Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin s...Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin samples,especially the high-order neighbor relationship between samples.To overcome the above challenges,this paper proposes a novel multi-order neighborhood fusion based multi-view deep subspace clustering model.We creatively integrate the multi-order proximity graph structures of different views into the self-expressive layer by a multi-order neighborhood fusion module.By this design,the multi-order Laplacian matrix supervises the learning of the view-consistent self-representation affinity matrix;then,we can obtain an optimal global affinity matrix where each connected node belongs to one cluster.In addition,the discriminative constraint between views is designed to further improve the clustering performance.A range of experiments on six public datasets demonstrates that the method performs better than other advanced multi-view clustering methods.The code is available at https://github.com/songzuolong/MNF-MDSC(accessed on 25 December 2024).展开更多
Anti-aliasing spectrum analysis is essential for rotor blade condition monitoring based on Blade Tip Timing(BTT).The Multiple Signal Classification(MUSIC)algorithm,which exploits the orthogonality between signal and n...Anti-aliasing spectrum analysis is essential for rotor blade condition monitoring based on Blade Tip Timing(BTT).The Multiple Signal Classification(MUSIC)algorithm,which exploits the orthogonality between signal and noise subspaces,has been successfully applied for this purpose.However,conventional subspace selection methods relying on fixed thresholds are sensitive to variations in large eigenvalues.Furthermore,the complex disturbances during rotor operation and measurement complicate the identification of blade vibration characteristics.To overcome these challenges,this paper proposes Adaptive Subspace Separation(ASS)and Local Spectral Centroid(LSC)methods to improve the adaptability of subspace selection and the stability of frequency identification,respectively.The impacts of overestimating and underestimating the subspace dimensions on MUSIC's performance are derived mathematically.Simulation and experiments demonstrate the effectiveness of proposed approaches:ASS offers more accurate and stable subspace dimension selection and tracking,while LSC reduces the standard deviation of estimated frequencies by 30 percent.展开更多
Adiabatic holonomic gates possess the geometric robustness of adiabatic geometric phases,i.e.,dependence only on the evolution path of the parameter space but not on the evolution details of the quantum system,which,w...Adiabatic holonomic gates possess the geometric robustness of adiabatic geometric phases,i.e.,dependence only on the evolution path of the parameter space but not on the evolution details of the quantum system,which,when coordinated with decoherence-free subspaces,permits additional resilience to the collective dephasing environment.However,the previous scheme[Phys.Rev.Lett.95130501(2005)]of adiabatic holonomic quantum computation in decoherence-free subspaces requires four-body interaction that is challenging in practical implementation.In this work,we put forward a scheme to realize universal adiabatic holonomic quantum computation in decoherence-free subspaces using only realistically available two-body interaction,thereby avoiding the difficulty of implementing four-body interaction.Furthermore,an arbitrary one-qubit gate in our scheme can be realized by a single-shot implementation,which eliminates the need to combine multiple gates for realizing such a gate.展开更多
The problem of pattern-based subspace clustering, a special type of subspace clustering that uses pattern similarity as a measure of similarity, is studied. Unlike most traditional clustering algorithms that group the...The problem of pattern-based subspace clustering, a special type of subspace clustering that uses pattern similarity as a measure of similarity, is studied. Unlike most traditional clustering algorithms that group the close values of objects in all the dimensions or a set of dimensions, clustering by pattern similarity shows an interesting pattern, where objects exhibit a coherent pattern of rise and fall in subspaces. A novel approach, named EMaPle to mine the maximal pattern-based subspace clusters, is designed. The EMaPle searches clusters only in the attribute enumeration spaces which are relatively few compared to the large number of row combinations in the typical datasets, and it exploits novel pruning techniques. EMaPle can find the clusters satisfying coherent constraints, size constraints and sign constraints neglected in MaPle. Both synthetic data sets and real data sets are used to evaluate EMaPle and demonstrate that it is more effective and scalable than MaPle.展开更多
It will be determined under what conditions types of proximinality are transmitted to and from quotient spaces. In the final section, by many examples we show that types of proximinality of subspaces in Banach spaces ...It will be determined under what conditions types of proximinality are transmitted to and from quotient spaces. In the final section, by many examples we show that types of proximinality of subspaces in Banach spaces can not be preserved by equivalent norms.展开更多
A 2D-direction of arrival estimation (DOAE) for multi input and multi-output (MIMO) radar using improved multiple temporal-spatial subspaces in estimating signal parameters via rotational invariance techniques method ...A 2D-direction of arrival estimation (DOAE) for multi input and multi-output (MIMO) radar using improved multiple temporal-spatial subspaces in estimating signal parameters via rotational invariance techniques method (TS-ESPRIT) is introduced. In order to realize the improved TS-ESPRIT, the proposed algorithm divides the planar array into multiple uniform sub-planar arrays with common reference point to get a unified phase shifts measurement point for all sub-arrays. The TS-ESPRIT is applied to each sub-array separately, and in the same time with the others to realize the parallelly temporal and spatial processing, so that it reduces the non-linearity effect of model and decreases the computational time. Then, the time difference of arrival (TDOA) technique is applied to combine the multiple sub-arrays in order to form the improved TS-ESPRIT. It is found that the proposed method achieves high accuracy at a low signal to noise ratio (SNR) with low computational complexity, leading to enhancement of the estimators performance.展开更多
In this paper,an analysis for ill conditioning problem in subspace identifcation method is provided.The subspace identifcation technique presents a satisfactory robustness in the parameter estimation of process model ...In this paper,an analysis for ill conditioning problem in subspace identifcation method is provided.The subspace identifcation technique presents a satisfactory robustness in the parameter estimation of process model which performs control.As a frst step,the main geometric and mathematical tools used in subspace identifcation are briefly presented.In the second step,the problem of analyzing ill-conditioning matrices in the subspace identifcation method is considered.To illustrate this situation,a simulation study of an example is introduced to show the ill-conditioning in subspace identifcation.Algorithms numerical subspace state space system identifcation(N4SID)and multivariable output error state space model identifcation(MOESP)are considered to study,the parameters estimation while using the induction motor model,in simulation(Matlab environment).Finally,we show the inadequacy of the oblique projection and validate the efectiveness of the orthogonal projection approach which is needed in ill-conditioning;a real application dealing with induction motor parameters estimation has been experimented.The obtained results proved that the algorithm based on orthogonal projection MOESP,overcomes the situation of ill-conditioning in the Hankel s block,and thereby improving the estimation of parameters.展开更多
In 1965 Gohler introduced 2-normed spaces and since then, this topic have been intensively studied and developed. We shall introduce the notion of 1-type proximinal subspaces of 2-normed spaces and give some results i...In 1965 Gohler introduced 2-normed spaces and since then, this topic have been intensively studied and developed. We shall introduce the notion of 1-type proximinal subspaces of 2-normed spaces and give some results in this field.展开更多
In order to increase the transmission efficiency,a subspace-based algorithm for blind channel estimation using second-order statistics is proposed in orthogonal frequency division multiplexing (OFDM) systems.Because t...In order to increase the transmission efficiency,a subspace-based algorithm for blind channel estimation using second-order statistics is proposed in orthogonal frequency division multiplexing (OFDM) systems.Because the transmission equation of OFDM systems does not exactly have the desired structure to directly derive a subspace algorithm,the algorithm first divides the OFDM signals into three parts,then,by exploiting the redundancy introduced by the cyclic prefix (CP) in OFDM signals,a new equation with Toeplitz channel matrix is derived.Based on the equation,a new blind subspace algorithm is developed.Toeplitz structure eases the derivation of the subspace algorithm and practical computation.Moreover the algorithm does not change the existing OFDM system,is robust to channel order overdetermination,and the channel zero locations.The performances are demonstrated by simulation results.展开更多
We will define and characterize ε-weakly Chebyshev subspaces of Banach spaces. We will prove that all closed subspaces of a Banach space X are ε-weakly Chebyshev if and only if X is reflexive.
This paper proposes the Rice condition numbers for invariant subspace, singular subspaces of a matrix and deflating subspaces of a regular matrix pair. The first-order perturbation estimations for these subspaces are ...This paper proposes the Rice condition numbers for invariant subspace, singular subspaces of a matrix and deflating subspaces of a regular matrix pair. The first-order perturbation estimations for these subspaces are derived by applying perturbation expansions of orthogonal projection operators.展开更多
In this paper, we show that for log(2/3)/2log2≤ β ≤1/2, suppose S is an invariant subspace of the Hardy-Sobolev spaces H_β~2(D^n) for the n-tuple of multiplication operators(M_(z_1),...,M_(z_n)). If(M_(z_1)|S,...,...In this paper, we show that for log(2/3)/2log2≤ β ≤1/2, suppose S is an invariant subspace of the Hardy-Sobolev spaces H_β~2(D^n) for the n-tuple of multiplication operators(M_(z_1),...,M_(z_n)). If(M_(z_1)|S,..., M_(z_n)|S) is doubly commuting, then for any non-empty subset α = {α_1,..., α_k} of {1,..., n}, W_α~S is a generating wandering subspace for M_α|_S =(M_(z_(α_1))|_S,..., M_(z_(α_k))|_S), that is, [W_α~S]_(M_(α |S))= S, where W_α~S=■(S ■ z_(α_i)S).展开更多
A new quantitative concept is introduced in this paper, which may be used to facilitate the measurement of the controllability of a subspace similar to subspace controllability degree. Then the concrete form of the su...A new quantitative concept is introduced in this paper, which may be used to facilitate the measurement of the controllability of a subspace similar to subspace controllability degree. Then the concrete form of the subspace controllability degree of a flexible structure is derived, and the errors of subspace controllability degree and dynamical response caused by the substitution of a repeated mode subspace for a closely spaced mode subspace are discussed. All the results show that this substitution is rational under some conditions.展开更多
Entanglement-breaking(EB)subspaces determine the additivity of entanglement of formation(EOF),which is a long-standing issue in quantum information.We explicitly construct the twodimensional EB subspaces of any bipart...Entanglement-breaking(EB)subspaces determine the additivity of entanglement of formation(EOF),which is a long-standing issue in quantum information.We explicitly construct the twodimensional EB subspaces of any bipartite system,when system dimensions are equal,and we apply the subspaces to construct EB spaces of arbitrary dimensions.We also present partial construction when system dimensions are different.Then,we present the notion and properties of EB subspaces for some systems,and in particular the absolute EB subspaces.We construct some examples of absolute EB subspaces,as well as EB subspaces for some systems by using multiqubit Dicke states.展开更多
In this paper, we shall introduce and characterize simultaneous quasi-Chebyshev (and weakly-Chebyshev) subspaces of normed spaces with respect to a bounded set S by using elements of the dual space.
We will define and characterize ε-pseudo Chebyshev and ε-quasi Chebyshev subspaces of Banach spaces. We will prove that a closed subspace W is ε-pseudo Chebyshev if and only if W is ε-quasi Chebyshev.
In the second paper on the inverse relativity model, we explained in the first paper [1] that analyzing the four-dimensional displacement vector on space-time according to a certain approach leads to the splitting of ...In the second paper on the inverse relativity model, we explained in the first paper [1] that analyzing the four-dimensional displacement vector on space-time according to a certain approach leads to the splitting of space-time into positive and negative subspace-time. Here, in the second paper, we continue to analyze each of the four-dimensional vectors of velocity, acceleration, momentum, and forces on the total space-time fabric. According to the approach followed in the first paper. As a result, in the special case, we obtain new transformations for each of the velocity, acceleration, momentum, energy, and forces specific to each subspace-time, which are subject to the positive and negative modified Lorentz transformations described in the first paper. According to these transformations, momentum remains a conserved quantity in the positive subspace and increases in the negative subspace, while the relativistic total energy decreases in the positive subspace and increases in the negative subspace. In the general case, we also have new types of energy-momentum tensor, one for positive subspace-time and the other for negative subspace-time, where the energy density decreases in positive subspace-time and increases in negative subspace-time, and we also obtain new gravitational field equations for each subspace-time.展开更多
The on-orbit parameter identification of a space structure can be used for the modification of a system dynamics model and controller coefficients. This study focuses on the estimation of a system state-space model fo...The on-orbit parameter identification of a space structure can be used for the modification of a system dynamics model and controller coefficients. This study focuses on the estimation of a system state-space model for a two-link space manipulator in the procedure of capturing an unknown object, and a recursive tracking approach based on the recursive predictor-based subspace identification(RPBSID) algorithm is proposed to identify the manipulator payload mass parameter. Structural rigid motion and elastic vibration are separated, and the dynamics model of the space manipulator is linearized at an arbitrary working point(i.e., a certain manipulator configuration).The state-space model is determined by using the RPBSID algorithm and matrix transformation. In addition, utilizing the identified system state-space model, the manipulator payload mass parameter is estimated by extracting the corresponding block matrix. In numerical simulations, the presented parameter identification method is implemented and compared with the classical algebraic algorithm and the recursive least squares method for different payload masses and manipulator configurations. Numerical results illustrate that the system state-space model and payload mass parameter of the two-link flexible space manipulator are effectively identified by the recursive subspace tracking method.展开更多
基金supported by the National Key R&D Program of China(2023YFC3304600).
文摘Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin samples,especially the high-order neighbor relationship between samples.To overcome the above challenges,this paper proposes a novel multi-order neighborhood fusion based multi-view deep subspace clustering model.We creatively integrate the multi-order proximity graph structures of different views into the self-expressive layer by a multi-order neighborhood fusion module.By this design,the multi-order Laplacian matrix supervises the learning of the view-consistent self-representation affinity matrix;then,we can obtain an optimal global affinity matrix where each connected node belongs to one cluster.In addition,the discriminative constraint between views is designed to further improve the clustering performance.A range of experiments on six public datasets demonstrates that the method performs better than other advanced multi-view clustering methods.The code is available at https://github.com/songzuolong/MNF-MDSC(accessed on 25 December 2024).
基金supported by the National Natural Science Foundation of China(Nos.52405088 and 92360306)the Postdoctoral Fellowship Program of CPSF,China(No.GZC20241446)+2 种基金the Natural Science Basic Research Program of Shaanxi,China(No.2024JC-YBMS-402)the Fundamental Research Funds for the Central Universities,CHD(No.300102254102)the Foundation of Beilin District,China(No.GX2455)。
文摘Anti-aliasing spectrum analysis is essential for rotor blade condition monitoring based on Blade Tip Timing(BTT).The Multiple Signal Classification(MUSIC)algorithm,which exploits the orthogonality between signal and noise subspaces,has been successfully applied for this purpose.However,conventional subspace selection methods relying on fixed thresholds are sensitive to variations in large eigenvalues.Furthermore,the complex disturbances during rotor operation and measurement complicate the identification of blade vibration characteristics.To overcome these challenges,this paper proposes Adaptive Subspace Separation(ASS)and Local Spectral Centroid(LSC)methods to improve the adaptability of subspace selection and the stability of frequency identification,respectively.The impacts of overestimating and underestimating the subspace dimensions on MUSIC's performance are derived mathematically.Simulation and experiments demonstrate the effectiveness of proposed approaches:ASS offers more accurate and stable subspace dimension selection and tracking,while LSC reduces the standard deviation of estimated frequencies by 30 percent.
基金Project supported by the National Natural Science Foundation of China(Grant No.12305021)。
文摘Adiabatic holonomic gates possess the geometric robustness of adiabatic geometric phases,i.e.,dependence only on the evolution path of the parameter space but not on the evolution details of the quantum system,which,when coordinated with decoherence-free subspaces,permits additional resilience to the collective dephasing environment.However,the previous scheme[Phys.Rev.Lett.95130501(2005)]of adiabatic holonomic quantum computation in decoherence-free subspaces requires four-body interaction that is challenging in practical implementation.In this work,we put forward a scheme to realize universal adiabatic holonomic quantum computation in decoherence-free subspaces using only realistically available two-body interaction,thereby avoiding the difficulty of implementing four-body interaction.Furthermore,an arbitrary one-qubit gate in our scheme can be realized by a single-shot implementation,which eliminates the need to combine multiple gates for realizing such a gate.
基金The National Natural Science Foundation of China(No60273075)
文摘The problem of pattern-based subspace clustering, a special type of subspace clustering that uses pattern similarity as a measure of similarity, is studied. Unlike most traditional clustering algorithms that group the close values of objects in all the dimensions or a set of dimensions, clustering by pattern similarity shows an interesting pattern, where objects exhibit a coherent pattern of rise and fall in subspaces. A novel approach, named EMaPle to mine the maximal pattern-based subspace clusters, is designed. The EMaPle searches clusters only in the attribute enumeration spaces which are relatively few compared to the large number of row combinations in the typical datasets, and it exploits novel pruning techniques. EMaPle can find the clusters satisfying coherent constraints, size constraints and sign constraints neglected in MaPle. Both synthetic data sets and real data sets are used to evaluate EMaPle and demonstrate that it is more effective and scalable than MaPle.
文摘It will be determined under what conditions types of proximinality are transmitted to and from quotient spaces. In the final section, by many examples we show that types of proximinality of subspaces in Banach spaces can not be preserved by equivalent norms.
基金supported by the National Natural Science Foundation of China(61301211)and the Aviation Science Foundation(20131852028)
文摘A 2D-direction of arrival estimation (DOAE) for multi input and multi-output (MIMO) radar using improved multiple temporal-spatial subspaces in estimating signal parameters via rotational invariance techniques method (TS-ESPRIT) is introduced. In order to realize the improved TS-ESPRIT, the proposed algorithm divides the planar array into multiple uniform sub-planar arrays with common reference point to get a unified phase shifts measurement point for all sub-arrays. The TS-ESPRIT is applied to each sub-array separately, and in the same time with the others to realize the parallelly temporal and spatial processing, so that it reduces the non-linearity effect of model and decreases the computational time. Then, the time difference of arrival (TDOA) technique is applied to combine the multiple sub-arrays in order to form the improved TS-ESPRIT. It is found that the proposed method achieves high accuracy at a low signal to noise ratio (SNR) with low computational complexity, leading to enhancement of the estimators performance.
基金supported by the Ministry of Higher Education and Scientific Research of Tunisia
文摘In this paper,an analysis for ill conditioning problem in subspace identifcation method is provided.The subspace identifcation technique presents a satisfactory robustness in the parameter estimation of process model which performs control.As a frst step,the main geometric and mathematical tools used in subspace identifcation are briefly presented.In the second step,the problem of analyzing ill-conditioning matrices in the subspace identifcation method is considered.To illustrate this situation,a simulation study of an example is introduced to show the ill-conditioning in subspace identifcation.Algorithms numerical subspace state space system identifcation(N4SID)and multivariable output error state space model identifcation(MOESP)are considered to study,the parameters estimation while using the induction motor model,in simulation(Matlab environment).Finally,we show the inadequacy of the oblique projection and validate the efectiveness of the orthogonal projection approach which is needed in ill-conditioning;a real application dealing with induction motor parameters estimation has been experimented.The obtained results proved that the algorithm based on orthogonal projection MOESP,overcomes the situation of ill-conditioning in the Hankel s block,and thereby improving the estimation of parameters.
文摘In 1965 Gohler introduced 2-normed spaces and since then, this topic have been intensively studied and developed. We shall introduce the notion of 1-type proximinal subspaces of 2-normed spaces and give some results in this field.
文摘In order to increase the transmission efficiency,a subspace-based algorithm for blind channel estimation using second-order statistics is proposed in orthogonal frequency division multiplexing (OFDM) systems.Because the transmission equation of OFDM systems does not exactly have the desired structure to directly derive a subspace algorithm,the algorithm first divides the OFDM signals into three parts,then,by exploiting the redundancy introduced by the cyclic prefix (CP) in OFDM signals,a new equation with Toeplitz channel matrix is derived.Based on the equation,a new blind subspace algorithm is developed.Toeplitz structure eases the derivation of the subspace algorithm and practical computation.Moreover the algorithm does not change the existing OFDM system,is robust to channel order overdetermination,and the channel zero locations.The performances are demonstrated by simulation results.
文摘We will define and characterize ε-weakly Chebyshev subspaces of Banach spaces. We will prove that all closed subspaces of a Banach space X are ε-weakly Chebyshev if and only if X is reflexive.
文摘This paper proposes the Rice condition numbers for invariant subspace, singular subspaces of a matrix and deflating subspaces of a regular matrix pair. The first-order perturbation estimations for these subspaces are derived by applying perturbation expansions of orthogonal projection operators.
基金supported by the Natural Science Foundation of China(11271092,11471143)the key research project of Nanhu College of Jiaxing University(N41472001-18)
文摘In this paper, we show that for log(2/3)/2log2≤ β ≤1/2, suppose S is an invariant subspace of the Hardy-Sobolev spaces H_β~2(D^n) for the n-tuple of multiplication operators(M_(z_1),...,M_(z_n)). If(M_(z_1)|S,..., M_(z_n)|S) is doubly commuting, then for any non-empty subset α = {α_1,..., α_k} of {1,..., n}, W_α~S is a generating wandering subspace for M_α|_S =(M_(z_(α_1))|_S,..., M_(z_(α_k))|_S), that is, [W_α~S]_(M_(α |S))= S, where W_α~S=■(S ■ z_(α_i)S).
基金The project supported by the National Natural Science Foundation of Chinathe Doctoral Research Foundation of Chinese Ministry of Education.
文摘A new quantitative concept is introduced in this paper, which may be used to facilitate the measurement of the controllability of a subspace similar to subspace controllability degree. Then the concrete form of the subspace controllability degree of a flexible structure is derived, and the errors of subspace controllability degree and dynamical response caused by the substitution of a repeated mode subspace for a closely spaced mode subspace are discussed. All the results show that this substitution is rational under some conditions.
文摘Entanglement-breaking(EB)subspaces determine the additivity of entanglement of formation(EOF),which is a long-standing issue in quantum information.We explicitly construct the twodimensional EB subspaces of any bipartite system,when system dimensions are equal,and we apply the subspaces to construct EB spaces of arbitrary dimensions.We also present partial construction when system dimensions are different.Then,we present the notion and properties of EB subspaces for some systems,and in particular the absolute EB subspaces.We construct some examples of absolute EB subspaces,as well as EB subspaces for some systems by using multiqubit Dicke states.
文摘In this paper, we shall introduce and characterize simultaneous quasi-Chebyshev (and weakly-Chebyshev) subspaces of normed spaces with respect to a bounded set S by using elements of the dual space.
文摘We will define and characterize ε-pseudo Chebyshev and ε-quasi Chebyshev subspaces of Banach spaces. We will prove that a closed subspace W is ε-pseudo Chebyshev if and only if W is ε-quasi Chebyshev.
文摘In the second paper on the inverse relativity model, we explained in the first paper [1] that analyzing the four-dimensional displacement vector on space-time according to a certain approach leads to the splitting of space-time into positive and negative subspace-time. Here, in the second paper, we continue to analyze each of the four-dimensional vectors of velocity, acceleration, momentum, and forces on the total space-time fabric. According to the approach followed in the first paper. As a result, in the special case, we obtain new transformations for each of the velocity, acceleration, momentum, energy, and forces specific to each subspace-time, which are subject to the positive and negative modified Lorentz transformations described in the first paper. According to these transformations, momentum remains a conserved quantity in the positive subspace and increases in the negative subspace, while the relativistic total energy decreases in the positive subspace and increases in the negative subspace. In the general case, we also have new types of energy-momentum tensor, one for positive subspace-time and the other for negative subspace-time, where the energy density decreases in positive subspace-time and increases in negative subspace-time, and we also obtain new gravitational field equations for each subspace-time.
基金funded by the National Natural Science Foundation of China (Nos. 11572069 and 51775541)the China Postdoctoral Science Foundation (No. 2016M601354)
文摘The on-orbit parameter identification of a space structure can be used for the modification of a system dynamics model and controller coefficients. This study focuses on the estimation of a system state-space model for a two-link space manipulator in the procedure of capturing an unknown object, and a recursive tracking approach based on the recursive predictor-based subspace identification(RPBSID) algorithm is proposed to identify the manipulator payload mass parameter. Structural rigid motion and elastic vibration are separated, and the dynamics model of the space manipulator is linearized at an arbitrary working point(i.e., a certain manipulator configuration).The state-space model is determined by using the RPBSID algorithm and matrix transformation. In addition, utilizing the identified system state-space model, the manipulator payload mass parameter is estimated by extracting the corresponding block matrix. In numerical simulations, the presented parameter identification method is implemented and compared with the classical algebraic algorithm and the recursive least squares method for different payload masses and manipulator configurations. Numerical results illustrate that the system state-space model and payload mass parameter of the two-link flexible space manipulator are effectively identified by the recursive subspace tracking method.