期刊文献+
共找到563,332篇文章
< 1 2 250 >
每页显示 20 50 100
改进自适应VMD和TLS-ESPRIT的风电系统次/超同步振荡参数辨识 被引量:2
1
作者 李文博 钱伟荣 +3 位作者 李淑蓉 沙鹏程 邓军波 张冠军 《高电压技术》 北大核心 2025年第1期146-157,I0013-I0017,共17页
为解决现有辨识方法在针对耦合的次/超同步振荡参数提取过程中的噪声适应性差和模态混叠问题,该文提出了一种自适应的变分模态分解法(variational mode decomposition,VMD),定义残差损失总熵、中心频率的切比雪夫距离以及边缘熵共同决... 为解决现有辨识方法在针对耦合的次/超同步振荡参数提取过程中的噪声适应性差和模态混叠问题,该文提出了一种自适应的变分模态分解法(variational mode decomposition,VMD),定义残差损失总熵、中心频率的切比雪夫距离以及边缘熵共同决定分解模态数和带宽,结合最小二乘-旋转不变技术(total least square-estimating signal parameter via rotational invariance techniques,TLS-ESPRIT)对分解出的振荡分量进行参数辨识,无需另外使用降噪算法。通过复合信号测试法、PSCAD/EMTDC电磁暂态仿真法验证了所提方法的有效性。最后,将所提方法与改进Prony算法、MCEEMD法在不同噪声水平和振荡频率下进行对比,结果表明,所提方法能够有效地抑制原始信号的噪声干扰,对耦合的次/超同步振荡信号分解更加准确,参数辨识结果可靠性较高,对风电系统振荡溯源、改善系统阻尼具有一定的参考意义。 展开更多
关键词 SSSO 改进VMD 损失总熵 tls-ESPRIT 模态混叠
原文传递
基于TLS数据的落叶松–水曲柳混交林单木因子提取及树高模型构建研究 被引量:1
2
作者 崔译今 贾炜玮 +2 位作者 王帆 郭昊天 李丹丹 《西南林业大学学报(自然科学)》 北大核心 2025年第2期142-150,共9页
以孟家岗林场1 hm^(2)落叶松水与曲柳混交林样地为研究对象,利用等株径级标准木法把林木分为优势木、平均木、被压木3个等级,然后以人工实测值作为参考值,分别分析利用TLS提取2种树种的3种等级木单木因子的精度,最后采用TLS数据提取的... 以孟家岗林场1 hm^(2)落叶松水与曲柳混交林样地为研究对象,利用等株径级标准木法把林木分为优势木、平均木、被压木3个等级,然后以人工实测值作为参考值,分别分析利用TLS提取2种树种的3种等级木单木因子的精度,最后采用TLS数据提取的单木因子构建树高模型。筛选出2种树种最优基础树高模型,并进一步评价和比较以林木分级为哑变量构建的树高模型。结果表明:针对本研究选取的水落混交林样地,点云数据与实测数据单木匹配结果中,落叶松匹配精度为92.79%,水曲柳为92.25%;2个树种的胸径提取精度达到97%以上,且胸径提取精度优势木>平均木>被压木,2个树种的树高提取精度达到95%以上,落叶松树高提取精度平均木>优势木>被压木;水曲柳树高提取精度优势木>平均木>被压木。使用TLS数据构建的基础树高模型中,拟合落叶松效果最好的是Logistic模型(R^(2)=0.783 0、RMSE=1.951 6),拟合水曲柳效果最好的是Gompertz模型(R^(2)=0.724 8、RMSE=1.953 6),因此以Logistic模型、Gompertz模型分别为2个树种基于TLS数据构建的最优基础模型,最后2个树种采用以林木分级为哑变量构建的模型R^(2)分别为0.790 7、0.731 2。TLS技术对水落混交林样地单木匹配率很高,单木因子提取精度较好,基于TLS数据所构建的以林木分级为哑变量的模型,在预测树木高度和胸径的生长差异方面表现优于基础模型,具有更好的预测精度和适应性,可以为该地区水落混交林的林业经营提供参考。 展开更多
关键词 落叶松 水曲柳 混交林 地基激光雷达 树高 哑变量模型
在线阅读 下载PDF
大型地下洞室的TLS点云变形监测研究
3
作者 王浩帆 李彪 +3 位作者 李涛 肖培伟 钱洪建 徐奴文 《测绘通报》 北大核心 2025年第8期76-82,共7页
大型地下洞室中变形控制不及时可能会对人员安全和工程进度构成严重威胁,对地下洞室进行变形监测对于预防工程灾害具有重要意义。为解决大型地下洞室工程中变形监测效率低且信息不全面的问题,本文提出了一种基于TLS点云的变形观测技术... 大型地下洞室中变形控制不及时可能会对人员安全和工程进度构成严重威胁,对地下洞室进行变形监测对于预防工程灾害具有重要意义。为解决大型地下洞室工程中变形监测效率低且信息不全面的问题,本文提出了一种基于TLS点云的变形观测技术。该技术包括结合RANSAC Shape Detection算法与曲面变化量的半自动点云降噪处理,以及基于M3C2算法的洞室表面变形计算,实现了大型地下洞室变形全面、高效的监测。应用该技术对旭龙电站主厂房典型区域支护变形进行监测,发现在施工频繁阶段Yc0+140—Yc0+170区间,下游侧拱座存在明显变形条带,且该结果与现场传统变形监测结果一致。观测结果为大型地下洞室变形控制提供了更为全面的三维变形信息,并提高了变形监测的效率。 展开更多
关键词 大型地下洞室 旭龙水电站 tls点云 表面变形 点云降噪
原文传递
基于干形拟合的TLS长白落叶松树干参数提取
4
作者 杨晨辉 程寿民 +2 位作者 高谢雨 董利虎 郝元朔 《林业科学》 北大核心 2025年第8期154-163,共10页
【目的】提出一种干形控制的树干缺失部分重建方法,解决利用地面激光雷达扫描技术(TLS)进行林业调查时因树枝和相邻树木遮挡导致树木上部点云扫描不完整以及树高、树干直径等参数提取精度降低的问题,为实现非破坏性测量材积和生物量以... 【目的】提出一种干形控制的树干缺失部分重建方法,解决利用地面激光雷达扫描技术(TLS)进行林业调查时因树枝和相邻树木遮挡导致树木上部点云扫描不完整以及树高、树干直径等参数提取精度降低的问题,为实现非破坏性测量材积和生物量以及评估森林资源、监测森林健康状况提供参考。【方法】选取黑龙江省佳木斯市孟家岗林场内不同立地条件和龄组的138株人工长白落叶松为对象,利用TLS获取点云数据,伐倒后进行树干解析。对点云进行拼接、裁剪、去噪后,采用迭代随机抽样一致算法(RANSAC)圆形拟合提取单木树干点云,并应用最小二乘法拟合树干不同高度处直径作为干形数据;通过实测树干解析数据构建混合效应削度方程模型,以拟合得到的参数估计值为已知量,以树高和随机效应参数为待估参数,对TLS提取的干形数据进行逐树拟合,基于拟合得到的模型重建树干缺失部分。根据拟合模型提取树高、干形和立木材积,并与未重建的原始提取结果进行对比。【结果】与直接从TLS数据中提取的树高和树干直径相比,树干重建后参数提取精度更高,尤其在树高估计方面误差显著降低,平均偏差和均方根误差百分比分别降低8.09%和7.48%;对于树干直径提取,重建后提取到的直径比例有所提升,但精度差异不显著;在立木材积估算方面,树干重建前后均能保持较高精度,采用平均断面积区分求积法估算重建树干前后材积差异不显著,利用二元材积方程方法使材积估算的相对均方根误差降低4.5%。【结论】采用削度方程树干重建方法能够还原TLS中树干缺失部分,且可显著提高TLS单木树高的提取精度,为提高TLS在森林参数估算中的应用精度及林业调查效率提供了新的思路和理论支持。 展开更多
关键词 地面激光雷达扫描技术 削度方程 枝干分离 树干重建
在线阅读 下载PDF
基于有监督自编码器的TLS加密异常流量检测
5
作者 杨明芬 甘昀 张兴鹏 《计算机工程》 北大核心 2025年第9期192-200,共9页
随着用户对隐私保护意识的增强,越来越多的网站和服务使用传输层安全(TLS)协议来保护用户数据,这导致TLS加密流量在网络传输流量中的占比越来越高。但目前大多数异常流量检测方法是针对所有流量或所有加密流量的通用检测模型,而专门研究... 随着用户对隐私保护意识的增强,越来越多的网站和服务使用传输层安全(TLS)协议来保护用户数据,这导致TLS加密流量在网络传输流量中的占比越来越高。但目前大多数异常流量检测方法是针对所有流量或所有加密流量的通用检测模型,而专门研究TLS加密流量的方法较少。因此,提出一种基于有监督自编码器的TLS加密异常流量检测方法。该方法的核心是训练一个有监督自编码器,其将网络流量作为输入,生成与输入流量维度相同的重构流量,并要求正常流量与对应的重构流量之间相似度极高,异常流量与重构流量之间相似度极低。为达到上述重构要求,设计一个重构损失函数来有监督地优化自编码器内部参数。在检测阶段,利用自编码器的重构能力,通过衡量输入流量与重构流量之间的余弦相似度来判断输入流量是否为异常流量。此外,通过整合数据构建一个专门用于TLS加密异常流量检测任务的数据集,在此数据集上的实验结果表明,该方法在TLS加密异常流量检测二分类任务上的准确率达到99.52%,优于其他对比模型,同时多种可视化策略展现了所提方法的有效性。 展开更多
关键词 tls加密 自编码器 异常流量检测 重构损失 可视化分析
在线阅读 下载PDF
Design Guidelines for Composition of Brazing Filler Metals and Evolution Mechanisms of Typical Microstructures 被引量:4
6
作者 Long Weimin 《稀有金属材料与工程》 北大核心 2025年第4期837-853,共17页
Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler ... Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects. 展开更多
关键词 design of brazing filler metals design guidelines for composition Ag based brazing filler metals eutectic structures evolution
原文传递
Characterization and Analysis of Abnormal Grain Structures in WSTi6421 Titanium Alloy AfterβAnnealing Treatment 被引量:1
7
作者 Wang Wensheng Liu Xianghong +5 位作者 Wang Haipeng Wang Kaixuan Tian Yanwen Yan Jianchuan Li Yulu Chen Haisheng 《稀有金属材料与工程》 北大核心 2025年第2期354-362,共9页
As-forged WSTi6421 titanium alloy billet afterβannealing was investigated.Abnormally coarse grains larger than adjacent grains could be observed in the microstructures,forming abnormal grain structures with uneven si... As-forged WSTi6421 titanium alloy billet afterβannealing was investigated.Abnormally coarse grains larger than adjacent grains could be observed in the microstructures,forming abnormal grain structures with uneven size distribution.Through electron backscattered diffraction(EBSD),the forged microstructure at various locations of as-forged WSTi6421 titanium alloy billet was analyzed,revealing that the strength of theβphase cubic texture generated by forging significantly influences the grain size afterβannealing.Heat treatment experiments were conducted within the temperature range from T_(β)−50°C to T_(β)+10°C to observe the macro-and micro-morphologies.Results show that the cubic texture ofβphase caused by forging impacts the texture of the secondaryαphase,which subsequently influences theβphase formed during the post-βannealing process.Moreover,the pinning effect of the residual primaryαphase plays a crucial role in the growth ofβgrains during theβannealing process.EBSD analysis results suggest that the strength ofβphase with cubic texture formed during forging process impacts the orientation distribution differences ofβgrains afterβannealing.Additionally,the development of grains with large orientations within the cubic texture shows a certain degree of selectivity duringβannealing,which is affected by various factors,including the pinning effect of the primaryαphase,the strength of the matrix cubic texture,and the orientation relationship betweenβgrain and matrix.Comprehensively,the stronger the texture in a certain region,the less likely the large misoriented grains suffering secondary growth,thereby aggregating the difference in microstructure and grain orientation distribution across different regions afterβannealing. 展开更多
关键词 WSTi6421 titanium alloy βannealing abnormal grain structure
原文传递
Research review of the mechanism and clinical application prospects of tertiary lymphoid structures in the immune micro-environment of gastrointestinal tumors
8
作者 JIANG ZHU 《Oncology Research》 2025年第7期1571-1580,共10页
Changes in the intestinal immune micro-environment of the gastrointestinal tract are indispensable in the occurrence and development of gastrointestinal cancer.Tertiary lymphoid structure(TLS)is an immune cell aggrega... Changes in the intestinal immune micro-environment of the gastrointestinal tract are indispensable in the occurrence and development of gastrointestinal cancer.Tertiary lymphoid structure(TLS)is an immune cell aggregation structure found around gastrointestinal cancer in recent years.More and more research proves that tertiary lymphoid structure plays a key biological role and clinical value in disease progression,patient prognosis,and adjuvant treatment.This review aims to explore the research progress,biological significance,and potential clinical applications of TLSs in gastrointestinal tumors.The formation,development,and interaction of TLSs with tumor microenvironment have been reviewed and analyzed in recent years.Meanwhile,this review not only evaluates the clinical value of TLSs as prognostic biomarkers and predictors of treatment response but also explores their role in guiding the formulation of immunotherapy strategies for gastrointestinal tumors.In addition,this review points out the main problems in the current research of TLSs and looks forward to their future development,especially their broad application prospects in the diagnosis,treatment,and prognostic evaluation of gastrointestinal tumors. 展开更多
关键词 Tertiary Lymphoid structures(tls) Gastrointestinal tumors
暂未订购
SCS-Net:A DNN-based electromagnetic shielding effectiveness analysis method for slotted composite structures 被引量:1
9
作者 Wanli DU Guangzhi CHEN +4 位作者 Ziang ZHANG Xinsong WANG Shunchuan YANG Xingye CHEN Donglin SU 《Chinese Journal of Aeronautics》 2025年第3期505-520,共16页
As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of ai... As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of aircraft structures. The assessment of electromagnetic SE for Slotted Composite Structures(SCSs) is particularly challenging due to their complex geometries and there remains a lack of suitable models for accurately predicting the SE performance of these intricate configurations. To address this issue, this paper introduces SCS-Net, a Deep Neural Network (DNN) method designed to accurately predict the SE of SCS. This method considers the impacts of various structural parameters, material properties and incident wave parameters on the SE of SCSs. In order to better model the SCS, an improved Nicolson-Ross-Weir (NRW) method is introduced in this paper to provide an equivalent flat structure for the SCS and to calculate the electromagnetic parameters of the equivalent structure. Additionally, the prediction of SE via DNNs is limited by insufficient test data, which hinders support for large-sample training. To address the issue of limited measured data, this paper develops a Measurement-Computation Fusion (MCF) dataset construction method. The predictions based on the simulation results show that the proposed method maintains an error of less than 0.07 dB within the 8–10 GHz frequency range. Furthermore, a new loss function based on the weighted L1-norm is established to improve the prediction accuracy for these parameters. Compared with traditional loss functions, the new loss function reduces the maximum prediction error for equivalent electromagnetic parameters by 47%. This method significantly improves the prediction accuracy of SCS-Net for measured data, with a maximum improvement of 23.88%. These findings demonstrate that the proposed method enables precise SE prediction and design for composite structures while reducing the number of test samples needed. 展开更多
关键词 Deep neural networkcs Measurement-computation fusion Electromagnetic shielding effectiveness Slotted composite structures Structural paranmeters
原文传递
Dynamic Structural Colors in Helical Superstructures:from Supramolecules to Polymers 被引量:1
10
作者 Bo Ji Lang Qin Yan-Lei Yu 《Chinese Journal of Polymer Science》 2025年第3期406-428,共23页
Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.... Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.This dynamic color-changing capability is crucial for applications that require adaptable optical properties,positioning CLCs as key materials in advanced photonic technologies.This review focuses on the mechanisms of dynamic color tuning in CLCs across various forms,including small molecules,cholesteric liquid crystal elastomers(CLCEs),and cholesteric liquid crystal networks(CLCNs),and emphasizes the distinct responsive coloration each structure provides.Key developments in photochromic mechanisms based on azobenzene,dithienylethene,and molecular motor switches,are discussed for their roles in enhancing the stability and tuning range of CLCs.We examine the color-changing behaviors of CLCEs under mechanical stimuli and CLCNs under swelling,highlighting the advantages of each form.Following this,applications of dynamic color-tuning CLCs in information encryption,adaptive camouflage,and smart sensing technologies are explored.The review concludes with an outlook on current challenges and future directions in CLC research,particularly in biomimetic systems and dynamic photonic devices,aiming to broaden their functional applications and impact. 展开更多
关键词 Structural colors Cholesteric liquid crystals Elastomers Polymer network
原文传递
Development of mechanical equivalent porous structures for 3Dprinted artificial femoral heads 被引量:1
11
作者 Moyu Liu Jun Wang +3 位作者 Yu Li Kaiyuan Cheng Yong Huan Ning Li 《Acta Mechanica Sinica》 2025年第4期176-187,共12页
The current artificial bone is unable to accurately replicate the inhomogeneity and anisotropy of human cancellous bone.To address this issue,we proposed a personalized approach based on clinical CT images to design m... The current artificial bone is unable to accurately replicate the inhomogeneity and anisotropy of human cancellous bone.To address this issue,we proposed a personalized approach based on clinical CT images to design mechanical equivalent porous structures for artificial femoral heads.Firstly,supported by Micro and clinical CT scans of 21 bone specimens,the anisotropic mechanical parameters of human cancellous bone in the femoral head were characterized using clinical CT values(Hounsfield unit).After that,the equivalent porous structure of cancellous bone was designed based on the gyroid surface,the influence of its degree of anisotropy and volume fraction on the macroscopic mechanical parameters was investigated by finite element analysis.Furthermore,a mapping relationship between CT values and the porous structure was established by jointly solving the mechanical parameters of the porous structure and human cancellous bone,allowing the design of personalized gradient porous structures based on clinical CT images.Finally,to verify the mechanical equivalence,implant press-in tests were conducted on 3D-printed artificial femoral heads and human femoral heads,the influence of the porous structure’s cell size in bone-implant interaction problems was also explored.Results showed that the minimum deviations of press-in stiffness(<15%)and peak load(<5%)both occurred when the cell size was 20%to 30%of the implant diameter.In conclusion,the designed porous structure can replicate the human cancellous bone-implant interaction at a high level,indicating its effectiveness in optimizing the mechanical performance of 3D-printed artificial femoral head. 展开更多
关键词 Mechanical equivalence Porous structure ANISOTROPY Femoral head Artificial bone
原文传递
Theoretical Insights into the Atomic and Electronic Structures of Polyperyleneimide:On the Origin of Photocatalytic Oxygen Evolution Activity
12
作者 Yi-Qing Wang Zhi Lin +1 位作者 Ming-Tao Li Shao-Hua Shen 《电化学(中英文)》 北大核心 2025年第5期28-36,共9页
Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Her... Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Herein,with crystal and atomic structures of the self-assembled PDI revealed from the X-ray diffraction pattern,the electronic structure is theoretically illustrated by the first-principles density functional theory calculations,suggesting the suitable band structure and the direct electronic transition for efficient photocatalytic oxygen evolution over PDI.It is confirmed that the carbonyl O atoms on the conjugation structure serve as the active sites for oxygen evolution reaction by the crystal orbital Hamiltonian group analysis.The calculations of reaction free energy changes indicate that the oxygen evolution reaction should follow the reaction pathway of H_(2)O→^(*)OH→^(*)O→^(*)OOH→^(*)O_(2)with an overpotential of 0.81 V.Through an in-depth theoretical computational analysis in the atomic and electronic structures,the origin of photocatalytic oxygen evolution activity for PDI is well illustrated,which would help the rational design and modification of polymeric photocatalysts for efficient oxygen evolution. 展开更多
关键词 Photocatalytic oxygen evolution Polymeric perylene diimide Atomic structure Electronic structure Reaction pathway
在线阅读 下载PDF
Highly Thermally Conductiveand Flame-Retardant Waterborne Polyurethane Composites with 3D BNNS Bridging Structures via MagneticField Assistance 被引量:1
13
作者 Hao Jiang Yuhui Xie +7 位作者 Mukun He Jindao Li Feng Wu Hua Guo Yongqiang Guo Delong Xie Yi Mei Junwei Gu 《Nano-Micro Letters》 2025年第6期279-296,共18页
The microstructure design for thermal conduction pathways in polymeric electrical encapsulation materials is essential to meet the stringent requirements for efficient thermal management and thermal runaway safety in ... The microstructure design for thermal conduction pathways in polymeric electrical encapsulation materials is essential to meet the stringent requirements for efficient thermal management and thermal runaway safety in modern electronic devices.Hence,a composite with three-dimensional network(Ho/U-BNNS/WPU)is developed by simultaneously incorporating magnetically modified boron nitride nanosheets(M@BNNS)and non-magnetic organo-grafted BNNS(U-BNNS)into waterborne polyurethane(WPU)to synchronous molding under a horizontal magnetic field.The results indicate that the continuous in-plane pathways formed by M@BNNS aligned along the magnetic field direction,combined with the bridging structure established by U-BNNS,enable Ho/U-BNNS/WPU to exhibit exceptional in-plane(λ//)and through-plane thermal conductivities(λ_(⊥)).In particular,with the addition of 30 wt%M@BNNS and 5 wt%U-BNNS,theλ//andλ_(⊥)of composites reach 11.47 and 2.88 W m^(-1) K^(-1),respectively,which representing a 194.2%improvement inλ_(⊥)compared to the composites with a single orientation of M@BNNS.Meanwhile,Ho/U-BNNS/WPU exhibits distinguished thermal management capabilities as thermal interface materials for LED and chips.The composites also demonstrate excellent flame retardancy,with a peak heat release and total heat release reduced by 58.9%and 36.9%,respectively,compared to WPU.Thus,this work offers new insights into the thermally conductive structural design and efficient flame-retardant systems of polymer composites,presenting broad application potential in electronic packaging fields. 展开更多
关键词 Boron nitride nanosheets Magnetic response Structural design Thermal conductivity Flame retardancy
在线阅读 下载PDF
Effects of bamboo invasion on forest structures and diameter–height allometries 被引量:1
14
作者 Ming Ouyang Anwar Eziz +8 位作者 Shuli Xiao Wenjing Fang Qiong Cai Suhui Ma Jiangling Zhu Qingpei Yang Jinming Hu Zhiyao Tang Jingyun Fang 《Forest Ecosystems》 2025年第1期38-45,共8页
Forest structure is fundamental in determining ecosystem function,yet the impact of bamboo invasion on these structural characteristics remains unclear.We investigated 219 invasion transects at 41 sites across the dis... Forest structure is fundamental in determining ecosystem function,yet the impact of bamboo invasion on these structural characteristics remains unclear.We investigated 219 invasion transects at 41 sites across the distribution areas of Moso bamboo(Phyllostachys edulis)in China to explore the effects of bamboo invasion on forest structural attributes and diameter–height allometries by comparing paired plots of bamboo,mixed bamboo-tree,and non-bamboo forests along the transects.We found that bamboo invasion decreased the mean and maximum diameter at breast height,maximum height,and total basal area,but increased the mean height,stem density,and scaling exponent for stands.Bamboo also had a higher scaling exponent than tree,particularly in mixed forests,suggesting a greater allocation of biomass to height growth.As invasion intensity increased,bamboo allometry became more plastic and decreased significantly,whereas tree allometry was indirectly promoted by increasing stem density.Additionally,a humid climate may favour the scaling exponents for both bamboo and tree,with only minor contributions from topsoil moisture and nitrogen content.The inherent superiority of diameter–height allometry allows bamboo to outcompete tree and contributes to its invasive success.Our findings provide a theoretical basis for understanding the causes and consequences of bamboo invasion. 展开更多
关键词 Moso bamboo Forest structure Stand density DBHHeight allometry Scaling exponent Wetness index
在线阅读 下载PDF
Regulation of crystal and microstructures of RETaO_(4)(RE=Nd,Sm,Gd.Ho,Er)powders synthesized via co-precipitation 被引量:1
15
作者 Jiang Tian Lin Chen +10 位作者 Xunlei Chen Keren Luo Baihui Li Di Zhang Meng Wang Bing Xu Zhiyi Ren Shixiao Yan Xiaoliang Sun Chi Liu Jing Feng 《Journal of Rare Earths》 2025年第6期1246-1255,I0006,共11页
Ferroelastic rare earth tantalates(RETaO_(4))are widely researched as the next-generation thermal barrier coatings(TBCs),and RETaO_(4)powders are hugely significant for synthesizing their coatings.The current research... Ferroelastic rare earth tantalates(RETaO_(4))are widely researched as the next-generation thermal barrier coatings(TBCs),and RETaO_(4)powders are hugely significant for synthesizing their coatings.The current research used chemical co-precipitation within an automated experimental device to synthesize RETaO_(4)(RE=Nd,Sm,Gd,Ho,Er)powders.The device automatically monitored and controlled the solutions'pH,improving the chemical co-precipitation efficiency.The crystal structure and microstructure of the RETaO_(4)powders can be controlled by changing the annealing temperature,and the materials undergo an m'-m phase transition.The m'-RETaO_(4)powders exhibit nano-size grains,while m-RETaO_(4)powders evince micron-size grains,altered by the annealing temperatures.A simultaneous thermal analysis es-timates the reversive ferroelastic tetragonal-monoclinic phase transition temperatures.Overall,this research focuses on the synthesis,crystal structures,microstructures,and phase transition of the fabricated RETaO_(4)powders. 展开更多
关键词 Rare earth tantalates Chemical co-precipitation method Rare earths Crystal structures MICROstructures Annealingtemperatures
原文传递
3D Printing of Tough Hydrogel Scaffolds with Functional Surface Structures for Tissue Regeneration
16
作者 Ke Yao Gaoying Hong +11 位作者 Ximin Yuan Weicheng Kong Pengcheng Xia Yuanrong Li Yuewei Chen Nian Liu Jing He Jue Shi Zihe Hu Yanyan Zhou Zhijian Xie Yong He 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期18-45,共28页
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi... Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries. 展开更多
关键词 3D printing Tough hydrogel scaffold Functional surface structure Tissue regeneration BIOMATERIALS
在线阅读 下载PDF
Mixture of Bacillus Amyloliquefaciens and Bacillus Pumilus Modulates Community Structures of Rice Rhizosphere Soil to Suppress Rice Seedling Blight 被引量:1
17
作者 JIANG Nan QIU Jiehua +7 位作者 TIAN Dagang SHI Huanbin LIU Zhiquan WEN Hui XIE Shuwei CHEN Huizhe WU Meng KOU Yanjun 《Rice science》 2025年第1期118-130,I0067-I0070,共17页
Rice seedling blight,caused by various fungi,including Fusarium oxysporum,poses a severe threat to rice production.As awareness grows regarding the environmental and safety hazards associated with the application of f... Rice seedling blight,caused by various fungi,including Fusarium oxysporum,poses a severe threat to rice production.As awareness grows regarding the environmental and safety hazards associated with the application of fungicides for managing rice seedling blight,there has been a shift in focus towards biological control agents.In this study,we isolated biocontrol bacteria from paddy fields that significantly inhibited the growth of F.oxysporum in vitro and identified the strains as Bacillus amyloliquefaciens T40 and Bacillus pumilus T208.Additionally,our findings indicated that the combined application of these Bacillus strains in soil was more effective in reducing the incidence of rice seedling blight than their individual use.Analysis of 16S and internal transcribed spacer rRNA gene sequencing data revealed that the mixture of the T40 and T208 strains exhibited the lowest average clustering coefficients,which were negatively correlated with the biomass of F.oxysporum-inoculated rice seedlings.Furthermore,this mixture led to higher stochastic assembly(average|βNTI|<2)and reduced selection pressures on rice rhizosphere bacteria compared with individual strain applications.The mixture of the T40 and T208 strains also significantly increased the expression of defense-related genes.In conclusion,the mixture of the T40 and T208 strains effectively modulates microbial community structures,enhances microbial network stability,and boosts the resistance against rice seedling blight.Our study supports the development and utilization of biological resources for crop protection. 展开更多
关键词 application strategy disease control disease resistance microbial community structure microbial community assembly process Oryza sativa
在线阅读 下载PDF
应用Tekla Structures软件完成裂解炉钢结构详细设计图纸
18
作者 刘义朋 《石油化工设计》 2025年第3期27-30,I0002,共5页
以裂解炉辐射段钢结构设计为例,介绍如何应用Tekla Structures软件完成裂解炉详细设计图纸。设计过程中实现了将完善的三维模型和二维图纸链接,并将三维模型迅速高效的转化为二维图纸的目标。简化了传统二维出图模式,辅助完成裂解炉钢... 以裂解炉辐射段钢结构设计为例,介绍如何应用Tekla Structures软件完成裂解炉详细设计图纸。设计过程中实现了将完善的三维模型和二维图纸链接,并将三维模型迅速高效的转化为二维图纸的目标。简化了传统二维出图模式,辅助完成裂解炉钢结构在裂解炉制造厂预制和项目现场顺利安装。 展开更多
关键词 裂解炉 Tekla structures 钢结构 详图设计
在线阅读 下载PDF
Nucleotide Relative Molecular Similarity within Anti-Emetic/Pro-Kinetic Drug Structures
19
作者 Wynford Robert Williams 《Journal of Biosciences and Medicines》 2025年第1期215-229,共15页
The physiology of the central and enteric nervous systems and gastric muscle contributes to the complexities encountered in the research and clinical management of gastroparesis. A wide range of prescription drugs tar... The physiology of the central and enteric nervous systems and gastric muscle contributes to the complexities encountered in the research and clinical management of gastroparesis. A wide range of prescription drugs target the underlying neurotransmitter imbalances and adjust nucleotide levels in appropriate tissues, but treatment is unsatisfactory, as our understanding of the condition is far from complete. In this study, computational software is used to focus on the adenine nucleotide, ATP, as a comparative template for the structures of drugs used in gastroparesis treatment. The results demonstrate that muscarinic, dopamine, serotonin (5-HT) and histamine receptor ligand classes relate structurally and differentially to the molecular structure of ATP. In these neurotransmitter classes, compounds do not target cell membrane receptor G-protein signal transduction in a manner that provides a single mechanism for improving gastroparesis symptoms. The exploration of alternative nucleotide-based deficiencies of KATP channels, Na+/K+ATPases and guanine nucleotide directed nitrergic mechanisms should enhance our experimental approach to understanding this condition. 展开更多
关键词 GASTROPARESIS Adenine Nucleotides Neurotransmitter Agents Molecular Structure
暂未订购
Emerging structures and dynamic mechanisms ofγ-secretase for Alzheimer’s disease
20
作者 Yinglong Miao Michael S.Wolfe 《Neural Regeneration Research》 SCIE CAS 2025年第1期174-180,共7页
γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the ... γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general. 展开更多
关键词 Alzheimer’s disease amyloid precursor protein cryo-EM structures drug design intramembrane proteolysis molecular dynamics NOTCH
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部