期刊文献+
共找到306篇文章
< 1 2 16 >
每页显示 20 50 100
Predictive models for the surface roughness and subsurface damage depth of semiconductor materials in precision grinding
1
作者 Shang Gao Haoxiang Wang +2 位作者 Han Huang Zhigang Dong Renke Kang 《International Journal of Extreme Manufacturing》 2025年第3期423-449,共27页
Workpiece rotational grinding is widely used in the ultra-precision machining of hard and brittle semiconductor materials,including single-crystal silicon,silicon carbide,and gallium arsenide.Surface roughness and sub... Workpiece rotational grinding is widely used in the ultra-precision machining of hard and brittle semiconductor materials,including single-crystal silicon,silicon carbide,and gallium arsenide.Surface roughness and subsurface damage depth(SDD)are crucial indicators for evaluating the surface quality of these materials after grinding.Existing prediction models lack general applicability and do not accurately account for the complex material behavior under grinding conditions.This paper introduces novel models for predicting both surface roughness and SDD in hard and brittle semiconductor materials.The surface roughness model uniquely incorporates the material’s elastic recovery properties,revealing the significant impact of these properties on prediction accuracy.The SDD model is distinguished by its analysis of the interactions between abrasive grits and the workpiece,as well as the mechanisms governing stress-induced damage evolution.The surface roughness model and SDD model both establish a stable relationship with the grit depth of cut(GDC).Additionally,we have developed an analytical relationship between the GDC and grinding process parameters.This,in turn,enables the establishment of an analytical framework for predicting surface roughness and SDD based on grinding process parameters,which cannot be achieved by previous models.The models were validated through systematic experiments on three different semiconductor materials,demonstrating excellent agreement with experimental data,with prediction errors of 6.3%for surface roughness and6.9%for SDD.Additionally,this study identifies variations in elastic recovery and material plasticity as critical factors influencing surface roughness and SDD across different materials.These findings significantly advance the accuracy of predictive models and broaden their applicability for grinding hard and brittle semiconductor materials. 展开更多
关键词 surface quality GRINDING predictive models semiconductor materials surface roughness subsurface damage depth
在线阅读 下载PDF
Effect of cumin intercropping density on cotton growth and system economic benefits under subsurface drip irrigation
2
作者 DENG Shijie ZHANG Humei +6 位作者 SHI Feng LIU Xuan SHI Xiaojuan LI Nannan ZHAO Houxiu LUO Honghai TIAN Yu 《Journal of Cotton Research》 2025年第2期256-269,共14页
Background The mulch-free subsurface drip irrigation system demonstrated water-saving potential as an alternative to traditional mulch-based drip irrigation while also eliminating residual film pollution at source.How... Background The mulch-free subsurface drip irrigation system demonstrated water-saving potential as an alternative to traditional mulch-based drip irrigation while also eliminating residual film pollution at source.However,delayed sowing is unavoidable in mulch-free cultivation in ecological regions with a short frost-free period.Intercropping with cumin,which has a shorter growth period,served as an effective strategy to improve land use efficiency during the early growth stages of cotton.Therefore,a two-year field experiment was conducted to study the effects of intercropping cumin at the seeding rate of 2.5(ID1),3.85(ID2),and 5.2(ID3)kg・hm−2 on cotton growth,interspecies competition,fiber quality,and water use efficiency(WUE),as well as system economic benefits under subsurface drip irrigation.Monocropping cotton was used as the control(CK)treatment.Results At the initial flowering(IF)stage(the end of the co-growth period of cotton and cumin),cotton plant height in ID2 and ID3 treatments decreased by 5.93%–16.53%and 10.87%–31.11%,respectively,cotton stem diameter by 11.41%–14.25%and 3.37%–26.49%,respectively,and vegetative biomass by 14.46%–30.65%and 22.59%–49.91%,respectively,compared with CK treatment.With the increase in cumin density,the crop growth rate(CGR)and compensation effect in cotton tended to significantly decrease at the IF stage regardless of organs considered.For the non-co-growth period(after harvesting cumin),cotton reproductive organ biomass in ID2 and ID3 treatments increased by 4.09%‒14.61%at the boll opening stage,crop growth rate in reproductive organs by 20.74%and 74.26%from peak boll to boll opening stages compared with CK treatment,due to an enhancement of 19.09%and 49.30%in the compensation effect.Compared with ID1,the aggressivity treated by ID2 and ID3 decreased by 12.82%–46.34%and 17.95%–31.71%,respectively.However,owing to a greater number of green bolls in the upper canopy at the harvest stages in the ID3 treatment,the system production value(closely related to yield)treated by ID2 was 11.69%–16.89%,6.56%–20.02%,and 16.48%–59.83%greater than that of the ID1,ID3,and CK treatments,respectively.This also led to the highest WUE and net profit under the ID2 treatment.Conclusion Intercropping cumin with medium density improved the cotton biomass accumulation characteristics and increased resources such as land and water utilization efficiency and economic benefits through a stronger compensation effect after harvesting cumin under subsurface drip irrigation without mulch.This study not only provides alternatives to residual film pollution in arid cotton fields but also establishes a sustainable agro-ecological-economic planting paradigm by reducing plastic use and enhancing water and fertilizer use efficiency,holding significant implications for advancing resource-efficient agricultural systems. 展开更多
关键词 Cotton intercropping with cumin subsurface drip irrigation BIOMASS Interspecific competition Economic efficiency Resource competition
在线阅读 下载PDF
Two new shaped coal pillars designed to protect the subsurface pipeline in the gas-coal integrated mining field
3
作者 Yixin Zhao Jiandong Ren Zhongbo Sun 《International Journal of Mining Science and Technology》 2025年第3期325-344,共20页
In the gas-coal integrated mining field,the conventional design method of pipeline coal pillars leads to a large amount of coal pillars being unrecovered and overlooks the pipeline's safety requirements.Considerin... In the gas-coal integrated mining field,the conventional design method of pipeline coal pillars leads to a large amount of coal pillars being unrecovered and overlooks the pipeline's safety requirements.Considering the coal pillar recovery rate and pipeline's safety requirements,two new shaped coal pillar design approaches for subsurface pipelines were developed.Firstly,the deformation limitations for measuring pipeline safety are categorized into two:no deformation is permitted,and deformation is acceptable within elastic limits.Subsequently,integrating the key stratum theory(KST)and cave angle,a fishbone-shaped coal pillar design approach that does not permit pipeline deformation is established.Meanwhile,combined with the ground subsidence and the pipeline's elastic deformation limit,a grille-shaped coal pillar design approach that accepts deformation pipelines within elastic limits is established.Those two new approaches clarify parameters including mined width,coal pillar width and mined length.Finally,the case study shows that the designed mined width,coal pillar width and mined length of the fishbone-shaped coal pillar are 90,80,and 130 m,while those of the grille-shaped are 320,370,and640 m.Compared with the conventional method,the fishbone-shaped and grille-shaped coal pillar design approaches recovered coal pillar resources of 2.65×10~6and 5.81×10~6t on the premise of meeting the pipeline safety requirements,and the recovery rates increased by 20.5%and 45.0%,with expenditures representing only 56.46%and 20.02%of the respective benefits.These new approaches provide managers with diverse options for protecting pipeline safety while promoting coal pillar recovery,which is conducive to the harmonic mining of gas-coal resources. 展开更多
关键词 subsurface pipeline Coal pillar recovery rate Safe requirement Fishbone-shaped coal pillar Grille-shaped coal pillar Gas-coal integrated mining field
在线阅读 下载PDF
Enhancing subsurface seismic profiling with distributed acoustic sensing and optimization algorithms
4
作者 Jing Wang Hong-Hu Zhu +4 位作者 Gang Cheng Tao Wang Xu-Long Gong Dao-Yuan Tan Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3632-3643,共12页
The distribution of shear-wave velocities in the subsurface is generally used to assess the potential forseismic liquefaction and soil amplification effects and to classify seismic sites. Newly developeddistributed ac... The distribution of shear-wave velocities in the subsurface is generally used to assess the potential forseismic liquefaction and soil amplification effects and to classify seismic sites. Newly developeddistributed acoustic sensing (DAS) technology enables estimation of the shear-wave distribution as ahigh-density seismic observation system. This technology is characterized by low maintenance costs,high-resolution outputs, and real-time data transmission capabilities, albeit with the challenge ofmanaging massive data generation. Rapid and efficient interpretation of data is the key to advancingapplication of the DAS technology. In this study, field tests were carried out to record ambient noise overa short period using DAS technology, from which the surface-wave dispersion curves were extracted. Inorder to reduce the influence of directional effects on the results, an unsupervised clustering method isused to select appropriate clusters to extract the Green's function. A combination of a genetic algorithmand Monte Carlo (GA-MC) simulation is proposed to invert the subsurface velocity structure. Thestratigraphic profiles obtained by the GA-MC method are in agreement with the borehole profiles.Compared to other methods, the proposed optimization method not only improves the solution qualitybut also reduces the solution time. 展开更多
关键词 Shallow subsurface velocity Site classification Ambient noise imaging Distributed acoustic sensing(DAS) Genetic algorithms and Monte Carlo simulation
在线阅读 下载PDF
Subsurface Temperature and Salinity Structures Inversion Using a Stacking-Based Fusion Model from Satellite Observations in the South China Sea
5
作者 Can LUO Mengya HUANG +3 位作者 Shoude GUAN Wei ZHAO Fengbin TIAN Yuan YANG 《Advances in Atmospheric Sciences》 2025年第1期204-220,共17页
Three-dimensional ocean subsurface temperature and salinity structures(OST/OSS)in the South China Sea(SCS)play crucial roles in oceanic climate research and disaster mitigation.Traditionally,real-time OST and OSS are ... Three-dimensional ocean subsurface temperature and salinity structures(OST/OSS)in the South China Sea(SCS)play crucial roles in oceanic climate research and disaster mitigation.Traditionally,real-time OST and OSS are mainly obtained through in-situ ocean observations and simulation by ocean circulation models,which are usually challenging and costly.Recently,dynamical,statistical,or machine learning models have been proposed to invert the OST/OSS from sea surface information;however,these models mainly focused on the inversion of monthly OST and OSS.To address this issue,we apply clustering algorithms and employ a stacking strategy to ensemble three models(XGBoost,Random Forest,and LightGBM)to invert the real-time OST/OSS based on satellite-derived data and the Argo dataset.Subsequently,a fusion of temperature and salinity is employed to reconstruct OST and OSS.In the validation dataset,the depth-averaged Correlation(Corr)of the estimated OST(OSS)is 0.919(0.83),and the average Root-Mean-Square Error(RMSE)is0.639°C(0.087 psu),with a depth-averaged coefficient of determination(R~2)of 0.84(0.68).Notably,at the thermocline where the base models exhibit their maximum error,the stacking-based fusion model exhibited significant performance enhancement,with a maximum enhancement in OST and OSS inversion exceeding 10%.We further found that the estimated OST and OSS exhibit good agreement with the HYbrid Coordinate Ocean Model(HYCOM)data and BOA_Argo dataset during the passage of a mesoscale eddy.This study shows that the proposed model can effectively invert the real-time OST and OSS,potentially enhancing the understanding of multi-scale oceanic processes in the SCS. 展开更多
关键词 subsurface temperature and salinity structures clustering algorithms stacking strategy temperature and salinity fusion the South China Sea
在线阅读 下载PDF
Hydrographic control on subsurface chlorophyll maximum in the northern South China Sea in autumn
6
作者 Xiang GONG Hui LIU +2 位作者 Xun GONG Jiyao LIU Huiwang GAO 《Journal of Oceanology and Limnology》 2025年第4期1213-1226,共14页
As a frequently-observed phenomenon in the northern South China Sea(nSCS),subsurface chlorophyll maximum(SCM)evolution from summer to winter remains unclear,neither the associated hydrographic control.In this study,on... As a frequently-observed phenomenon in the northern South China Sea(nSCS),subsurface chlorophyll maximum(SCM)evolution from summer to winter remains unclear,neither the associated hydrographic control.In this study,on the basis of in-situ data of fall-season cruises in 2004–2006,we characterized the depth,thickness and intensity of the SCM in the nSCS using a general Gaussian-function fitting approach,and investigated a linkage to the corresponding ocean vertical buoyance properties.Our results show that the SCM becomes deeper,thicker and less intense offshore-wards in the nSCS during fall seasons.In parallel,a correlation between the SCM variation and mixed layer depth exists in the nSCS,and it becomes pronounced in the shelf region compared to the slope and basin areas in autumn.Physically,once warmer surface ocean and thus stronger thermo-determined stratification,the SCM layer goes deeper and becomes thicker and less intense in the nSCS,especially in the shelf area of the nSCS.Moreover,the impact of water temperatures at deeper layers on the vertical stratification exerts more consequent roles on the spatial variability of SCM,compared to surface temperatures in the nSCS.Specifically,the isotherm line of 22℃ acts as crucial indicator for variations of the SCM in the nSCS during autumns. 展开更多
关键词 subsurface chlorophyll maximum(SCM) northern South China Sea(nSCS) autumn season hydrographic control
在线阅读 下载PDF
Prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum 被引量:3
7
作者 Fan Wang Xiuli Du Pengfei Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期192-212,共21页
This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of... This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of numerical analyses is performed to examine the effects of cover depth ratio(C/D),tunnel volume loss rate(h t)and volumetric block proportion(VBP)on the characteristics of subsurface settle-ment trough and soil volume loss.Considering the ground loss variation with depth,three modes are deduced from the volumetric deformation responses of the soil above the tunnel crown.Then,analytical solutions to predict subsurface settlement for each mode are presented using stochastic medium theory.The influences of C/D,h t and VBP on the key parameters(i.e.B and N)in the analytical expressions are discussed to determine the fitting formulae of B and N.Finally,the proposed analytical solutions are validated by the comparisons with the results of model test and numerical simulation.Results show that the fitting formulae provide a convenient and reliable way to evaluate the key parameters.Besides,the analytical solutions are reasonable and available in predicting the subsurface settlement induced by shield tunnelling in sandy cobble stratum. 展开更多
关键词 Shield tunnelling Sandy cobble stratum subsurface settlement Volumetric deformation mode Stochastic medium theory
在线阅读 下载PDF
Deep learning to estimate ocean subsurface salinity structure in the Indian Ocean using satellite observations 被引量:2
8
作者 Jifeng QI Guimin SUN +2 位作者 Bowen XIE Delei LI Baoshu YIN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第2期377-389,共13页
Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS... Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS in the Indian Ocean using satellite data and Argo observations.We evaluated the performance of the CNN model in terms of its vertical and spatial distribution,as well as seasonal variation of OSSS estimation.Results demonstrate that the CNN model accurately estimates the most significant salinity features in the Indian Ocean using sea surface data with no significant differences from Argo-derived OSSS.However,the estimation accuracy of the CNN model varies with depth,with the most challenging depth being approximately 70 m,corresponding to the halocline layer.Validations of the CNN model’s accuracy in estimating OSSS in the Indian Ocean are also conducted by comparing Argo observations and CNN model estimations along two selected sections and four selected boxes.The results show that the CNN model effectively captures the seasonal variability of salinity,demonstrating its high performance in salinity estimation using sea surface data.Our analysis reveals that sea surface salinity has the strongest correlation with OSSS in shallow layers,while sea surface height anomaly plays a more significant role in deeper layers.These preliminary results provide valuable insights into the feasibility of estimating OSSS using satellite observations and have implications for studying upper ocean dynamics using machine learning techniques. 展开更多
关键词 machine learning convolutional neural network(CNN) ocean subsurface salinity structure(OSSS) Indian Ocean satellite observations
在线阅读 下载PDF
Hemispherical resonator with low subsurface damage machined by small ball-end fine diamond grinding wheel:A novel grinding technique 被引量:1
9
作者 Biao QIN Henan LIU +5 位作者 Jian CHENG Jinchuan TIAN Jiangang SUN Zihan ZHOU Chuanzhen MA Mingjun CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第5期570-585,共16页
As for the ultra-precision grinding of the hemispherical fused silica resonator,due to the hard and brittle nature of fused silica,subsurface damage(SSD)is easily generated,which enormously influences the performance ... As for the ultra-precision grinding of the hemispherical fused silica resonator,due to the hard and brittle nature of fused silica,subsurface damage(SSD)is easily generated,which enormously influences the performance of such components.Hence,ultra-precision grinding experiments are carried out to investigate the surface/subsurface quality of the hemispherical resonator machined by the small ball-end fine diamond grinding wheel.The influence of grinding parameters on the surface roughness(SR)and SSD depth of fused silica samples is then analyzed.The experimental results indicate that the SR and SSD depth decreased with the increase of grinding speed and the decrease of feed rate and grinding depth.In addition,based on the material strain rate and the maximum undeformed chip thickness,the effect of grinding parameters on the subsurface damage mechanism of fused silica samples is analyzed.Furthermore,a multi-step ultra-precision grinding technique of the hemispherical resonator is proposed based on the interaction influence between grinding depth and feed rate.Finally,the hemispherical resonator is processed by the proposed grinding technique,and the SR is improved from 454.328 nm to 110.449 nm while the SSD depth is reduced by 94%from 40μm to 2.379μm.The multi-step grinding technique proposed in this paper can guide the fabrication of the hemispherical resonator. 展开更多
关键词 Fused silica Ultra-precision grinding Hemispherical resonator subsurface damage Grinding technique
原文传递
Understanding and simulating of three-dimensional subsurface hydrological partitioning in an alpine mountainous area, China 被引量:1
10
作者 ZHANG Lanhui TU Jiahao +3 位作者 AN Qi LIU Yu XU Jiaxin ZHANG Haixin 《Journal of Arid Land》 SCIE CSCD 2024年第11期1463-1483,共21页
Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This stud... Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This study focused on quantifying subsurface hydrological partitioning,specifically in an alpine mountainous area,and highlighted the important role of lateral flow during this process.Precipitation was usually classified as two parts into the soil:increased soil water content(SWC)and lateral flow out of the soil pit.It was found that 65%–88%precipitation contributed to lateral flow.The second common partitioning class showed an increase in SWC caused by both precipitation and lateral flow into the soil pit.In this case,lateral flow contributed to the SWC increase ranging from 43%to 74%,which was notably larger than the SWC increase caused by precipitation.On alpine meadows,lateral flow from the soil pit occurred when the shallow soil was wetter than the field capacity.This result highlighted the need for three-dimensional simulation between soil layers in Earth system models(ESMs).During evapotranspiration process,significant differences were observed in the classification of subsurface hydrological partitioning among different vegetation types.Due to tangled and aggregated fine roots in the surface soil on alpine meadows,the majority of subsurface responses involved lateral flow,which provided 98%–100%of evapotranspiration(ET).On grassland,there was a high probability(0.87),which ET was entirely provided by lateral flow.The main reason for underestimating transpiration through soil water dynamics in previous research was the neglect of lateral root water uptake.Furthermore,there was a probability of 0.12,which ET was entirely provided by SWC decrease on grassland.In this case,there was a high probability(0.98)that soil water responses only occurred at layer 2(10–20 cm),because grass roots mainly distributed in this soil layer,and grasses often used their deep roots for water uptake during ET.To improve the estimation of soil water dynamics and ET,we established a random forest(RF)model to simulate lateral flow and then corrected the community land model(CLM).RF model demonstrated good performance and led to significant improvements in CLM simulation.These findings enhance our understanding of subsurface hydrological partitioning and emphasize the importance of considering lateral flow in ESMs and hydrological research. 展开更多
关键词 subsurface hydrological partitioning lateral flow random forest model community land model(CLM) alpine mountainous area
在线阅读 下载PDF
Effect of rolling-texture intensity on fretting damage and subsurface deformation behavior in a high-strength titanium alloy 被引量:1
11
作者 Yanlin Tong Ke Hua +5 位作者 Linghong Sun Haoyang Xie Mingqi Zhao Long Zhou Hongxing Wu Haifeng Wang 《Journal of Materials Science & Technology》 CSCD 2024年第29期200-214,共15页
Fretting damage is common in the high-strength titanium alloy fastener widely used in the aeronautic industry,leading to the failure of fastening fit or the initiation of crack.The titanium alloy fasteners often have ... Fretting damage is common in the high-strength titanium alloy fastener widely used in the aeronautic industry,leading to the failure of fastening fit or the initiation of crack.The titanium alloy fasteners often have typical preferred orientation characteristics(i.e.,texture),and this is one of the important factors affecting its performance.However,the investigations on the mechanism ofβrolling-texture intensity on fretting damage resistance and subsurface deformation are less addressed.Hence,fretting wear tests were carried out on samples with different rolling texture intensities.The results demonstrate that the samples with quite low(A-10%sample)and quite high(D-70%sample)rolling-texture intensity both exhibit excellent fretting wear resistance,but their mechanisms are completely different.Uniformly dispersed grain orientation renders the A-10%sample with good recovery ability and a positive friction effect during wear.Low stress only concentrating at grain boundaries(GBs)weakens cracks’initiation and propagation.The unique orientation-layered structure(OLS)leads to excellent recovery ability and a positive friction effect.Crack propagation is inhibited and only propagates along the OLS boundary without a connected trend.However,samples with moderate rolling texture intensity exhibit severe wear.Dislocations are restricted in local areas,so the poor recovery ability makes them have a negative friction effect.Crack propagation driving force continuously increases.Appropriate rolling texture intensity can reduce wear by three times.This study can provide information on the principle for designing fretting damage-resistant alloys. 展开更多
关键词 High-strength titanium alloy Rolling-texture intensity Fretting wear subsurface deformation
原文传递
Evaluating the Effect of Subsurface Structures on Freshwater Lenses in Coral Reefs
12
作者 ZHANG Zhenchao WANG Han GUO Xiujun 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第6期1551-1560,共10页
Freshwater groundwater lenses(FGLs)serve as an important water resource for remote coral atoll islands,and different hydrogeological data of the islands determine the growth and decay of the FGLs.This study conducted ... Freshwater groundwater lenses(FGLs)serve as an important water resource for remote coral atoll islands,and different hydrogeological data of the islands determine the growth and decay of the FGLs.This study conducted a three-dimensional(3D)numerical model using hydrogeological data from a reclaimed island to evaluate the effects of different locations and sizes of subsurface structures on the formation and macroscale stability of the FGLs.The results revealed that freshwater formation begins earlier than the base model when the subsurface structures are present.Constructing underground structures in Pleistocene aquifers leads to a significant increase in freshwater volume with the enlargement of the structure's size.When these structures are built within Holocene aquifers,as the burial site moves from the edge towards the center of the area,the maximum freshwater volume decreases slightly,with the largest difference being approximately 4×10^(5) m^(3).When the structure constructed in the Holocene aquifer and its central axis does not coincide with the center of the simulated area,the maximum thickness of the FGLs will be shifted from the center of the simulated area to 20-25 m on the side of the structure.When constructed in the Pleistocene aquifer,the thickness of the FGLs increases.This study provides methodology for planning and management of reclaimed lands for water sustainability in the future in coastal areas. 展开更多
关键词 freshwater lens numerical simulation Yongshu Island subsurface structures formation process steady-state water volume
在线阅读 下载PDF
Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction
13
作者 Shaoming Dong Yiming Niu +2 位作者 Yinghui Pu Yongzhao Wang Bingsen Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第12期503-506,共4页
Control of subsurface interstitial atoms in transition metals is an effective approach to modulate selec tivity in hydrogenation reactions.In this study,nickel was alloyed with gallium to form Ni_(3)Ga,thereby regulat... Control of subsurface interstitial atoms in transition metals is an effective approach to modulate selec tivity in hydrogenation reactions.In this study,nickel was alloyed with gallium to form Ni_(3)Ga,thereby regulating the octahedral interstitial sites.Subsequently,carbon atoms were introduced into the Ni_(3)Ga(forming Ni_(3)GaC_(0.5))via thermal treatment in an acetylene atmosphere,leading to a significant enhance ment in selectivity for acetylene hydrogenation reaction.The X-ray diffraction and transmission electron microscopy results demonstrate an increase in the lattice parameter due to the incorporation of carbon atoms and the uniform distribution of carbon in Ni_(3)GaC_(0.5)nanoparticles.The obtained Ni_(3)GaC_(0.5)/oCNT catalyst exhibits significantly improved selectivity in acetylene hydrogenation reaction,with approxi mately 82%ethylene selectivity at 98%conversion.Furthermore,it maintains good selectivity at variou hydrogen-to-alkyne ratios and displays good stability during long-term operation.The introduction of car bon suppresses the formation of the subsurface hydrogen structure under reaction conditions.Addition ally,the charge transfer between carbon and nickel results in the electron deficiency of nickel,effectively inhibiting the over-hydrogenation pathway and enhancing the selectivity.These results provide insight for the design of non-precious metal catalysts in selective hydrogenation reactions. 展开更多
关键词 subsurface structure Interstitial atom CARBIDE Hydrogenation reaction Nickel alloy
原文传递
Biogeochemical and physical properties influencing the nutrient reservoirs of subsurface water in the changing Canada Basin
14
作者 Tianzhen Zhang Qiang Hao +3 位作者 Haiyan Jin Youcheng Bai Yanpei Zhuang Jianfang Chen 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第10期40-47,共8页
The Canada Basin is the largest basin in the Arctic Ocean.Its unique physical features have the highest concentration of nutrients being found in the subsurface layer,referred to as the subsurface nutrient maximum lay... The Canada Basin is the largest basin in the Arctic Ocean.Its unique physical features have the highest concentration of nutrients being found in the subsurface layer,referred to as the subsurface nutrient maximum layer(SNM).Under climate change in the Arctic,the SNM is an essential material base for primary productivity.However,long-term trends of nutrient variations and dominant factors related to nutrient levels in the SNM are still unclear.In this study,we analyzed the SNM variations and main influencing factors of the Canada Basin based on the Global Ocean Data Analysis Project Version 2 between 1990 and 2015 and the Chinese Arctic Research Expedition between 2010 and 2016.We found that the nutrient concentrations in the SNM were relatively stable for decades[average concentrations of nitrate,phosphate,and silicate were(13.6±2.4)μmol/L,(1.8±0.2)μmol/L,and(31.5±5.7)μmol/L,respectively].Nutrient reservoirs were dominated by physical processes.Inflow and outflow water of the SNM contributed about 60.4%and-50.2%to the nutrient stocks,respectively,while particle deposition and remineralization in the Canada Basin contributed approximately one-third to the nutrient stocks.Nitrogen fixation and denitrification in the Canada Basin had no substantial impact on nutrient stocks.The overall stabilization of the SNM over the past few decades implied that the SNM would not substantially affect short term primary productivity.Understanding the long-term trends and dominant factors of reservoirs in the SNM will provide useful insights into the changing Canada Basin ecosystem. 展开更多
关键词 subsurface nutrients maximum layer Canada Basin biogeochemical cycles Arctic climate changes
在线阅读 下载PDF
Analysis of surface exposure mechanism of Kuroshio subsurface water along the coast of Zhejiang Province
15
作者 ZHANG Yansheng SHI Xiaoxiao +3 位作者 NING Pengfei ZHENG Bing YANG Jinkun LIU Yulong 《Marine Science Bulletin》 2024年第2期34-52,共19页
Dachenzhen Ocean Station was set up on Dachen Island,25 km off the coast of Zhejiang Province.In August 2013,the station observed a low temperature of 22°C and a high salinity record of 34.3,which was different f... Dachenzhen Ocean Station was set up on Dachen Island,25 km off the coast of Zhejiang Province.In August 2013,the station observed a low temperature of 22°C and a high salinity record of 34.3,which was different from the usual year.In this paper,the sources and causes of the abnormal low temperature and high salinity record were discussed and studied by using the cruises data,wind data,Sea level anomaly data and absolute geostrophic current data.The results show that the water mass recorded at Dachenzhen Ocean Station in August 2013 is the subsurface water of Kuroshio.Under the continuous southerly wind,the offshore transport volume of surface Ekman current along the coast of Zhejiang is several times to ten times that of other years,resulting in an abnormal decrease in the offshore sea surface and an abnormal rise in the offshore sea surface.The abnormal difference of the monthly mean sea surface height from the offshore sea to the offshore coast is 38 cm,and the pressure gradient difference from the offshore sea to the offshore coast is much stronger than that in normal years.As a result,the geostrophic current that flows northward along the bottom coast is abnormally strengthened,and the induced bottom Ekman current is generally transported to the shore,providing the power for the Kuroshio subsurface water to invade the shore.The Kuroshio subsurface water penetrates the traditional upwelling area from the bottom Ekman layer 2-3m thick into the nearshore area,and then surges to the surface.In view of the hydrologic properties of low temperature,high salinity and nutrient-rich salt in the subsurface water of Kuroshio,the occurrence of this water mass in the near-shore surface water may have a great impact on the local fishery production and ecological environment. 展开更多
关键词 coast of Zhejiang Province Kuroshio subsurface water sea level anomaly geostrophic current bottom Ekman effect
在线阅读 下载PDF
Rock physics model for fluid identification and saturation estimation in subsurface reservoirs
16
《国外测井技术》 2024年第3期39-39,44,99,113,共4页
A method for fluid identification(water,oil,gas or CO_(2))and saturation estimation in subsurface rock formations using the prestack inverted Seismic by calculating the target fluid saturation(Sfl)(114)in a reservoir ... A method for fluid identification(water,oil,gas or CO_(2))and saturation estimation in subsurface rock formations using the prestack inverted Seismic by calculating the target fluid saturation(Sfl)(114)in a reservoir given the magnitude obtained from the Pto S-wave velocity ratio(Vp/Vs)(103),and acoustic impedance(AI)(102)extracted from the seismic data inversion,comprising the following steps:(a)obtaining wireline log data within a zone of interest in a nearby well(101)and determining the suitable cementation and mineralogy factors by calibrating the background water-bearing sand trend with the reference 0%(or 0 fraction)Sfl curve onto the acoustic impedance-Vp/Vs ratio plane(110),(b)calibrating Sfl computed from the acoustic impedance-Vp/Vs ratio curves with Sfl obtained from a conventional method by iterating P-wave velocity(Vpf)and density(ρfl)of the target fluid(111). 展开更多
关键词 subsurface RESERVOIRS RESERVOIR
在线阅读 下载PDF
An Improved Angle Polishing Method for Measuring Subsurface Damage in Silicon Wafers 被引量:2
17
作者 霍凤伟 康仁科 +2 位作者 郭东明 赵福令 金洙吉 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2006年第3期506-510,共5页
We present an improved angle polishing method in which the end of the cover slice near the glue layer is beveled into a thin,defect-free wedge,the straight edge of which is used as the datum for measuring the depth of... We present an improved angle polishing method in which the end of the cover slice near the glue layer is beveled into a thin,defect-free wedge,the straight edge of which is used as the datum for measuring the depth of subsurface damage. The bevel angle can be calculated from the interference fringes formed in the wedge. The minimum depth of the subsurface damage that can be measured by this method is a few hundred nanometers. Our results show that the method is straightforward, accurate, and convenient. 展开更多
关键词 silicon wafer subsurface damage angle polishing defect etching wedge fringes
在线阅读 下载PDF
Experimental investigation of subsurface damage depth of lapped optics by fluorescent method 被引量:5
18
作者 WANG Hong-xiang HOU Jing +2 位作者 WANG Jing-he ZHU Ben-wen ZHANG Yan-hu 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第7期1678-1689,共12页
Subsurface defects were fluorescently tagged with nanoscale quantum dots and scanned layer by layer using confocal fluorescence microscopy to obtain images at various depths. Subsurface damage depths of fused silica o... Subsurface defects were fluorescently tagged with nanoscale quantum dots and scanned layer by layer using confocal fluorescence microscopy to obtain images at various depths. Subsurface damage depths of fused silica optics were characterized quantitatively by changes in the fluorescence intensity of feature points. The fluorescence intensity vs scan depth revealed that the maximum fluorescence intensity decreases sharply when the scan depth exceeds a critical value. The subsurface damage depth could be determined by the actual embedded depth of the quantum dots. Taper polishing and magnetorheological finishing were performed under the same conditions to verify the effectiveness of the nondestructive fluorescence method. The results indicated that the quantum dots effectively tagged subsurface defects of fused-silica optics, and that the nondestructive detection method could effectively evaluate subsurface damage depths. 展开更多
关键词 OPTICS subsurface defect nondestructive detection LAPPING subsurface damage
在线阅读 下载PDF
Subsurface Damage in the Monocrystal Silicon Grinding on Atomic Scale
19
作者 郭晓光 郭东明 +1 位作者 康仁科 金洙吉 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2007年第9期1353-1358,共6页
A molecular dynamics (MD) simulation is carried out to analyze the effect of cutting edge radius,cutdepth, and grinding speed on the depth of subsurface damage layers in monocrystal silicon grinding processes on an ... A molecular dynamics (MD) simulation is carried out to analyze the effect of cutting edge radius,cutdepth, and grinding speed on the depth of subsurface damage layers in monocrystal silicon grinding processes on an atomic scale. The results show that when the cutting edge radius decreases in the nanometric grinding process with the same cut-depth and grinding speed, the depth of the damage layers and the potential energy between the silicon atoms decrease too. Also, when the cut depth increases, both the depth of the damage layers and the potential energy between silicon atoms increase. When the grinding speed is between 20 and 200m/s,the depth of the damage layers does not change much with the increase of the grinding speed under the same cutting edge radius and cut depth conditions. This means that the MD simulation is not sensitive to changes in the grinding speed, and thus increasing the grinding speed properly can shorten the sion,the subsurface damage of monocrystal silicon is silicon atoms, which is verified by the ultra-precision simulation time and enlarge the simulation scale. In conclumainly based on the change of the potential energy between grinding and CMP experiments. 展开更多
关键词 molecular dynamics GRINDING subsurface damage monocrystal silicon
在线阅读 下载PDF
Soil Enzyme Activities with Greenhouse Subsurface Irrigation 被引量:24
20
作者 ZHANG Yu-Long WANG Yao-Sheng 《Pedosphere》 SCIE CAS CSCD 2006年第4期512-518,共7页
Various environmental conditions determine soil enzyme activities, which are important indicators for changes of soil microbial activity, soil fertility, and land quality. The effect of subsurface irrigation schedulin... Various environmental conditions determine soil enzyme activities, which are important indicators for changes of soil microbial activity, soil fertility, and land quality. The effect of subsurface irrigation scheduling on activities of three soil enzymes (phosphatase, urease, and catalase) was studied at five depths (0-10, 10-20, 20-30, 30-40, and 40-60 cm) of a tomato greenhouse soil. Irrigation was scheduled when soil water condition reached the maximum allowable depletion (MAD) designed for different treatments (-10, -16,-25,-40, and-63 kPa). Results showed that soil enzyme activities had significant responses to the irrigation scheduling during the period of subsurface irrigation. The neutral phosphatase activity and the catalase activity were found to generally increase with more frequent irrigation (MAD of -10 and -16 kPa). This suggested that a higher level of water content favored an increase in activity of these two enzymes. In contrast, the urease activity decreased under irrigation, with less effect for MAD of -40 and -63 kPa. This implied that relatively wet soil conditions were conducive to retention of urea N, but relatively dry soil conditions could result in increasing loss of urea N. Further, this study revealed that soil enzyme activities could be alternative natural bio-sensors for the effect of irrigation on soil biochemical reactions and could help optimize irrigation management of greenhouse crop production. 展开更多
关键词 irrigation scheduling soil enzyme activity subsurface irrigation TOMATO
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部