than 1500 m throughout the sub-basin.Biomarker assemblages,such as low pristane/phytane ratios(1 Pr/Ph)and a high abundance of carotane,gammacerane,and dinosterane,suggest that they are derived from the calcareous mudstones and shales among the stratified,saline Es_4~u unit,in addition to the in situ biodegradation-concentrated sulfur content.However,the oils of family 2 are identified only in the western Zhanhua and eastern Chezhen depressions,with a depth deeper than 1700 m.Physical properties,together with biomarker ratios,including even-numbered n-alkanes,1 Pr/Ph,trace diasteranes,higher C35 homohopanes,and abundant dibenzothiophene series,with1 dibenzothiophene/phenanthrene,indicate an origin from carbonate source rocks.The X-ray diffraction analysis showed that the carbonate source rock is limited in the Es_4~u unit of the Bonan sag,which is different from most other source rocks in the same horizon.It is suggested that the high-sulfur,heavy oils are generated at the early stage of the oil window.Bacterial sulfate reduction might be responsible for the occurrence of sulfur species in the high-sulfur,heavy oils,while heavy biodegradation will enhance sulfur concentrations.
文摘Thermochemical sulfate reduction (TSR) in geological deposits can account for the accumulation of H2S in deep sour gas reservoirs. In this paper, thermal simulation experiments on the reaction of CH4-CaSO4 were carried out using an autoclave at high temperatures and high pressures. The products were characterized with analytical methods including carbon isotope analysis. It is found that the reaction can proceed to produce H2S, H2O and CaCO3 as the main products. Based on the experimental results, the carbon kinetic isotope fractionation was investigated, and the value of Ki (kinetic isotope effect) was calculated. The results obtained in this paper can provide useful information to explain the occurrence of H2S in deep carbonate gas reservoirs.
基金supported by the 973 State Project (Project no.2005CB422105)
文摘Based on the technology of balanced cross-section and physical simulation experiments associated with natural gas geochemical characteristic analyses, core and thin section observations, it has been proven that the Puguang gas reservoir has experienced two periods of diagenesis and restructuring since the Late Indo-Chinese epoch. One is the fluid transfer controlled by the tectonic movement and the other is geochemical reconstruction controlled by thermochemical sulfate reduction (TSR). The middle Yanshan epoch was the main period that the Puguang gas reservoir experienced the geochemical reaction of TSR. TSR can recreate the fluid in the gas reservoir, which makes the gas drying index higher and carbon isotope heavier because C2+ (ethane and heavy hydrocarbon) and 12C (carbon 12 isotope) is first consumed relative to CH4 and 13C (carbon 13 isotope). However, the reciprocity between fluid regarding TSR (hydrocarbon, sulfureted hydrogen (H2S), and water) and reservoir rock results in reservoir rock erosion and anhydrite alteration, which increases porosity in reservoir, thereby improving the petrophysical properties. Superimposed by later tectonic movement, the fluid in Puguang reservoir has twice experienced adjustment, one in the late Yanshan epoch to the early Himalayan epoch and the other time in late Himalayan epoch, after which Puguang gas reservoir is finally developed.